Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology
Abstract
:1. Introduction
2. Methods
2.1. Bibliometric Analysis
2.2. Literature Review
3. Results
3.1. Publication Volume and Distribution within Crop Varieties and Functional Components
3.2. Map of Cooperation and Competition among Countries
3.3. Research Hotspots and Trends
3.3.1. Research Hotspots
3.3.2. Research Trends
4. Gene Resources and Strategies for Crop Nutrient and Quality Improvement
4.1. Genetic Resource Mining of Starch in Four Main Crops
4.1.1. Starch Types and Contents and Their Nutrimental Values in Crops
4.1.2. Gene Resources for Starch Improvement in Rice, Corn, Wheat, and Soybean
4.2. Identification of Functional Lipid-Related Gene Resources in Crops
4.2.1. Main Factors Affecting Crop Oil Quality
4.2.2. Gene Resources and Improvement of the Oil Quality in Rice and Soybean
4.3. Identification of Functional Protein–Gene Resources in Crops
4.3.1. Factors Affecting Protein Quality in Crops
4.3.2. Gene Resources for Protein Improvement in Rice, Wheat, Corn, and Soybean
4.4. Identification of Genetic Resources for Other Health Functional Components in Crops
4.4.1. Flavonoids in Crops
4.4.2. Minerals, Vitamins, and Other Active Substances in Crops
4.4.3. Identification of Gene Resources for Improving Health Functional Components in Crops
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. UN Report: Global Hunger Numbers Rose to as Many as 828 Million in 2021. 2022. Available online: https://www.who.int/news/item/06-07-2022-un-report--global-hunger-numbers-rose-to-as-many-as-828-million-in-2021 (accessed on 20 November 2022).
- Wei, X.; Luo, J.; Pu, A.; Liu, Q.; Zhang, L.; Wu, S.; Long, Y.; Leng, Y.; Dong, Z.; Wan, X. From biotechnology to bioeconomy: A review of development dynamics and pathways. Sustainability 2022, 14, 10413. [Google Scholar] [CrossRef]
- Fei, B.B.; Ling, L.; Hua, C.; Ren, S. Effects of soybean oligosaccharides on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus. Food Chem. 2014, 158, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, F.; Zhao, M.; Ning, Z.; Sun-Waterhouse, D.; Sun, B. Soy peptide aggregates formed during hydrolysis reduced protein extraction without decreasing their nutritional value. Food Funct. 2017, 8, 4384–4395. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, X.; Li, C.; Jiao, S.; Dong, W. Association between consumption of soy and risk of cardiovascular disease: A meta-analysis of observational studies. Eur. J. Prev. Cardiol. 2017, 24, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Wei, X.; Wu, S.; Wu, N.; Li, Q.; Tan, B.; Wan, X. Plant molecular farming, a tool for functional food production. J. Agric. Food Chem. 2022, 70, 2108–2116. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Q.; Zhu, Q.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.; Li, H.; Lin, Y.; et al. A robust CRISPR/Cas9 system for convenient, high-Efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 2015, 8, 1274–1284. [Google Scholar] [CrossRef]
- Achary, V.M.M.; Reddy, M.K. CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves aleurone layer and grain nutritional quality in rice. Sci. Rep. 2021, 11, 13. [Google Scholar] [CrossRef]
- Li, C.; Nguyen, V.; Liu, J.; Fu, W.; Chen, C.; Yu, K.; Cui, Y. Mutagenesis of seed storage protein genes in Soybean using CRISPR/Cas9. BMC Res. Notes 2019, 12, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Zhang, K.; Chen, K.; Gao, C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 2014, 41, 63–68. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Lin, Y.; Chen, S.; Liu, H.; Chen, Z.; Fan, M.; Hu, T.; Mei, F.; Chen, J.; Chen, L.; et al. CRISPR/Cas9-mediated functional recovery of the recessive rc allele to develop red rice. Plant Biotechnol. J. 2019, 17, 2096–2105. [Google Scholar] [CrossRef]
- Liu, C.; Ma, T.; Yuan, D.; Zhou, Y.; Long, Y.; Li, Z.; Dong, Z.; Duan, M.; Yu, D.; Jing, Y. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnol. J. 2022, 20, 1470–1486. [Google Scholar] [CrossRef] [PubMed]
- Pixley, K.V.; Falck-Zepeda, J.; Paarlberg, R.; Phillips, P.; Slamet-Loedin, I.; Dhugga, K.; Campos, H.; Gutterson, N. Genome-edited crops for improved food security of smallholder farmers. Nat. Genet. 2022, 54, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Haapaniemi, E.; Botla, S.; Persson, J.; Schmierer, B.; Taipale, J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 2018, 24, 927–930. [Google Scholar] [CrossRef] [Green Version]
- Nishimasu, H.; Shi, X.; Ishiguro, S.; Gao, L.; Hirano, S.; Okazaki, S.; Noda, T.; Abudayyeh, O.; Gootenberg, J.; Mori, H.; et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 2018, 361, 1259–1262. [Google Scholar] [CrossRef]
- Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, E2579–E2586. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Pu, A.; Liu, Q.; Hou, Q.; Zhang, Y.; An, X.; Long, Y.; Jiang, Y.; Dong, Z.; Wu, S.; et al. The bibliometric landscape of gene editing innovation and regulation in the worldwide. Cells 2022, 11, 2682. [Google Scholar] [CrossRef]
- Mallapaty, S. China’s approval of gene-edited crops energizes researchers. Nature 2022, 602, 559–560. [Google Scholar] [CrossRef] [PubMed]
- Noyons, E.C.M.; Moed, H.; Luwel, M. Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. J. Am. Soc. Inf. Sci. 1999, 50, 115–131. [Google Scholar] [CrossRef]
- Small, H.; Rorvig, M.; Lunin, L. Visualizing science by citation mapping. J. Am. Soc. Inf. Sci. 1999, 50, 799–813. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.; Wright, J.; Agarwala, V.; Scott, D.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Q.W.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.; Qiu, J.; et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.W.; Weigel, D.; Beachy, R.; Li, J. A proposed regulatory framework for genome-edited crops. Nat. Genet. 2016, 48, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Hua, Y.; Fu, Y.; Li, J.; Liu, Q.; Jiao, X.; Xin, G.; Wang, J.; Wang, X.; Yan, C.; et al. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci. China-Life Sci. 2017, 60, 506–515. [Google Scholar] [CrossRef]
- Jiang, Y.; An, X.; Li, Z.; Yan, T.; Zhu, T.; Xie, K.; Liu, S.; Hou, Q.; Zhao, L.; Wu, S.; et al. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnol. J. 2021, 19, 1769–1784. [Google Scholar] [CrossRef]
- Benavente, E.; Giménez, E. Modern approaches for the genetic improvement of rice, wheat and maize for abiotic constraints-related traits: A comparative overview. Agronomy 2021, 11, 376. [Google Scholar] [CrossRef]
- Wolt, J.D.; Wang, K.; Yang, B. The regulatory status of genome-edited crops. Plant Biotechnol. J. 2016, 14, 1937. [Google Scholar] [CrossRef] [Green Version]
- Benbrook, C. Enhancement needed in GE crop and food regulation in the U.S. Front. Public Health 2016, 4, 59. [Google Scholar] [CrossRef] [Green Version]
- Gordon, D.R.; Jaffe, G.; Doane, M.; Glaser, A.; Gremillion, T.; Ho, M. Responsible governance of gene editing in agriculture and the environment. Nat. Biotechnol. 2021, 39, 1055–1057. [Google Scholar] [CrossRef]
- Wight, A.J. EU gene-editing rule squeezes science. Nature 2018, 563, 15–16. [Google Scholar] [CrossRef]
- Zhu, J.-K. The future of gene-edited crops in China. Natl. Sci. Rev. 2022, 9, nwac063. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, Q.; Pu, A.; Wang, S.; Chen, F.; Zhang, L.; Zhang, Y.; Dong, Z.; Wan, X. Knowledge mapping of bioeconomy: A bibliometric analysis. J. Clean. Prod. 2022, 373, 133824. [Google Scholar] [CrossRef]
- Kumar, A.; Mir, R.; Sehgal, D.; Agarwal, P.; Carter, A. Editorial: Genetics and genomics to enhance crop production, towards food security. Front. Genet. 2021, 12, 798308. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.C.; Tan, S.; Qiao, G.; Barlow, K.; Wang, J.; Xia, D.; Meng, X.; Paschon, D.; Leung, E.; Hinkley, S.; et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011, 29, U143–U149. [Google Scholar] [CrossRef]
- Christian, M.; Cermak, T.; Doyle, E.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.; Voytas, D. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, S.; Jiang, Y.; Yan, T.; Fang, C.; Hou, Q.; Wu, S.; Xie, K.; An, X.; Wan, X. Use of CRISPR/Cas9-based gene editing to simultaneously mutate multiple homologous genes required for pollen development and male fertility in maize. Cells 2022, 11, 439. [Google Scholar] [CrossRef]
- Lai, J.; Zhao, Y.; Li, Y.; Zhang, J.; Wang, Y.; Lyu, M.; Zhang, X.; Zhao, H.; Song, W. CRISPR/CAS12J Enzyme and System: WO2020098772.World Intellectual Property Organization 2020. Available online: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2020098772&_cid=JP2-LCQIAW-41501-1 (accessed on 20 November 2022).
- Gunaratna, N.S.; Groote, H.; Nestel, P.; Pixley, K.; McCabe, G. A meta-analysis of community-based studies on quality protein maize. Food Policy 2010, 35, 202–210. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.; Abudayyeh, O.; Slaymaker, I.; Makarova, K.; Essletzbichler, P.; Volz, S.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.Q.; Gong, Y.; Yu, K. Quantitative analysis of total starch content in wheat flour by reaction headspace gas chromatography. Anal. Bioanal. Chem. 2017, 409, 5195–5200. [Google Scholar] [CrossRef]
- Pandey, M.K.; Rani, N.; Madhav, M.; Sundaram, R.; Varaprasad, G.; Sivaranjani, A.; Bohra, A.; Kumar, G.; Kumar, A. Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnol. Adv. 2012, 30, 1697–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavareze, E.D.; Storck, C.; de Castro, L.; Schirmer, M.; Dias, A. Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chem. 2010, 121, 358–365. [Google Scholar] [CrossRef]
- Kumar, P.; Parveen, A.; Sharma, H.; Rahim, M.; Mishra, A.; Kumar, P.; Shah, K.; Rishi, V.; Roy, J. Understanding the regulatory relationship of abscisic acid and bZIP transcription factors towards amylose biosynthesis in wheat. Mol. Biol. Rep. 2021, 48, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, D.; Li, X.; Tang, Z.; Ling, X.; Zhou, T.; Zhang, B. Heat-Moisture treatment further reduces in vitro digestibility and enhances resistant starch content of a high-resistant starch and low-glutelin rice. Foods 2021, 10, 2562. [Google Scholar] [CrossRef]
- Guo, D.; Ling, X.; Zhou, X.; Li, X.; Wang, J.; Qiu, S.; Yang, Y.; Zhang, B. Evaluation of the quality of a high-resistant starch and low-glutelin rice (Oryza sativa L.) generated through CRISPR/Cas9-Mediated targeted mutagenesis. J. Agric. Food Chem. 2020, 68, 9733–9742. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Gu, Z.; Chen, Z.; Yu, J.; Chu, R.; Tan, H.; Zhao, D.; Fan, X.; Zhang, C.; Li, Q.; et al. Improving rice eating and cooking quality by coordinated expression of the major starch synthesis-related genes, SSII and Wx, in endosperm. Plant Mol. Biol. 2021, 106, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Butardo, V.M.; Fitzgerald, M.; Bird, A.; Gidley, M.; Flanagan, B.; Larroque, O.; Resurreccion, A.; Laidlaw, H.; Jobling, S.; Morell, M.; et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. J. Exp. Bot. 2011, 62, 4927–4941. [Google Scholar] [CrossRef] [Green Version]
- Baysal, C.; He, W.; Drapal, M.; Villorbina, G.; Medina, V.; Capell, T.; Khush, G.; Zhu, C.; Fraser, P.; Christou, P. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming. Proc. Natl. Acad. Sci. USA 2020, 117, 26503–26512. [Google Scholar] [CrossRef]
- Liu, X.; Ding, Q.; Wang, W.; Pan, Y.; Tan, C.; Qiu, Y.; Chen, Y.; Li, H.; Li, Y.; Ye, N.; et al. Targeted deletion of the first intron of the Wx(b) allele via CRISPR/Cas9 significantly increases grain amylose content in rice. Rice 2022, 15, 1. [Google Scholar] [CrossRef]
- Li, J.; Jiao, G.; Sun, Y.; Chen, J.; Zhong, Y.; Yan, L.; Jiang, D.; Ma, Y.; Xia, L. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol. J. 2021, 19, 937–951. [Google Scholar] [CrossRef]
- Bello, B.K.; Hou, Y.; Zhao, J.; Jiao, G.; Wu, Y.; Li, Z.; Wang, Y.; Tong, X.; Wang, W.; Yuan, W.; et al. NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). Plant Biotechnol. J. 2019, 17, 1222–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Kumar, P.; Sharma, M.; Tuli, R.; Dhaliwal, H.; Chaudhury, A.; Pal, D.; Roy, J. Expression patterns of genes involved in starch biosynthesis during seed development in bread wheat (Triticum aestivum). Mol. Breed. 2015, 35, 184. [Google Scholar] [CrossRef]
- Sun, Y.W.; Jiao, G.; Liu, Z.; Zhang, X.; Li, J.; Guo, X.; Du, W.; Du, J.; Francis, F.; Zhao, Y.; et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 2017, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhang, R.; Gao, J.; Song, G.; Li, J.; Li, W.; Qi, Y.; Li, Y.; Li, G. CRISPR/Cas9-mediated genome editing for wheat grain quality improvement. Plant Biotechnol. J. 2021, 19, 1684–1686. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.T.; Wu, H.; Jiang, H.; Zhu, J.; Huang, C.; Zhang, X.; Liu, C.; Cheng, B. Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. Crop. J. 2020, 8, 440–448. [Google Scholar] [CrossRef]
- Gao, H.R.; Gadlage, M.; Lafitte, H.; Lenderts, B.; Yang, M.; Schroder, M.; Farrell, J.; Snopek, K.; Peterson, D.; Feigenbutz, L.; et al. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat. Biotechnol. 2020, 38, 579–581. [Google Scholar] [CrossRef]
- Fei, Y.Y.; Yang, J.; Wang, F.; Fan, F.; Li, W.; Wang, J.; Xu, Y.; Zhu, J.; Zhong, W. Production of two elite glutinous rice varieties by editing Wx gene. Rice Sci. 2019, 26, 118–124. [Google Scholar] [CrossRef]
- Dong, L.; Qi, X.; Zhu, J.; Liu, C.; Zhang, X.; Cheng, B.; Mao, L.; Xie, C. Supersweet and waxy: Meeting the diverse demands for specialty maize by genome editing. Plant Biotechnol. J. 2019, 17, 1853–1855. [Google Scholar] [CrossRef]
- Paul, P.; Dhatt, B.; Miller, M.; Folsom, J.; Wang, Z.; Krassovskaya, I.; Liu, K.; Sandhu, J.; Yu, H.; Zhang, C.; et al. MADS78 and MADS79 are essential regulators of early seed development in rice. Plant Physiol. 2020, 182, 933–948. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Yang, Y.; Guo, M.; Zhong, C.; Yan, C.; Sun, S. Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system. Crop. J. 2020, 8, 457–464. [Google Scholar] [CrossRef]
- Xiong, Y.; Ren, Y.; Li, W.; Wu, F.; Yang, W.; Huang, X.; Yao, J. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. J. Exp. Bot. 2019, 70, 3765–3780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.S.; Li, Q.; Zhang, C.; Zhang, C.; Yang, Q.; Pan, L.; Ren, X.; Lu, J.; Gu, M.; Liu, Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat. Commun. 2018, 9, 1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, S.F.; Cai, Y.; Feng, B.; Jiao, G.; Sheng, Z.; Luo, J.; Tang, S.; Wang, J.; Hu, P.; Wei, X. Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Sci. 2019, 26, 77–87. [Google Scholar] [CrossRef]
- Ren, D.Y.; Cui, Y.; Hu, H.; Xu, Q.; Rao, Y.; Yu, X.; Zhang, Y.; Wang, Y.; Peng, Y.; Zeng, D.; et al. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J. 2019, 100, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liu, R.; Shi, L.; Zhang, Z.; Zhang, T.; Lu, M.; Chang, M.; Jin, Q.; Wang, X. Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT 2019, 109, 26–32. [Google Scholar] [CrossRef]
- Dupont, J.; White, P.; Carpenter, M.; Schaefer, E.; Meydani, S.; Elson, C.; Woods, M.; Gorbach, S. Food uses and health effects of corn oil. J. Am. Coll. Nutr. 1990, 9, 438–470. [Google Scholar] [CrossRef]
- Tiwari, G.J.; Liu, Q.; Shreshtha, P.; Li, Z.; Rahman, S. RNAi-mediated down-regulation of the expression of OsFAD2-1: Effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC Plant Biol. 2016, 16, 189. [Google Scholar] [CrossRef] [Green Version]
- Lai, O.M.; Jacoby, J.J.; Leong, W.F.; Lai, W.T. Chapter 2—Nutritional studies of rice bran oil. In Rice Bran and Rice Bran Oil; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–54. [Google Scholar] [CrossRef]
- Pal, Y.P.; Pratap, A.P. Rice bran oil: A versatile source for edible and industrial applications. J. Oleo Sci. 2017, 66, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Alfonso, M. Improving soybean seed oil without poor agronomics. J. Exp. Bot. 2020, 71, 6857–6860. [Google Scholar] [CrossRef]
- Hu, F.B.; Manson, J.; Willett, W. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001, 20, 5–19. [Google Scholar] [CrossRef]
- Yuan, J.J.; Wang, C.; Chen, H.; Zhou, H.; Ye, J. Prediction of fatty acid composition in Camellia oleifera oil by near infrared transmittance spectroscopy (NITS). Food Chem. 2013, 138, 1657–1662. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Aro, A.; Willett, W. Health effects of trans-fatty acids: Experimental and observational evidence. Eur. J. Clin. Nutr. 2009, 63, S5–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohlrogge, J.; Browse, J. Lipid biosynthesis. Plant Cell 1995, 7, 957–970. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Araki, E.; Suzuki, Y.; Toki, S.; Saika, H. Production of high oleic/low linoleic rice by genome editing. Plant Physiol. Biochem. 2018, 131, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.T.; Lee, J.; Shannon, J.; Bilyeu, K. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol. 2010, 10, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.; Lu, Q.; Wang, P.; Zhang, Q.; Zhang, J.; Qu, J.; Wang, N. Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/Cas9 technology. Int. J. Mol. Sci. 2020, 21, 1104. [Google Scholar] [CrossRef] [Green Version]
- Haun, W.; Coffman, A.; Clasen, B.; Demorest, Z.; Lowy, A.; Ray, E.; Retterath, A.; Stoddard, T.; Juillerat, A.; Cedrone, F.; et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 2014, 12, 934–940. [Google Scholar] [CrossRef]
- al Amin, N.; Ahmad, N.; Wu, N.; Pu, X.; Ma, T.; Du, Y.; Bo, X.; Wang, N.; Sharif, R.; Wang, P. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max L.). BMC Biotechnol. 2019, 19, 10. [Google Scholar] [CrossRef]
- Ma, J.; Sun, S.; Whelan, J.; Shou, H. CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. Int. J. Mol. Sci. 2021, 22, 3877. [Google Scholar] [CrossRef]
- Wang, J.; Kuang, H.; Zhang, Z.; Yang, Y.; Yan, L.; Zhang, M.; Song, S.; Guan, Y. Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. Crop J. 2020, 8, 432–439. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L.; Zhang, K.; Ran, Y. Progresses, Challenges, and prospects of genome editing in soybean (Glycine max). Front. Plant Sci. 2020, 11, 571138. [Google Scholar] [CrossRef] [PubMed]
- Demorest, Z.L.; Coffman, A.; Baltes, N.; Stoddard, T.; Clasen, B.; Luo, S.; Retterath, A.; Yabandith, A.; Gamo, M.; Bissen, J.; et al. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol. 2016, 16, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, S.; Jiao, Y.; Abraham, L.; Wang, P. Correlation analysis of new soybean [Glycine max (L.) Merr] gene Gm15G117700 with oleic acid. Phyton 2021, 90, 1177–1192. [Google Scholar] [CrossRef]
- Basnet, R.; Zhang, J.; Hussain, N.; Shu, Q. Characterization and mutational analysis of a monogalactosyldiacylglycerol synthase gene OsMGD2 in rice. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Cabanos, C.; Matsuoka, Y.; Maruyama, N. Soybean proteins/peptides: A review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds. Peptides 2021, 143, 170598. [Google Scholar] [CrossRef]
- Wang, B.; Teng, D.; Yu, C.; Yao, L.; Ma, X.; Wu, T. Increased sulfur-containing amino acid content and altered conformational characteristics of soybean proteins by rebalancing 11S and 7S compositions. Front. Plant Sci. 2022, 13, 828153. [Google Scholar] [CrossRef]
- Ren, S.; Wang, S. Distribution and nutritional analysis of rice protein. J. Chin. Cereals Oils Assoc. 2002, 17, 35–38. [Google Scholar]
- Wu, S.; Myers, D.; Johnson, L. Factors affecting yield and composition of zein extracted from commercial corn gluten meal. Cereal Chem. J. 1997, 74, 258–263. [Google Scholar] [CrossRef]
- Galili, G.; Amir, R.; Fernie, A. The regulation of essential amino acid synthesis and accumulation in plants. Annu. Rev. Plant Biol. 2016, 67, 153–178. [Google Scholar] [CrossRef]
- Guo, C.; Liu, X.; Chen, L.; Cai, Y.; Yao, W.; Yuan, S.; Wu, C.; Han, T.; Sun, S.; Hou, W. Elevated methionine content in soybean seed by overexpressing maize β-zein protein. Oil Crop Sci. 2020, 5, 11–16. [Google Scholar] [CrossRef]
- Yang, H.P.; Huang, Z.; Wang, J.; Lu, S. The role of c-Myb and Sp1 in the up-regulation of methionine adenosyltransferase 2A gene expression in human hepatocellular carcinoma. FASEB J. 2001, 15, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Biscola, V.; Ade Olmos, R.; Choiset, Y.; Rabesona, H.; Garro, M.; Mozzi, F.; Chobert, J.; Drouet, M.; Haertle, T.; Franco, B. Soymilk fermentation by Enterococcus faecalis VB43 leads to reduction in the immunoreactivity of allergenic proteins beta-conglycinin (7S) and glycinin (11S). Benef. Microbes 2017, 8, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Scherf, K.A.; Koehler, P.; Wieser, H. Gluten and wheat sensitivities—An overview. J. Cereal Sci. 2016, 67, 2–11. [Google Scholar] [CrossRef]
- Sanchez-Leon, S.; Gil-Humanes, J.; Ozuna, C.; Gimenez, M.; Sousa, C.; Voytas, D.; Barro, F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018, 16, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Jouanin, A.; Schaart, J.; Boyd, L.; Cockram, J.; Leigh, F.; Bates, R.; Wallington, E.; Visser, R.; Smulders, M. Outlook for coeliac disease patients: Towards bread wheat with hypoimmunogenic gluten by gene editing of alpha- and gamma-gliadin gene families. BMC Plant Biol. 2019, 19, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, B.; An, L.; Han, Y.; Gao, H.; Ren, H.; Zhao, X.; Wei, X.; Krishnan, H.; Liu, S. Transcriptome profile of near-isogenic soybean lines for beta-conglycinin alpha-subunit deficiency during seed maturation. PLoS ONE 2016, 11, e0159723. [Google Scholar] [CrossRef] [Green Version]
- Jegadeesan, S.; Yu, K.; Woodrow, L.; Wang, Y.; Shi, C.; Poysa, V. Molecular analysis of glycinin genes in soybean mutants for development of gene-specific markers. Theor. Appl. Genet. 2012, 124, 365–372. [Google Scholar] [CrossRef]
- Gil-Humanes, J.; Piston, F.; Barro, F. Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc. Natl. Acad. Sci. USA 2010, 107, 17023–17028. [Google Scholar] [CrossRef] [Green Version]
- Li, C.B.; Yue, Y.; Chen, H.; Qi, W.; Song, R. The ZmbZIP22 transcription factor regulates 27-kD gamma-Zein gene transcription during maize endosperm development. Plant Cell 2018, 30, 2402–2424. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Zhu, T.; Tian, Z.; Li, C.; Zhang, W.; Song, R. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol. 2016, 16, 58. [Google Scholar] [CrossRef]
- Raffan, S.; Sparks, C.; Huttly, A.; Hyde, L.; Martignago, D.; Mead, A.; Hanley, S.; Wilkinson, P.; Barker, G.; Edwards, K.; et al. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnol. J. 2021, 19, 1602–1613. [Google Scholar] [CrossRef] [PubMed]
- Camerlengo, F.; Frittelli, A.; Sparks, C.; Doherty, A.; Martignago, D.; Larre, C.; Lupi, R.; Sestili, F.; Masci, S. CRISPR-Cas9 multiplex editing of the alpha-amylase/trypsin inhibitor genes to reduce allergen proteins in durum wheat. Front. Sustain. Food Syst. 2020, 4, 14. [Google Scholar] [CrossRef]
- Gao, Y.; An, K.; Guo, W.; Chen, Y.; Zhang, R.; Zhang, X.; Chang, S.; Rossi, V.; Jin, F.; Cao, X.; et al. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell 2021, 33, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.X.; Yu, M.; Chang, Y.; Tang, H.; Wang, W.; Du, L.; Wang, K.; Yan, Y.; Ye, X. Functional analysis of TaPDI genes on storage protein accumulation by CRISPR/Cas9 edited wheat mutants. Int. J. Biol. Macromol. 2022, 196, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Sun, S.; Yang, B.; Zhao, J.; Li, W.; Huang, Z.; Li, Z.; He, Y.; Wang, Z. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice. Plant Biotechnol. J. 2022, 20, 485–498. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Kuligowski, M.; Pawlowska, K.; Jasinska-Kuligowska, I.; Nowak, J. Isoflavone composition, polyphenols content and antioxidative activity of soybean seeds during tempeh fermentation. Cyta-J. Food 2017, 15, 27–33. [Google Scholar] [CrossRef]
- Ohtomo, T.; Uehara, M.; Penalvo, J.; Adlercreutz, H.; Katsumata, S.; Suzuki, K.; Takeda, K.; Masuyama, R.; Ishimi, Y. Comparative activities of daidzein metabolites, equol and O-desmethylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures. Eur. J. Nutr. 2008, 47, 273–279. [Google Scholar] [CrossRef]
- Jin, X.; Sun, J.; Yu, B.; Wang, Y.; Sun, W.; Yang, J.; Huang, S.; Xie, W. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor-dependent MEK/ERK and PI3K/Akt activation. Nutr. Res. 2017, 42, 20–30. [Google Scholar] [CrossRef]
- Im, J.; Park, K. Association between soy food and dietary soy isoflavone intake and the risk of cardiovascular disease in women: A prospective cohort study in Korea. Nutrients 2021, 13, 1407. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.; Lim, S. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Q.Q.; Chu, M.; Yu, X.; Xie, Y.; Li, Y.; Du, Y.; Liu, X.; Zhang, Z.; Shi, O.; Yan, N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. Food Rev. Int. 2022. [Google Scholar] [CrossRef]
- Zhu, F. Anthocyanins in cereals: Composition and health effects. Food Res. Int. 2018, 109, 232–249. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Levels and Trends in Child Malnutrition: Key Findings of the 2019 Edition. 2019. Available online: https://www.unicef.org/reports/joint-child-malnutrition-estimates-levels-and-trends-child-malnutrition-2019 (accessed on 23 December 2022).
- UNICEF. Vitamin A Deficiency. 2021. Available online: https://data.unicef.org/topic/nutrition/vitamin-a-deficiency/ (accessed on 29 October 2022).
- Thakur, N.; Flowerika; Thakur, N.; Khan, S.; Pandey, A.; Tiwari, S. Carotenoid cleavage dioxygenases (HD-CCD1A and B) contribute as strong negative regulators of beta-carotene in Indian bread wheat (cv. HD2967). 3 Biotech. 2021, 11, 221. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, A.; Bhati, K.; Kaur, G.; Shukla, V.; Tiwari, S.; Pandey, A. RNAi-mediated downregulation of inositol Pentakisphosphate Kinase (IPK1) in wheat grains decreases phytic acid levels and increases Fe and Zn accumulation. Front. Plant Sci. 2018, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.H.; Chu, H.; Tang, L.; Sakamoto, W.; Maekawa, M.; Chu, I.; Wang, M.; Lo, C. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta 2008, 228, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ruonan, F.; Fam, Y.; Liu, R.; Zhang, H.; Chen, T.; Liu, J.; Li, H.; Zhao, X.; Song, C.-P. The flavonoid biosynthesis regulator PFG3 confers drought stress tolerance in plants by promoting flavonoid accumulation. Environ. Exp. Bot. 2022, 196, 104792. [Google Scholar] [CrossRef]
- Kim, B.; Piao, R.; Lee, G.; Koh, E.; Lee, Y.; Woo, S.; Reflinur; Jiang, W.; Septiningsih, E.; Thomson, M.; et al. OsCOP1 regulates embryo development and flavonoid biosynthesis in rice (Oryza sativa L.). Theor. Appl. Genet. 2021, 134, 2587–2601. [Google Scholar] [CrossRef]
- Stracke, R.; Ishihara, H.; Huep, G.; Barsch, A.; Mehrtens, F.; Niehaus, K.; Weisshaar, B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 2007, 50, 660–677. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Du, H.; Wang, J.; Pu, Y.; Yang, C.; Yan, R.; Yang, H.; Cheng, H.; Yu, D. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol. J. 2020, 18, 1384–1395. [Google Scholar] [CrossRef]
- Ibrahim, S.; Saleem, B.; Rehman, N.; Zafar, S.; Naeem, M.; Khan, M. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J. Adv. Res. 2022, 37, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.K.; Doyon, Y.; Miller, J.; DeKelver, R.; Moehle, E.; Worden, S.; Mitchell, J.; Arnold, N.; Gopalan, S.; Meng, X.; et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009, 459, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.S.; Basnet, R.; Islam, S.; Shu, Q. Mutational analysis of OsPLD alpha 1 reveals its involvement in phytic acid biosynthesis in rice grains. J. Agric. Food Chem. 2019, 67, 11436–11443. [Google Scholar] [CrossRef] [PubMed]
- Broerse, M.; Oorsprong, H.; van Gestel, C. Cadmium affects toxicokinetics of pyrene in the collembolan Folsomia candida. Ecotoxicology 2012, 21, 795–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Jiang, J.; Liu, Y.; Meng, J.; Xu, S.; Tan, Y.; Li, Y.; Shu, Q.; Huang, J. Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-Mediated mutagenesis for breeding low Cd rice. Rice Sci. 2019, 26, 88–97. [Google Scholar] [CrossRef]
- Wang, T.K.; Li, Y.; Fu, Y.; Xie, H.; Song, S.; Qiu, M.; Wen, J.; Chen, M.; Chen, G.; Tian, Y.; et al. Mutation at different sites of metal rransporter gene OsNramp5 affects Cd accumulation and related agronomic traits in rice (Oryza sativa L.). Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Tang, L.; Mao, B.; Li, Y.; Lv, Q.; Zhang, L.; Chen, C.; He, H.; Wang, W.; Zeng, X.; Shao, Y.; et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep. 2017, 7, 14438. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.H.; Wang, J.; Xia, X.; Zhang, Z.; He, J.; Nong, B.; Luo, T.; Feng, R.; Wu, Y.; Pan, Y.; et al. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. Plant J. 2021, 107, 198–214. [Google Scholar] [CrossRef]
- Akama, K.; Akter, N.; Endo, H.; Kanesaki, M.; Endo, M.; Toki, S. An in vivo targeted deletion of the Calmodulin-binding domain from rice Glutamate Decarboxylase 3 (OsGAD3) increases gamma-aminobutyric acid content in grains. Rice 2020, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Bezrutczyk, M.; Hartwig, T.; Horschman, M.; Char, S.; Yang, J.; Yang, B.; Frommer, W.; Sosso, D. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol. 2018, 218, 594–603. [Google Scholar] [CrossRef]
- Manghwar, H.; Lindsey, K.; Zhang, X.; Jin, S. CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends Plant Sci. 2019, 24, 1102–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Laffon, J.; Kuntz, M.; Ricroch, A.E. Worldwide CRISPR patent landscape shows strong geographical biases. Nat. Biotechnol. 2019, 37, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Medvedieva, M.O.; Blume, Y.B. Legal regulation of plant genome editing with the CRISPR/Cas9 technology as an example. Cytol. Genet. 2018, 52, 204–212. [Google Scholar] [CrossRef]
- Pickar-Oliver, A.; Gersbach, C.A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507. [Google Scholar] [CrossRef] [PubMed]
- Zuo, E.; Cai, Y.-J.; Li, K.; Wei, Y.; Wang, B.-A.; Sun, Y.; Liu, Z.; Liu, J.; Hu, X.; Wei, W.; et al. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res. 2017, 27, 933–945. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da, C.M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.W.; Bassie, L.; Sabalza, M.; Miralpeix, B.; Dashevskaya, S.; Farre, G.; Rivera, S.M.; Banakar, R.; Bai, C.; Sanahuja, G.; et al. The potential impact of plant biotechnology on the millennium development goals rid b-2757-2011. Plant Cell Rep. 2011, 30, 249–265. [Google Scholar] [CrossRef]
Gene Names | Gene ID | Encoding Proteins | Phenotype | Functions of Products | References | |
---|---|---|---|---|---|---|
Wheat | TaSBEIIa | TraesCS2A02G293400 TraesCS2D02G290800 TraesCS2B02G309500 | starch branching enzyme | Increased amylose content | Foods with high amylose content and RS are helpful to improve human health | [52] |
TaWaxy | TraesCS7A02G070100 TraesCS4A02G418200 TraesCS7D01G064300 | Granule-bound starch synthase | Lower amylose content | Waxy wheat is formed to improve edible taste | [56] | |
Corn | Waxy | Zm00001eb378140 | Granule-bound starch synthase I | Amylopectin content and grain yield of hybrid were significantly increased | Waxy maize produces mainly amylopectin starch with special food or industrial values | [57,58] |
SHRUNKEN2 (SH2) | Zm00001d044129 | ADP glucose pyrophosphorylase | The amylopectin content with the WX gene (SH2SH2wxwx) exceeds 96% | Fresh corn with super-sweet and waxy compound flavor | [60] | |
Rice | NF-YB1 | LOC_Os02g49410 | NF-Ys TFs | Higher chalkiness in crnf-yb1 mutants | Regulates rice grain quality (lower starch, higher crude protein contents) | [53] |
Waxy | LOC_Os06g04200 | granule-bound starch synthase I | Significant decrease in AC in the endosperm; amylose content decreased from 14.6% to 2.6% in the mutants | Improves the eating and cooking quality (ECQ) of rice | [7,59] | |
OsSSIIb | LOC_Os02g51070 | soluble starch synthase II | Decreases the amylose content, gelatinization temperature | Improving the ECQ of rice | [48] | |
SBEIIb | LOC_Os02g32660 | starch branching enzyme IIb | Amylose content is increased, and the RS content is also increased | Beneficial for diabetes and kidney disease patients | [46,47,50,55] | |
MADS78; MADS79 | LOC_Os09g02830; LOC_Os01g74440 | MADS box TFs | Loosely packed spherical starch granules | Impact both seed size and quality in rice | [61] | |
OsAAP6; OsAAP10 | LOC_Os01g65670; LOC_Os02g49060 | amino acid transporter | Amylose content was down-regulated significantly | Improving ECQ of rice | [62] | |
NF-YC12 | LOC_Os05g23910 | NF-Ys TFs | Total starch and amylose contents were significantly lower than those in WT | Increase the grain size and weight in rice | [63] | |
GS9 | LOC_Os09g27590 | an unknown protein | Significant decrease in chalkiness | Increase the grain size and weight | [64] | |
ISA1 | LOC_Os08g40930 | isoamylase 1 | Total starch, amylose, and amylopectin in mutant endosperm were reduced | Beneficial for rice quality breeding | [65] | |
AH2 | LOC_Os09g23200 | MYB-domain protein | Enhanced grain quality, including decreased amylose content, and increased protein content | Required for hull epidermis development, palea identity, and grain size | [66] |
Gene Names | Gene ID | Encoding Proteins | Strategies of Gene Editing | Phenotype | Functions of Products | References | |
---|---|---|---|---|---|---|---|
Soybean | GmFATB1a GmFATB1b | Glyma. 05G012300 Glyma.17G012400 | acyl-acyl carrier protein thioesterases | CRISPR/Cas9 | Decreased palmitoleic acid and stearic acid contents | Palmitic acid promotes cancer cell metastasis | [82] |
GmLox1 GmLox2 GmLox3 | Glyma.13G347600 Glyma.13G347500 Glyma.15G026300 | lipoxygenase isozymes LOX1 | CRISPR/Cas9 | Lipoxygenase-free soybean | Decreases soybean production and processing cost | [83,84] | |
GmFAD2 | GmFAD2-1A: Glyma.10G278000GmFAD2-2A: Glyma.19G147300 | Δ12-fatty acid desaturase II (FAD2) | CRISPR/Cas9 | Oleic acid content is increased and linoleic acid content is decreased significantly | Reduces chemical hydrogenation and reduces processing costs | [79] | |
FAD2-1A FAD2-1B | Glyma10g42470 Glyma20g24530 | fatty acid desaturase 2 | TALENs | Oleic acid is increased from 20% to 80% and linoleic acid is decreased from 50% to less than 4% | Healthier oils with high monounsaturated fats and a longer shelf-life | [80] | |
FAD3A FAD3B FAD3C | Glyma14g37350 Glyma02g39230 Glyma18g06950 | fatty acid desaturase 3 | TALENs | Significantly altered fatty acid levels. Linoleic and linolenic acids are decreased to levels below 3%, and oleic acid is increased to levels over 80% | High levels of polyunsaturated linoleic and linolenic acid | [85] | |
Gm15G117700 | / | a regulator of soybean oleic acid synthesis | CRISPR/Cas9 | Reduced linoleic acid and increased stearic acid | Improves the quality of soybean fatty acids | [86] | |
FAD2-2 | GLYMA_03G144500 | microsomal-6 desaturase | CRISPR/Cas9 | Higher oleic acid and decreased palmitic acid | Decreases the risk of type diabetes | [81] | |
Rice | OsFAD2-1 | LOC_Os02g48560 | enzyme fatty acid desaturase 2 | CRISPR/Cas9 | Increased oleic acid and decreased linoleic acid | Suppresses lifestyle diseases | [77] |
OsMGD2 | LOC_Os02g55910 | Monogalactosyldiacylglycero synthase | CRISPR/Cas9 | Decreased linoleic acid content (26.6%) | Improves plant growth and grain quality | [87] |
Gene Names | Gene ID | Encoding Proteins | Strategies of Gene Editing | Phenotype | Functions of Products | References | |
---|---|---|---|---|---|---|---|
Soybean | / | Glyma.20g14840 Glyma.03g163500 Glyma.19g164900 | conglycinins (7S) and glycinins (11S) | CRISPR/Cas9 | Adjusting the ratio of 7S and 11S globulin components | Increases the sulfur amino acid content in the protein | [9] |
Corn | ZmbZIP22 | Zm00001eb318740 | bZIP-transcription factor 22 | CRISPR/Cas9 | 27 kD γ-zein transcript levels are reduced to ~70% in the mutants | Improves kernel protein quality by reducing zein contents | [102] |
ZmMADS | Zm00001eb006480 | MADS-transcription factor 68 | CRISPR/Cas9 | Zeins are significantly decreased (12.5%) in MADS/CAS9-21 kernels | / | [103] | |
Wheat | Gli-2 | TraesCS6B02G065800 | alpha-gliadin | CRISPR/Cas9 | Decreases alpha-gliadins and promotes a compensatory effect on glutenin | Associated with the development of celiac disease and non-celiac gluten sensitivity | [97] |
TaASN2 | TraesCS3A02G077100 | asparagine synthetase | CRISPR/Cas9 | Reduces free asparagine in the grain | Free asparagine is the precursor for acrylamide formation | [104] | |
TaATI | LOC543286 LOC543281 | alpha-amylase/trypsin inhibitor | CRISPR/Cas9 | Decreases alpha-amylase/trypsin inhibitor content | Involved in the onset of wheat allergies and non-celiac wheat sensitivity | [105] | |
Gli-2 Gli-1 | TraesCS6A02G049100 TraesCS1A02G007400 | alpha-gliadin gamma-gliadin | CRISPR/Cas9 | Decreases alpha-gliadin Decreases gamma-gliadin | Provides bread and durum wheat lines with reduced immunoreactivity for gluten nutrition consumers | [98] | |
TaNAC019-A TaNAC019-B TaNAC019-D | TraesCS3A02G077900 TraesCS3B02G092800 TraesCS3D02G078500 | endosperm-specific NAC transcription factor | CRISPR/Cas9 | Leads to lower gluten and starch contents | Improves grain yield and quality, changing the dough strength and quality | [106] | |
TaPDI | LOC100037546 LOC542857 LOC542858 | wheat protein disulfide isomerase | CRISPR/Cas9 | Glutenin macropolymer (GMP) content is decreased significantly | Low-gluten dough is good for celiac disease patients | [107] | |
Rice | qSP3 | LOC_Os03g57960 | a cupin domain protein for the synthesis of 52 kDa globulin | CRISPR/Cas9 | Lack of accumulation of 52 kDa globulin | Improves seed vigor in rice, and significantly lower amino acid contents were observed in the mature grains | [108] |
GW2 | LOC_Os02g14720 | RING-type E3 ubiquitin ligase | CRISPR/Cas9 | Higher grain protein content and accumulation of essential dietary minerals in the endosperm | Improves grain architecture and grain nutritional quality and is an important modulator of plant morphology | [8] |
Ingredient | Gene Names | Gene ID | Encoding Proteins | Strategies | Phenotype | Functions of Products | References | |
---|---|---|---|---|---|---|---|---|
Wheat | Mineral | TaIPK1 | TraesCS6A02G139400 | inositol pentakisphosphate kinase | CRISPR/Cas9 | Decreased phytic acid content and enhanced iron and zinc content in wheat grains | Contributes to the development of biologically fortified wheat and reduces malnutrition | [126] |
Rice | Mineral | OsPLDa1 | LOC_Os01g07760 | phospholipase D | CRISPR/Cas9 | Depletion of phosphatidic acid production and significantly reduced phytic acid content | Improves the cooking and eating quality and nourishment of brown rice | [128] |
Mineral | OsLCT1; | LOC_Os06g38120 | a rice homolog of wheat low-affinity cation transporter 1 | CRISPR/Cas9 | Low grain Cd accumulation | Rice can be safely produced in Cd-polluted soil | [130] | |
Mineral | OsNramp5 | LOC_Os07g15370 | natural resistance-associated macrophage protein 5 | CRISPR/Cas9 | Significantly reduced accumulation of Cd in the grains. However, the degree of OsNramp5 mutation will affect the yield | Rice can be safely produced in Cd-polluted soil | [130,131,132] | |
Anthocyanin | Rc | LOC_Os07g11020 | bHLH transcription factor | CRISPR/Cas9 | Increased proanthocyanidins and anthocyanidins in the mutants | Promotes health | [11] | |
Anthocyanin | OsTTG1 | LOC_Os02g45810 | WD40 repeat protein | CRISPR/Cas9 | Almost no anthocyanin accumulation in the leaf tip and ear | OsTTG1 is an important regulator of anthocyanin biosynthesis | [133] | |
γ -aminobutyric acid | OsGAD3 | Os03g0236200 | glutamate decarboxylase 3 | CRISPR/Cas9 | Seven-fold higher GABA content and significantly higher grain weight and protein content | Improves life-style related diseases, such as hypertension, diabetes, and hyperlipidemia | [134] | |
Flavonoid | OsCOP1 | LOC_Os02g53140 | constitute photomorphosis 1 | CRISPR/Cas9 | Flavonoid accumulation in yel-hc mutant is reduced in the embryo and endosperm | Participates in embryo development and flavonoid biosynthesis in rice grains | [123] | |
Corn | Mineral | IPK1 | Zm00001eb067500 Zm00001eb432760 | inositol pentakisphosphate kinase | ZFNs | The level of phosphoric acid decreases, and inorganic phosphate increases | Provides a basis for the development of reduced phytic acid traits with ecological significance | [127] |
Anthocyanin | SWEET13a SWEET13b SWEET13c | Zm00001eb408920 Zm00001eb408900 Zm00001eb133100 | sucrose transporter | CRISPR/Cas9 | Triple knock-out mutants are stunted, showing severe chlorosis of all leaves | With extreme chlorosis, massive anthocyanin accumulation | [135] | |
Soybean | Isoflavone | GmF3H1, GmF3H2 GmFNSII-1 | Glyma.02G048400 Glyma.02G048600 Glyma.12G067000 | flavanone-3-hydroxylase (F3H) and flavone synthase II (FNS II) | CRISPR/Cas9 | Homozygous triple mutants have approximately twice the leaf isoflavone content | Isoflavones reduce the incidence of specific cancers and improve cardiovascular disease risk markers | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Long, Y.; Yi, C.; Pu, A.; Hou, Q.; Liu, C.; Jiang, Y.; Wu, S.; Wan, X. Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients 2023, 15, 373. https://doi.org/10.3390/nu15020373
Wei X, Long Y, Yi C, Pu A, Hou Q, Liu C, Jiang Y, Wu S, Wan X. Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients. 2023; 15(2):373. https://doi.org/10.3390/nu15020373
Chicago/Turabian StyleWei, Xun, Yan Long, Chenchen Yi, Aqing Pu, Quancan Hou, Chang Liu, Yilin Jiang, Suowei Wu, and Xiangyuan Wan. 2023. "Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology" Nutrients 15, no. 2: 373. https://doi.org/10.3390/nu15020373
APA StyleWei, X., Long, Y., Yi, C., Pu, A., Hou, Q., Liu, C., Jiang, Y., Wu, S., & Wan, X. (2023). Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients, 15(2), 373. https://doi.org/10.3390/nu15020373