Real-World Analysis of Outcomes and Economic Burden in Patients with Chronic Kidney Disease with and without Secondary Hyperparathyroidism among a Sample of the Italian Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population and Cohorts
2.3. Baseline Demographic and Clinical Patient Characteristics
2.4. Outcome Evaluation
2.5. Healthcare Resource Consumptions and Costs
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CKD in the General Population. Available online: https://usrds-adr.niddk.nih.gov/2022/chronic-kidney-disease/1-ckd-in-the-general-population (accessed on 2 December 2022).
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2021, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Viscogliosi, G.; De Nicola, L.; Vanuzzo, D.; Giampaoli, S.; Palmieri, L.; Donfrancesco, C. Mild to moderate chronic kidney disease and functional disability in community-dwelling older adults. The Cardiovascular risk profile in Renal patients of the Italian Health Examination Survey (CARHES) study. Arch. Gerontol. Geriatr. 2019, 80, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.-y. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.D.; Vachhani, U.; Rajput, A.; Raghavani, P.; Parchwani, D.N.; Dholariya, S. Analysis of the Prevalence and Severity of Dysregulated Bone Mineral Homeostasis in Nondialyzed Chronic Kidney Disease Patients. J. Lab. Physicians 2021, 14, 144–150. [Google Scholar] [CrossRef]
- Cozzolino, M.; Brancaccio, D.; Gallieni, M.; Galassi, A.; Slatopolsky, E.; Dusso, A. Pathogenesis of parathyroid hyperplasia in renal failure. J. Nephrol. 2005, 18, 5–8. [Google Scholar]
- Sr, E.H.; Eledrisi, M.; Khan, F.; Elzouki, A.-N.Y. Secondary Hyperparathyroidism in Chronic Kidney Disease: Pathophysiology and Management. Cureus 2021, 13, e16388. [Google Scholar] [CrossRef]
- Goto, S.; Komaba, H.; Fukagawa, M. Pathophysiology of parathyroid hyperplasia in chronic kidney disease: Preclinical and clinical basis for parathyroid intervention. NDT Plus 2008, 1 (Suppl. S3), iii2–iii8. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Ortiz, M.E.; Rodríguez, M. Recent advances in understanding and managing secondary hyperparathyroidism in chronic kidney disease. F1000Research 2020, 9, 1077. [Google Scholar] [CrossRef]
- Pazianas, M.; Miller, P.D. Current Understanding of Mineral and Bone Disorders of Chronic Kidney Disease and the Scientific Grounds on the Use of Exogenous Parathyroid Hormone in Its Management. J. Bone Metab. 2020, 27, 1–13. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42 (Suppl. S3), S1–S201. [CrossRef]
- Guo, Y.-C.; Yuan, Q. Fibroblast growth factor 23 and bone mineralisation. Int. J. Oral Sci. 2015, 7, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Grabner, A.; Mazzaferro, S.; Cianciolo, G.; Krick, S.; Capelli, I.; Rotondi, S.; Ronco, C.; La Manna, G.; Faul, C. Fibroblast Growth Factor 23: Mineral Metabolism and Beyond. Contrib. Nephrol. 2017, 190, 83–95. [Google Scholar] [CrossRef]
- Naveh-Many, T.; Volovelsky, O. Parathyroid Cell Proliferation in Secondary Hyperparathyroidism of Chronic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 4332. [Google Scholar] [CrossRef]
- Martin, A.; David, V.; Quarles, L.D. Regulation and Function of the FGF23/Klotho Endocrine Pathways. Physiol. Rev. 2012, 92, 131–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Z.; Wang, M.; Miao, C.; Jin, D.; Wang, H. Mechanism of calcitriol regulating parathyroid cells in secondary hyperparathyroidism. Front. Pharmacol. 2022, 13, 1020858. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [Google Scholar] [CrossRef] [Green Version]
- Goldenstein, P.T.; Elias, R.M.; Carmo, L.P.D.F.D.; Coelho, F.O.; Magalhães, L.P.; Antunes, G.L.; Custódio, M.R.; Montenegro, F.; Titan, S.M.; Jorgetti, V.; et al. Parathyroidectomy Improves Survival in Patients with Severe Hyperparathyroidism: A Comparative Study. PLoS ONE 2013, 8, e68870. [Google Scholar] [CrossRef] [Green Version]
- Cocchiara, G.; Fazzotta, S.; Palumbo, V.D. Il trattamento medico e chirurgico nei pazienti affetti da iperparatiroidismo secondario e terziario. Revisione della letteratura. LA Clin. Ter. 2017, 168, 158–167. [Google Scholar] [CrossRef]
- Bozic, M.; Diaz-Tocados, J.M.; Bermudez-Lopez, M.; Forné, C.; Martinez, C.; Fernandez, E.; Valdivielso, J.M. Independent effects of secondary hyperparathyroidism and hyperphosphataemia on chronic kidney disease progression and cardiovascular events: An analysis from the NEFRONA cohort. Nephrol. Dial. Transplant. 2022, 37, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Cannata-Andía, J.B.; Carrera, F. The Pathophysiology of Secondary Hyperparathyroidism and the Consequences of Uncontrolled Mineral Metabolism in Chronic Kidney Disease: The Role of COSMOS. Clin. Kidney J. 2008, 1 (Suppl. S1), i2–i6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Evans, M.; Soro, M.; Barany, P.; Carrero, J.J. Secondary hyperparathyroidism and adverse health outcomes in adults with chronic kidney disease. Clin. Kidney J. 2021, 14, 2213–2220. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Ahmadzadeh, S.; Anderson, J.E.; Kalantar-Zadeh, K. Secondary hyperparathyroidism is associated with higher mortality in men with moderate to severe chronic kidney disease. Kidney Int. 2008, 73, 1296–1302. [Google Scholar] [CrossRef] [Green Version]
- Tabibzadeh, N.; Karaboyas, A.; Robinson, B.M.; Csomor, P.A.; Spiegel, D.M.; Evenepoel, P.; Jacobson, S.H.; Ureña-Torres, P.-A.; Fukagawa, M.; Al Salmi, I.; et al. The risk of medically uncontrolled secondary hyperparathyroidism depends on parathyroid hormone levels at haemodialysis initiation. Nephrol. Dial. Transplant. 2021, 36, 160–169. [Google Scholar] [CrossRef]
- Lee, A.; Belozeroff, V.; Song, X.; Diakun, D.; Goodman, W. Costs of Treatment and Clinical Events for Secondary Hyperparathy-roidism. Am. J. Pharm. Benefits 2013, 5, e24–e35. [Google Scholar]
- Hedgeman, E.; Lipworth, L.; Lowe, K.; Saran, R.; Do, T.; Fryzek, J. International Burden of Chronic Kidney Disease and Secondary Hyperparathyroidism: A Systematic Review of the Literature and Available Data. Int. J. Nephrol. 2015, 2015, 184321. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Perez, E.; Forné, C.; Soro, M.; Valls, M.; Manganelli, A.-G.; Valdivielso, J.M. Health Care Costs in Patients with and without Secondary Hyperparathyroidism in Spain. Adv. Ther. 2021, 38, 5333–5344. [Google Scholar] [CrossRef]
- Agenzia Italiana del Farmaco (AIFA). Guideline for the Classification and Conduction of the Observational Studies on Medicines. Published Online; 2010. Available online: https://www.agenziafarmaco.gov.it/ricclin/sites/default/files/files_wysiwyg/files/CIRCULARS/Circular%2031st%20May%202010.pdf (accessed on 2 December 2022).
- Tankó, L.B.; Bagger, Y.Z.; Alexandersen, P.; Devogelaer, J.-P.; Reginster, J.-Y.; Chick, R.; Olson, M.; Benmammar, H.; Mindeholm, L.; Azria, M.; et al. Safety and Efficacy of a Novel Salmon Calcitonin (sCT) Technology-Based Oral Formulation in Healthy Postmenopausal Women: Acute and 3-Month Effects on Biomarkers of Bone Turnover. J. Bone Miner. Res. 2004, 19, 1531–1538. [Google Scholar] [CrossRef]
- Oleksik, A.; Duong, T.; Popp-Snijders, C.; Pliester, N.; Asma, G.; Lips, P. Effects of the selective oestrogen receptor modulator-raloxifene-on calcium and PTH secretory dynamics in women with osteoporosis. Clin. Endocrinol. 2001, 54, 575–582. [Google Scholar] [CrossRef]
- Gambaro, G.; Yabarek, T.; Graziani, M.S.; Gemelli, A.; Abaterusso, C.; Frigo, A.C.; Marchionna, N.; Citron, L.; Bonfante, L.; Grigoletto, F.; et al. Prevalence of CKD in Northeastern Italy: Results of the INCIPE Study and Comparison with NHANES. Clin. J. Am. Soc. Nephrol. 2010, 5, 1946–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capuano, V.; Lamaida, N.; Borrelli, M.I.; Capuano, E.; Fasolino, A.; Capuano, E.; Sonderegger, M.; Capuano, R.; Citro, V.; Franculli, F. Prevalenza e trend (1998–2008) dell’insufficienza renale cronica in un’area dell’Italia meridionale: I dati del progetto VIP [Chronic kidney disease prevalence and trends (1998–2008) in an area of southern Italy. The data of the VIP project]. G Ital. Nefrol. 2012, 29, 445–451. [Google Scholar] [PubMed]
- Donfrancesco, C.; Palleschi, S.; Palmieri, L.; Rossi, B.; Lo Noce, C.; Pannozzo, F.; Spoto, B.; Tripepi, G.; Zoccali, C.; Giampaoli, S.; et al. Estimated glomerular filtration rate, all-cause mortality and cardiovascular diseases incidence in a low risk population: The MATISS study. PLoS ONE 2013, 8, e78475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michels, W.M.; Grootendorst, D.C.; Verduijn, M.; Elliott, E.G.; Dekker, F.W.; Krediet, R.T. Performance of the Cockcroft-Gault, MDRD, and New CKD-EPI Formulas in Relation to GFR, Age, and Body Size. Clin. J. Am. Soc. Nephrol. 2010, 5, 1003–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Brück, K.; Stel, V.S.; Gambaro, G.; Hallan, S.; Völzke, H.; Ärnlöv, J.; Kastarinen, M.; Guessous, I.; Vinhas, J.; Stengel, B.; et al. CKD Prevalence Varies across the European General Population. J. Am. Soc. Nephrol. 2016, 27, 2135–2147. [Google Scholar] [CrossRef] [Green Version]
- Böger, C.A.; Gorski, M.; Li, M.; Hoffmann, M.M.; Huang, C.; Yang, Q.; Teumer, A.; Krane, V.; O’Seaghdha, C.M.; Kutalik, Z.; et al. Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS Genet. 2011, 7, e1002292. [Google Scholar] [CrossRef] [Green Version]
- Köttgen, A.; Glazer, N.L.; Dehghan, A.; Hwang, S.-J.; Katz, R.; Li, M.; Yang, Q.; Gudnason, V.; Launer, L.J.; Harris, T.B.; et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 2009, 41, 712–717. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, F.K.; Christensen, C.K.; Mogensen, C.E.; Andreasen, F.; Heilskov, N.S. Pronounced increase in serum creatinine concentration after eating cooked meat. Br. Med. J. 1979, 1, 1049–1050. [Google Scholar] [CrossRef] [Green Version]
- Mackenbach, J.P.; Karanikolos, M.; McKee, M. The unequal health of Europeans: Successes and failures of policies. Lancet 2013, 381, 1125–1134. [Google Scholar] [CrossRef]
- Drion, I.; Cobbaert, C.; Groenier, K.H.; Weykamp, C.; Bilo, H.J.G.; Wetzels, J.F.M.; Kleefstra, N. Clinical evaluation of analytical variations in serum creatinine measurements: Why laboratories should abandon Jaffe techniques. BMC Nephrol. 2012, 13, 133. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, L.M.; Nilsson, G.; Bruns, E.D.; McQueen, M.J.; Lieske, J.C.; Zakowski, J.J.; Miller, W.G. State of the Art for Measurement of Urine Albumin: Comparison of Routine Measurement Procedures to Isotope Dilution Tandem Mass Spectrometry. Clin. Chem. 2014, 60, 471–480. [Google Scholar] [CrossRef]
- Tripepi, G.; Jager, K.J.; Dekker, F.W.; Zoccali, C. Selection bias and information bias in clinical research. Nephron. Clin. Pract. 2010, 115, c94–c99. [Google Scholar] [CrossRef]
- Halbesleben, J.R.B.; Whitman, M.V. Evaluating Survey Quality in Health Services Research: A Decision Framework for Assessing Nonresponse Bias. Health Serv. Res. 2013, 48, 913–930. [Google Scholar] [CrossRef]
- Hao, H.; Ma, S.; Zheng, C.; Wang, Q.; Lin, H.; Chen, Z.; Xie, J.; Chen, L.; Chen, K.; Wang, Y.; et al. Excessive fibroblast growth factor 23 promotes renal fibrosis in mice with type 2 cardiorenal syndrome. Aging 2021, 13, 2982–3009. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S.; Wen, M.; Roth, H.J.; Fehrenz, M.; Flügge, F.; Herath, E.; Weihrauch, A.; Fliser, D.; Heine, G.H. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int. 2013, 83, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindberg, K.; Amin, R.; Moe, O.W.; Hu, M.-C.; Erben, R.G.; Wernerson, A.; Lanske, B.; Olauson, H.; Larsson, T.E. The Kidney Is the Principal Organ Mediating Klotho Effects. J. Am. Soc. Nephrol. 2014, 25, 2169–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.R.; Nam, B.Y.; Kim, D.W.; Kang, M.W.; Han, J.-H.; Lee, M.J.; Shin, D.H.; Doh, F.M.; Koo, H.M.; Ko, K.I.; et al. Circulating α-Klotho Levels in CKD and Relationship to Progression. Am. J. Kidney Dis. 2013, 61, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Kuang, Z.; Peissig, P.; Page, D.; Maursetter, L.; Hansen, E.K. Parathyroid hormone independently predicts fracture, vascular events, and death in patients with stage 3 and 4 chronic kidney disease. Osteoporos. Int. 2019, 30, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Shardlow, A.; McIntyre, N.J.; Fluck, R.J.; McIntyre, C.W.; Taal, M.W. Chronic Kidney Disease in Primary Care: Outcomes after Five Years in a Prospective Cohort Study. PLoS Med. 2016, 13, e1002128. [Google Scholar] [CrossRef] [Green Version]
- Adeney, K.L.; Siscovick, D.S.; Ix, J.H.; Seliger, S.L.; Shlipak, M.G.; Jenny, N.S.; Kestenbaum, B.R. Association of Serum Phosphate with Vascular and Valvular Calcification in Moderate CKD. J. Am. Soc. Nephrol. 2008, 20, 381–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bundy, J.; Chen, J.; Yang, W.; Budoff, M.; Go, A.S.; Grunwald, J.E.; Kallem, R.R.; Post, W.S.; Reilly, M.; Ricardo, A.; et al. Risk factors for progression of coronary artery calcification in patients with chronic kidney disease: The CRIC study. Atherosclerosis 2018, 271, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Westerberg, P.-A.; Sterner, G.; Ljunggren; Isaksson, E.; Elvarson, F.; Dezfoolian, H.; Linde, T. High doses of cholecalciferol alleviate the progression of hyperparathyroidism in patients with CKD Stages 3–4: Results of a 12-week double-blind, randomized, controlled study. Nephrol. Dial. Transplant. 2018, 33, 466–471. [Google Scholar] [CrossRef] [PubMed]
- A Alvarez, J.; Law, J.; Coakley, K.; Zughaier, S.; Hao, L.; Salles, K.S.; Wasse, H.; Gutiérrez, O.M.; Ziegler, T.R.; Tangpricha, V. High-dose cholecalciferol reduces parathyroid hormone in patients with early chronic kidney disease: A pilot, randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2012, 96, 672–679. [Google Scholar] [CrossRef] [Green Version]
- Bover, J.; Gunnarsson, J.; Csomor, P.; Kaiser, E.; Cianciolo, G.; Lauppe, R. Impact of nutritional vitamin D supplementation on parathyroid hormone and 25-hydroxyvitamin D levels in non-dialysis chronic kidney disease: A meta-analysis. Clin. Kidney J. 2021, 14, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Juárez, G.; Luño, J.; Barrio, V.; De Vinuesa, S.G.; Praga, M.; Goicoechea, M.; Lahera, V.; Casas, L.; Oliva, J. 25 (OH) Vitamin D Levels and Renal Disease Progression in Patients with Type 2 Diabetic Nephropathy and Blockade of the Renin-Angiotensin System. Clin. J. Am. Soc. Nephrol. 2013, 8, 1870–1876. [Google Scholar] [CrossRef] [Green Version]
- Juarez, G.F.; Luño, J.; Barrio, V.; de Vinuesa, S.G.; Praga, M.; Goicoechea, M.; Cachofeiro, V.; Nieto, J.; Vega, F.F.; Tato, A.; et al. Effect of Dual Blockade of the Renin-Angiotensin System on the Progression of Type 2 Diabetic Nephropathy: A Randomized Trial. Am. J. Kidney Dis. 2013, 61, 211–218. [Google Scholar] [CrossRef]
- Molina, P.; Górriz, J.L.; Molina, M.D.; Peris, A.; Beltrán, S.; Kanter, J.; Escudero, V.; Romero, R.; Pallardó, L.M. The effect of cholecalciferol for lowering albuminuria in chronic kidney disease: A prospective controlled study. Nephrol. Dial. Transplant. 2014, 29, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Sprague, S.M.; Crawford, P.W.; Melnick, J.Z.; Strugnell, S.A.; Ali, S.; Mangoo-Karim, R.; Lee, S.; Petkovich, P.M.; Bishop, C.W. Use of Extended-Release Calcifediol to Treat Secondary Hyperparathyroidism in Stages 3 and 4 Chronic Kidney Disease. Am. J. Nephrol. 2016, 44, 316–325. [Google Scholar] [CrossRef]
- Schumock, G.T.; Andress, D.; EMarx, S.; Sterz, R.; Joyce, A.T.; Kalantar-Zadeh, K. Impact of secondary hyperparathyroidism on disease progression, healthcare resource utilization and costs in pre-dialysis CKD patients. Curr. Med. Res. Opin. 2008, 24, 3037–3048. [Google Scholar] [CrossRef] [Green Version]
- Snyder, S.; Hollenbeak, C.S.; Kalantar-Zadeh, K.; Gitlin, M.; Ashfaq, A. Cost-Effectiveness and Estimated Health Benefits of Treating Patients with Vitamin D in Pre-Dialysis. Forum Health Econ. Policy 2020, 23, 199. [Google Scholar] [CrossRef] [PubMed]
CKD Only N = 1590 | CKD + sHPT N = 1590 | p-Value | Standardized Mean Difference | |
---|---|---|---|---|
Age (mean, SD) | 78.5 (12.5) | 78.1 (12.1) | 0.306 | 0.036 |
Male (n, %) | 899 (56.5) | 887 (55.8) | 0.668 | 0.015 |
Diabetes (n, %) | 661 (41.6) | 695 (43.7) | 0.223 | 0.043 |
Cardiovascular disease/treatments (n, %) | 1558 (98.0) | 1571 (98.8) | 0.066 | 0.065 |
Hypertension (n, %) | 1522 (95.7) | 1565 (98.4) | <0.001 | / |
Dyslipidemia (n, %) | 809 (50.9) | 972 (61.1) | <0.001 | / |
Previous cardiovascular events (n, %) | 773 (48.6) | 786 (49.4) | 0.645 | / |
Diuretics (n, %) | 1225 (77.0) | 1418 (89.2) | <0.001 | / |
Antiplatelets (n, %) | 1092 (68.7) | 1202 (75.6) | <0.001 | / |
Osteoporosis (n, %) | 159 (10.0) | 165 (10.4) | 0.725 | 0.012 |
AVD (n, %) | 0 (0.0) | 738 (46.4) | <0.001 | / |
NVD (n, %) | 0 (0.0) | 432 (27.2) | <0.001 | / |
CKD Stage | <0.05 | 0.073 | ||
3 (n, %) | 968 (60.9) | 938 (59.0) | ||
4 (n, %) | 514 (32.3) | 499 (31.4) | ||
5 (n, %) | 108 (6.8) | 153 (9.6) |
Untreated AVD/NVD N = 690 | Treated AVD/NVD N = 690 | p-Value | Standardized Mean Difference | |
---|---|---|---|---|
Age (mean, SD) | 76.2 (13.3) | 76.3 (12.5) | 0.836 | 0.011 |
Male (n, %) | 425 (61.6) | 412 (59.7) | 0.474 | 0.039 |
Diabetes (n, %) | 311 (45.1) | 320 (46.4) | 0.627 | 0.026 |
Cardiovascular disease/treatments (n, %) | 680 (98.6) | 681 (98.7) | 0.817 | 0.012 |
Hypertension (n, %) | 678 (98.3) | 679 (98.4) | 0.833 | / |
Dyslipidemia (n, %) | 436 (63.2) | 432 (62.6) | 0.824 | / |
Previous cardiovascular events (n, %) | 333 (48.3) | 337 (48.8) | 0.829 | / |
Diuretics (n, %) | 610 (88.4) | 608 (88.1) | 0.867 | / |
Antiplatelets (n, %) | 510 (73.9) | 523 (75.8) | 0.420 | / |
Osteoporosis (n, %) | 34 (4.9) | 51 (7.4) | 0.057 | 0.103 |
CKD Stage | 0.596 | 0.054 | ||
3 (n, %) | 76.2 (13.3) | 76.3 (12.5) | ||
4 (n, %) | 425 (61.6) | 412 (59.7) | ||
5 (n, %) | 311 (45.1) | 320 (46.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbuto, S.; Perrone, V.; Veronesi, C.; Dovizio, M.; Zappulo, F.; Vetrano, D.; Giannini, S.; Fusaro, M.; Ancona, D.D.; Barbieri, A.; et al. Real-World Analysis of Outcomes and Economic Burden in Patients with Chronic Kidney Disease with and without Secondary Hyperparathyroidism among a Sample of the Italian Population. Nutrients 2023, 15, 336. https://doi.org/10.3390/nu15020336
Barbuto S, Perrone V, Veronesi C, Dovizio M, Zappulo F, Vetrano D, Giannini S, Fusaro M, Ancona DD, Barbieri A, et al. Real-World Analysis of Outcomes and Economic Burden in Patients with Chronic Kidney Disease with and without Secondary Hyperparathyroidism among a Sample of the Italian Population. Nutrients. 2023; 15(2):336. https://doi.org/10.3390/nu15020336
Chicago/Turabian StyleBarbuto, Simona, Valentina Perrone, Chiara Veronesi, Melania Dovizio, Fulvia Zappulo, Daniele Vetrano, Sandro Giannini, Maria Fusaro, Domenica Daniela Ancona, Antonietta Barbieri, and et al. 2023. "Real-World Analysis of Outcomes and Economic Burden in Patients with Chronic Kidney Disease with and without Secondary Hyperparathyroidism among a Sample of the Italian Population" Nutrients 15, no. 2: 336. https://doi.org/10.3390/nu15020336
APA StyleBarbuto, S., Perrone, V., Veronesi, C., Dovizio, M., Zappulo, F., Vetrano, D., Giannini, S., Fusaro, M., Ancona, D. D., Barbieri, A., Ferrante, F., Lena, F., Palcic, S., Re, D., Rizzi, F. V., Cogliati, P., Soro, M., Esposti, L. D., & Cianciolo, G. (2023). Real-World Analysis of Outcomes and Economic Burden in Patients with Chronic Kidney Disease with and without Secondary Hyperparathyroidism among a Sample of the Italian Population. Nutrients, 15(2), 336. https://doi.org/10.3390/nu15020336