Feeding of Hermetia illucens Larvae Meal Attenuates Hepatic Lipid Synthesis and Fatty Liver Development in Obese Zucker Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Analysis of Feed Composition
2.3. Sample Collection
2.4. Determination of Triglyceride and Cholesterol Concentrations in Liver and Plasma
2.5. Determination of the Fatty Acid Composition of Hepatic Total Lipids
2.6. Histological Analysis of Liver
2.7. Hepatic Activities of Lipogenic Enzymes
2.8. Total RNA Extraction and qPCR Analysis
2.9. Statistical Analysis
3. Results
3.1. Characterization of the Experimental Diets
3.2. Growth Performance and Organ Weights of the Rats
3.3. Liver Lipid Accumulation and Liver and Plasma Lipid Concentrations
3.4. Hepatic Concentrations of Total Lipid Fatty Acids
3.5. Expression and Activity of Enzymes Involved in Lipid Synthesis and Bile Acid Synthesis in the Liver
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halloran, A.; Roos, N.; Eilenberg, J.; Cerutti, A.; Bruun, S. Life cycle assessment of edible insects for food protein: A review. Agron. Sustain. Dev. 2016, 36, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of insect use for feed and food: Life cycle assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 1754. [Google Scholar] [CrossRef] [Green Version]
- Derler, H.; Lienhard, A.; Berner, S.; Grasser, M.; Posch, A.; Rehorska, R. Use Them for What They Are Good at: Mealworms in Circular Food Systems. Insects 2021, 12, 40. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental impact of food waste bioconversion by insects: Application of life cycle assessment to process using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Seo, M.; Goo, T.W.; Chung, M.Y.; Baek, M.; Hwang, J.S.; Kim, M.A.; Yun, E.Y. Tenebrio molitor Larvae Inhibit Adipogenesis through AMPK and MAPKs Signaling in 3T3-L1 Adipocytes and Obesity in High-Fat Diet-Induced Obese Mice. Int. J. Mol. Sci. 2017, 18, 518. [Google Scholar] [CrossRef] [Green Version]
- Gessner, D.K.; Schwarz, A.; Meyer, S.; Wen, G.; Most, E.; Zorn, H.; Ringseis, R.; Eder, K. Insect Meal as Alternative Protein Source Exerts Pronounced Lipid-Lowering Effects in Hyperlipidemic Obese Zucker Rats. J. Nutr. 2019, 149, 566–577. [Google Scholar] [CrossRef]
- Meyer, S.; Gessner, D.K.; Wen, G.; Most, E.; Liebisch, G.; Zorn, H.; Ringseis, R.; Eder, K. The Antisteatotic and Hypolipidemic Effect of Insect Meal in Obese Zucker Rats is Accompanied by Profound Changes in Hepatic Phospholipid and 1-Carbon Metabolism. Mol. Nutr. Food Res. 2019, 63, e1801305. [Google Scholar] [CrossRef]
- Meyer, S.; Schäfer, L.; Röhrig, J.; Maheshwari, G.; Most, E.; Zorn, H.; Ringseis, R.; Eder, K.; Gessner, D.K. Supplementation of Sulfur-Containing Amino Acids or Essential Amino Acids Does Not Reverse the Hepatic Lipid-Lowering Effect of a Protein-Rich Insect Meal in Obese Zucker Rats. Nutrients 2020, 12, 987. [Google Scholar] [CrossRef]
- Lee, J.Y.; Im, A.R.; Shim, K.S.; Ji, K.Y.; Kim, K.M.; Kim, Y.H.; Chae, S. Beneficial Effects of Insect Extracts on Nonalcoholic Fatty Liver Disease. J. Med. Food 2020, 23, 760–771. [Google Scholar] [CrossRef]
- Meyer, S.; Gessner, D.K.; Maheshwari, G.; Röhrig, J.; Friedhoff, T.; Most, E.; Zorn, H.; Ringseis, R.; Eder, K. Tenebrio molitor Larvae Meal Affects the Cecal Microbiota of Growing Pigs. Animals 2020, 10, 1151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Li, L.; Xia, W. Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets. Nutr. Res. 2008, 28, 383–390. [Google Scholar] [CrossRef]
- Quirós, A.; Contreras, M.M.; Ramos, M.; Amigo, L.; Recio, I. Stability to gastrointestinal enzymes and structure–activity relationship of β-casein-peptides with antihypertensive properties. Peptides 2009, 30, 1848–1853. [Google Scholar] [CrossRef]
- Rao, S.Q.; Ju, T.; Sun, J.; Su, Y.J.; Xu, R.R.; Yang, Y.J. Purification and characterization of angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysate of hen egg white lysozyme. Food Res. Int. 2012, 46, 127–134. [Google Scholar] [CrossRef]
- Manzoni, C.; Duranti, M.; Eberini, I.; Scharnag, H.; März, W.; Castiglioni, S.; Lovati, M.R. Subcellular localization of soybean 7S globulin in HepG2 cells and LDL receptor up-regulation by its alpha’ constituent subunit. J. Nutr. 2003, 133, 2149–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.L.; Watanabe, K.; Shiraishi, K.; Ueki, T.; Noda, Y.; Matsui, T.; Matsumoto, K. Identification of ACE-inhibitory peptides in salt-free soy sauce that are transportable across caco-2 cell monolayers. Peptides 2008, 29, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Jamdar, S.N.; Rajalakshmi, V.; Pednekar, M.D.; Juan, F.; Yardi, V.; Sharma, A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010, 121, 178–184. [Google Scholar] [CrossRef]
- Dai, C.; Ma, H.; Luo, L.; Yin, X. Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. Eur. Food Res. Technol. 2013, 236, 681–689. [Google Scholar] [CrossRef]
- Brai, A.; Immacolata Trivisani, C.; Vagaggini, C.; Stella, R.; Angeletti, R.; Iovenitti, G.; Francardi, V.; Dreassi, E. Proteins from Tenebrio molitor: An interesting functional ingredient and a source of ACE inhibitory peptides. Food Chem. 2022, 393, 133409. [Google Scholar] [CrossRef] [PubMed]
- Rangel, F.; Enes, P.; Gasco, L.; Gai, F.; Hausmann, B.; Berry, D.; Oliva-Teles, A.; Serra, C.R.; Pereira, F.C. Differential Modulation of the European Sea Bass Gut Microbiota by Distinct Insect Meals. Front. Microbiol. 2022, 13, 831034. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Laboratory Animals, 4th ed.; National Academy Press: Washington, DC, USA, 1995. [Google Scholar]
- Janssen, R.H.; Vincken, J.P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Krawielitzki, K.; Schadereit, R.; Borgmann, E.; Evers, B. Use of 51-Cr2O3 and TiO2 as markers for the determination of passage rate and protein digestibility in rats. Arch. Tierernahr. 1987, 37, 1085–1099. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, G.; Ringseis, R.; Shibani, M.; Most, E.; Schuster, M.; Schwarz, F.J.; Eder, K. Influence of a rumen-protected conjugated linoleic acid mixture on carcass traits and meat quality in young Simmental heifers. J. Anim. Sci. 2012, 90, 1532–1540. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, A.; Kinoshita, T.; Hoshino, M. Analytical chemical studies on amino sugars. II. Determination of hexosamines using 3-methyl-2-benzothiazolone hydrazone hydrochloride. Chem. Pharm. Bull. 1969, 17, 1505–1510. [Google Scholar] [CrossRef] [Green Version]
- Eder, K.; Kirchgessner, M. Dietary fat influences the effect of zinc deficiency on liver lipids and fatty acids in rats force-fed equal quantities of diet. J. Nutr. 1994, 124, 1917–1926. [Google Scholar] [CrossRef]
- Maheshwari, G.; Gessner, D.K.; Meyer, S.; Ahlborn, J.; Wen, G.; Ringseis, R.; Zorn, H.; Eder, K. Characterization of the Nutritional Composition of a Biotechnologically Produced Oyster Mushroom and its Physiological Effects in Obese Zucker Rats. Mol. Nutr. Food Res. 2020, 64, e2000591. [Google Scholar] [CrossRef]
- Geer, B.W.; Krochko, D.; Williamson, J.H. Ontogeny, cell distribution, and the physiological role of NADP-malic enzyme in Drosophila melanogaster. Biochem. Genet. 1979, 17, 867–879. [Google Scholar] [CrossRef]
- Schlegel, G.; Ringseis, R.; Windisch, W.; Schwarz, F.J.; Eder, K. Effects of a rumen-protected mixture of conjugated linoleic acids on hepatic expression of genes involved in lipid metabolism in dairy cows. J. Dairy Sci. 2012, 95, 3905–3918. [Google Scholar] [CrossRef]
- Chiappisi, E.; Ringseis, R.; Eder, K.; Gessner, D.K. Effect of endoplasmic reticulum stress on metabolic and stress signaling and kidney-specific functions in Madin-Darby bovine kidney cells. J. Dairy Sci. 2017, 100, 6689–6706. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.S.; Goldstein, J.L. Sterol regulatory element binding proteins (SREBPs): Controllers of lipid synthesis and cellular uptake. Nutr. Rev. 1998, 56, S1–S3. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Chang, T.C.; Liu, S.H.; Chiang, M.T. The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats. J. Food Drug Anal. 2017, 25, 919–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.H.; Chiu, C.Y.; Shi, C.M.; Chiang, M.T. Functional Comparison of High and Low Molecular Weight Chitosan on Lipid Metabolism and Signals in High-Fat Diet-Fed Rats. Mar. Drugs 2018, 16, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhang, F.; Yan, Y.; Zhang, Z.; Wang, L.; Qin, C. Lipid-lowering activities of chitosan and its quaternary ammonium salt for the hyperlipidemia rats induced by high-fat diets. Int. J. Biol. Macromol. 2019, 132, 922–928. [Google Scholar] [CrossRef]
- Kumar, R.; Arya, J.K.; Rizvi, S.I. Chitosan reduces inflammation and protects against oxidative stress in a hyperlipidemic rat model: Relevance to nonalcoholic fatty liver disease. Mol. Biol. Rep. 2022, 49, 9465–9472. [Google Scholar] [CrossRef]
- Yang, D.; Hu, C.; Deng, X.; Bai, Y.; Cao, H.; Guo, J.; Su, Z. Therapeutic Effect of Chitooligosaccharide Tablets on Lipids in High-Fat Diets Induced Hyperlipidemic Rats. Molecules 2019, 24, 514. [Google Scholar] [CrossRef] [Green Version]
- Guan, G.; Azad, M.A.K.; Lin, Y.; Kim, S.W.; Tian, Y.; Liu, G.; Wang, H. Biological Effects and Applications of Chitosan and Chito-Oligosaccharides. Front. Physiol. 2019, 10, 516. [Google Scholar] [CrossRef] [Green Version]
- Heida, A.; Gruben, N.; Catrysse, L.; Koehorst, M.; Koster, M.; Kloosterhuis, N.J.; Gerding, A.; Havinga, R.; Bloks, V.W.; Bongiovanni, L.; et al. The hepatocyte IKK:NF-κB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis. Mol. Metab. 2021, 54, 101349. [Google Scholar] [CrossRef]
- Saeb, A.; Grundmann, S.M.; Gessner, D.K.; Schuchardt, S.; Most, E.; Wen, G.; Eder, K.; Ringseis, R. Feeding of cuticles from Tenebrio molitor larvae modulates the gut microbiota and attenuates hepatic steatosis in obese Zucker rats. Food Funct. 2022, 13, 1421–1436. [Google Scholar] [CrossRef]
- Reichold, A.; Brenner, S.A.; Spruss, A.; Förster-Fromme, K.; Bergheim, I.; Bischoff, S.C. Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J. Nutr. Biochem. 2014, 25, 118–125. [Google Scholar] [CrossRef]
- Ritze, Y.; Bárdos, G.; Claus, A.; Ehrmann, V.; Bergheim, I.; Schwiertz, A.; Bischoff, S.C. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS ONE 2014, 9, e80169. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Li, M.; Wang, W.; Wang, H.; Zhang, Y.; Hu, Q.; Zhao, X.; Suo, H. Effects of Lactobacillus casei YBJ02 on Lipid Metabolism in Hyperlipidemic Mice. J. Food Sci. 2019, 84, 3793–3803. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Liu, C.; Zhao, S.; Wang, X.; Wang, J.; Zhang, H.; Wang, Y.; Zhao, G. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease. AMB Express 2020, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jin, H.; Yan, X.; Shao, D.; Hu, X.; Shi, J. The anti-obesity effects exerted by different fractions of Artemisia sphaerocephala Krasch polysaccharide in diet-induced obese mice. Int. J. Biol. Macromol. 2021, 182, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, L.; Coretti, L.; Dipineto, L.; Bovera, F.; Menna, F.; Chiariotti, L.; Nizza, A.; Lembo, F.; Fioretti, A. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci. Rep. 2017, 7, 16269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biasato, I.; Ferrocino, I.; Colombino, E.; Gai, F.; Schiavone, A.; Cocolin, L.; Vincenti, V.; Capucchio, M.T.; Gasco, L. Effects of dietary Hermetia illucens meal inclusion on cecal microbiota and small intestinal mucin dynamics and infiltration with immune cells of weaned piglets. J. Anim. Sci. Biotechnol. 2020, 11, 64. [Google Scholar] [CrossRef]
- Kozaczek, M.; Bottje, W.; Kong, B.; Dridi, S.; Albataineh, D.; Lassiter, K.; Hakkak, R. Long-Term Soy Protein Isolate Consumption Reduces Liver Steatosis Through Changes in Global Transcriptomics in Obese Zucker Rats. Front. Nutr. 2020, 7, 607970. [Google Scholar] [CrossRef]
- Hakkak, R.; Zeng, H.; Dhakal, I.B.; Korourian, S. Short- and long-term soy diet versus casein protects liver steatosis independent of the arginine content. J. Med. Food 2015, 18, 1274–1280. [Google Scholar] [CrossRef]
- Ascencio, C.; Torres, N.; Isoard-Acosta, F.; Gómez-Pérez, F.J.; Hernández-Pando, R.; Tovar, A.R. Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J. Nutr. 2004, 134, 522–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, A.; Brandsch, C.; Bettzieche, A.; Hirche, F.; Stangl, G.I.; Eder, K. Isoflavone-poor soy protein alters the lipid metabolism of rats by SREBP-mediated down-regulation of hepatic genes. J. Nutr. Biochem. 2007, 18, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Bettzieche, A.; Brandsch, C.; Weisse, K.; Hirche, F.; Eder, K.; Stangl, G.I. Lupin protein influences the expression of hepatic genes involved in fatty acid synthesis and triacylglycerol hydrolysis of adult rats. Br. J. Nutr. 2008, 99, 952–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirche, F.; Schröder, A.; Knoth, B.; Stangl, G.I.; Eder, K. Effect of dietary methionine on plasma and liver cholesterol concentrations in rats and expression of hepatic genes involved in cholesterol metabolism. Br. J. Nutr. 2006, 95, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Rizki, G.; Arnaboldi, L.; Gabrielli, B.; Yan, J.; Lee, G.S.; Ng, R.K.; Turner, S.M.; Badger, T.M.; Pitas, R.E.; Maher, J.J. Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1. J. Lipid Res. 2006, 47, 2280–2290. [Google Scholar] [CrossRef] [Green Version]
- Hasek, B.E.; Stewart, L.K.; Henagan, T.M.; Boudreau, A.; Lenard, N.R.; Black, C.; Shin, J.; Huypens, P.; Malloy, V.L.; Plaisance, E.P.; et al. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R728–R739. [Google Scholar] [CrossRef] [Green Version]
- Perrone, C.E.; Mattocks, D.A.; Jarvis-Morar, M.; Plummer, J.D.; Orentreich, N. Methionine restriction effects on mitochondrial biogenesis and aerobic capacity in white adipose tissue, liver, and skeletal muscle of F344 rats. Metabolism 2010, 59, 1000–1011. [Google Scholar] [CrossRef]
- Plaisance, E.P.; Greenway, F.L.; Boudreau, A.; Hill, K.L.; Johnson, W.D.; Krajcik, R.A.; Perrone, C.E.; Orentreich, N.; Cefalu, W.T.; Gettys, T.W. Dietary methionine restriction increases fat oxidation in obese adults with metabolic syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E836–E840. [Google Scholar] [CrossRef]
C | HI25 | HI50 | |
---|---|---|---|
Components, g/kg | |||
Cornstarch | 473.5 | 473.5 | 473.5 |
Casein | 200 | 150 | 100 |
HI larvae meal | - | 115.9 | 231.8 |
Sucrose | 100 | 100 | 100 |
Mineral mix 1 | 35 | 35 | 35 |
Vitamin mix 2 | 10 | 10 | 10 |
Soybean oil | 29.2 | 27.1 | 25.1 |
Palm oil | 28.4 | 14.2 | - |
Coconut fat | 7.4 | 11 | 14.5 |
Cellulose | 110 | 56.8 | 3.65 |
L-cysteine | 1.5 | 1.5 | 1.5 |
TiO2 | 5 | 5 | 5 |
HI Larvae Meal | |
---|---|
Crude nutrients and chitin | |
Dry matter (DM), % fresh matter | 92.3 |
Protein (N × 4.67), % DM | 43.1 |
Ether extract, % DM | 11.9 |
Crude ash, % DM | 7.65 |
Crude fiber, % DM | 14.6 |
Chitin, % DM | 14.1 |
Fatty acids, g/100 g total fatty acids | |
C10:0 | 1.09 |
C12:0 | 53.7 |
C14:0 | 8.34 |
C16:0 | 11.7 |
C16:1 n-7 | 2.88 |
C18:0 | 1.68 |
C18:1 n-9 | 8.33 |
C18:2 n-6 | 11.3 |
C18:3 n-3 | 0.89 |
C | HI25 | HI50 | |
---|---|---|---|
Analyzed concentrations of crude nutrients and energy | |||
Dry matter (DM), % fresh matter | 89.1 | 88.7 | 89 |
Protein (N × 6.25), % DM | 20.1 | 21.2 | 23.3 |
Ether extract, % DM | 6.8 | 7.6 | 8.0 |
Crude ash, % DM | 3.1 | 4.0 | 4.7 |
Crude fiber, % DM | 8.1 | 6.1 | 4.3 |
Gross energy, MJ/kg DM | 20.9 | 20.9 | 20.7 |
Calculated chitin-corrected protein concentration | |||
ProteinChitin-corr. [(total N-chitin-N) × 6.25], % DM | 20.1 | 19.9 | 20.6 |
Fatty acid composition, g/100 g total fatty acids * | |||
C8:0 | 3.86 | 1.87 | 0.13 |
C10:0 | 3.08 | 1.69 | 0.52 |
C12:0 | 22.9 | 24.2 | 25.4 |
C14:0 | 8.52 | 6.29 | 4.34 |
C16:0 | 13.1 | 15.4 | 16.9 |
C16:1 n-7 | 0.10 | 0.74 | 1.33 |
C18:0 | 3.34 | 3.06 | 2.78 |
C18:1 n-9 | 18.1 | 19.4 | 20.2 |
C18:2 n-6 | 23.0 | 22.9 | 23.7 |
C18:3 n-6 | 0.20 | 0.25 | 0.39 |
C18:3 n-3 | 2.18 | 2.00 | 2.00 |
C20:0 | 0.68 | 0.71 | 0.71 |
C20:1 n-9 | 0.16 | 0.16 | 0.15 |
C20:4 n-6 | 0.24 | 0.30 | 0.39 |
C22:0 | 0.23 | 0.55 | 0.47 |
C22:1 n-9 | 0.34 | 0.36 | 0.43 |
Amino acids, g/kg FM | |||
Alanine | 6.0 | 10.1 | 14.3 |
Arginine | 6.3 | 8.5 | 10.7 |
Aspartic acid | 13.5 | 14.8 | 16.0 |
Cysteine | 1.6 | 1.7 | 1.8 |
Glutamic acid | 42.8 | 38.2 | 33.6 |
Glycine | 3.4 | 5.6 | 7.8 |
Histidine | 5.4 | 6.1 | 6.8 |
Isoleucine | 8.9 | 9.0 | 9.2 |
Leucine | 17.1 | 16.6 | 16.2 |
Lysine | 14.7 | 14.1 | 13.5 |
Methionine | 5.3 | 4.8 | 4.3 |
Phenylalanine | 9.6 | 9.3 | 9.0 |
Proline | 20.7 | 18.8 | 16.8 |
Serine | 11.2 | 10.8 | 10.3 |
Threonine | 8.0 | 8.1 | 8.1 |
Tryptophan | 2.0 | 2.9 | 3.9 |
Tyrosine | 9.6 | 10.1 | 10.6 |
Valine | 11.9 | 12.1 | 12.2 |
Sum of total amino acids | 198 | 202 | 205 |
Group | L-C | O-C | O-HI25 | O-HI50 | p-Value | |
---|---|---|---|---|---|---|
L vs. O | Protein Source * | |||||
Body weight, g | ||||||
week 0 | 257 ± 19 | 260 ± 32 | 256 ± 33 | 264 ± 28 | 0.799 | 0.847 |
week 1 | 294 ± 23 | 316 ± 31 | 321 ± 31 | 324 ± 22 | 0.092 | 0.780 |
week 2 | 322 ± 24 | 379 ± 33 | 380 ± 31 | 386 ± 19 | <0.001 | 0.842 |
week 3 | 343 ± 25 | 427 ± 34 | 426 ± 30 | 428 ± 16 | <0.001 | 0.985 |
week 4 | 364 ± 27 | 462 ± 32 | 460 ± 33 | 460 ± 14 | <0.001 | 0.985 |
Daily body weight gain, g/d | ||||||
week 1 | 5.26 ± 0.73 | 7.90 ± 1.19 b | 9.32 ± 1.15 a | 8.64 ± 2.21 ab | <0.001 | 0.042 |
week 2 | 3.95 ± 0.83 | 8.94 ± 1.03 | 8.44 ± 1.35 | 8.74 ± 0.82 | <0.001 | 0.537 |
week 3 | 2.96 ± 0.90 | 6.96 ± 0.87 | 6.56 ± 1.25 | 6.11 ± 1.00 | <0.001 | 0.208 |
week 4 | 3.04 ± 0.63 | 4.95 ± 0.91 | 4.86 ± 1.13 | 4.52 ± 0.78 | <0.001 | 0.578 |
week 1 to 4 | 3.80 ± 0.52 | 7.20 ± 0.78 | 7.29 ± 1.05 | 7.00 ± 0.87 | <0.001 | 0.766 |
Daily feed intake, g/d | ||||||
week 1 | 24.9 ± 1.6 | 31.9 ± 1.9 | 32.6 ± 3.2 | 33.2 ± 2.4 | <0.001 | 0.718 |
week 2 | 22.6 ± 1.2 | 34.3 ± 1.5 | 33.9 ± 2.3 | 36.5 ± 2.6 | <0.001 | 0.177 |
week 3 | 21.3 ± 1.0 | 33.2 ± 1.5 | 33.2 ± 2.6 | 36.1 ± 2.7 | <0.001 | 0.116 |
week 4 | 21.5 ± 1.2 | 30.3 ± 1.4 b | 29.5 ± 1.1 b | 33.3 ± 2.1 a | <0.001 | 0.007 |
week 1 to 4 | 22.6 ± 1.1 | 32.4 ± 1.4 | 32.3 ± 2.0 | 34.8 ± 2.4 | <0.001 | 0.131 |
Feed conversion ratio, g/g | ||||||
week 1 | 4.78 ± 0.43 | 4.06 ± 0.43 b | 3.52 ± 0.51 a | 3.91 ± 0.71 ab | 0.028 | 0.333 |
week 2 | 5.79 ± 0.76 | 3.82 ± 0.20 | 4.06 ± 0.54 | 4.21 ± 0.54 | 0.001 | 0.432 |
week 3 | 7.42 ± 1.34 | 4.78 ± 0.19 | 5.21 ± 1.18 | 6.02 ± 1.05 | 0.002 | 0.136 |
week 4 | 7.24 ± 1.17 | 6.23 ± 0.89 | 6.21 ± 1.10 | 7.58 ± 1.63 | 0.161 | 0.181 |
week 1 to 4 | 5.96 ± 0.37 | 4.52 ± 0.33 | 4.48 ± 0.65 | 5.04 ± 0.81 | 0.001 | 0.329 |
Organ weights | ||||||
Liver, g | 14.0 ± 1.4 | 31.9 ± 6.6 | 28.1 ± 5.2 | 30.2 ± 2.3 | <0.001 | 0.372 |
Liver, % of BW | 3.85 ± 0.19 | 6.85 ± 1.12 | 6.11 ± 1.08 | 6.56 ± 0.53 | <0.001 | 0.222 |
M. soleus, g | 0.13 ± 0.01 | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.10 ± 0.01 | <0.001 | 0.884 |
M. gastrocnemius, g | 2.01 ± 0.16 | 1.40 ± 0.10 | 1.39 ± 0.15 | 1.38 ± 0.09 | <0.001 | 0.966 |
Group | L-C | O-C | O-HI25 | O-HI50 | p-Value | |
---|---|---|---|---|---|---|
L vs. O | Protein Source * | |||||
Fatty acid, µmol/g liver | ||||||
C12:0 | 0.54 ± 0.10 | 1.76 ± 2.11 | 1.54 ± 0.55 | 1.54 ± 0.26 | 0.002 | 0.224 |
C14:0 | 0.98 ± 0.12 | 8.54 ± 3.01 a | 6.41 ± 1.77 ab | 5.26 ± 0.74 b | <0.001 | 0.005 |
C14:1 n-5 | n.d. | 1.92 ± 1.39 a | 0.95 ± 0.17 b | 0.66 ± 0.16 c | - | <0.001 |
C16:0 | 15.8 ± 1.3 | 140 ± 56 a | 80.2 ± 20.7 b | 61.7 ± 9.2 c | <0.001 | <0.001 |
C16:1 n-7 | 1.90 ± 0.45 | 54.2 ± 26.0 a | 24.0 ± 6.1 b | 17.1 ± 3.4 c | <0.001 | <0.001 |
C18:0 | 9.55 ± 0.72 | 12.7 ± 4.8 a | 12.4 ± 2.3 a | 10.0 ± 0.94 b | 0.004 | 0.017 |
C18:1 n-9 | 8.25 ± 1.47 | 151 ± 79 a | 71.0 ± 23.2 b | 55.2 ± 8.4 b | <0.001 | <0.001 |
C18:2 n-6 | 7.22 ± 0.93 | 11.0 ± 5.1 | 12.0 ± 3.9 | 13.6 ± 3.7 | 0.049 | 0.225 |
C18:3 n-3 | 0.17 ± 0.03 | 0.78 ± 0.36 | 0.79 ± 0.48 | 0.85 ± 0.27 | <0.001 | 0.705 |
C20:3 n-6 | 0.33 ± 0.06 | 1.27 ± 2.71 a | 1.17 ± 0.24 b | 1.27 ± 0.17 b | 0.096 | 0.001 |
C20:4 n-6 | 9.49 ± 1.43 | 9.31 ± 1.34 a | 8.71 ± 1.44 a | 7.14 ± 0.74 b | 0.775 | 0.001 |
C22:5 n-3 | 0.23 ± 0.05 | 0.24 ± 0.14 b | 0.56 ± 0.10 a | 0.55 ± 0.15 a | 0.866 | <0.001 |
C22:6 n-6 | 1.83 ± 0.44 | 1.83 ± 0.34 b | 2.23 ± 0.42 a | 1.85 ± 0.30 ab | 0.984 | 0.030 |
Sum | 56.5 ± 5.5 | 396 ± 176 a | 223 ± 58 b | 178 ± 22 c | <0.001 | <0.001 |
Desaturation indices | ||||||
C20:4 n-6/C20:3 n-6 (Δ5) | 28.9 ± 3.6 | 21.6 ± 9.4 a | 7.55 ± 1.03 b | 5.66 ± 0.49 c | 0.034 | <0.001 |
C20:4 n-6/C18:2 n-6 (Δ6) | 1.32 ± 0.15 | 0.98 ± 0.36 a | 0.77 ± 0.19 a | 0.56 ± 0.15 b | 0.017 | 0.004 |
C18:1 n-9/C18:0 (Δ9) | 0.86 ± 0.15 | 19.3 ± 30.5 a | 5.75 ± 1.50 b | 5.51 ± 0.72 b | <0.001 | 0.001 |
Group | L-C | O-C | O-HI25 | O-HI50 | p-Value | |
---|---|---|---|---|---|---|
L vs. O | Protein Source * | |||||
Fatty acid synthesis | ||||||
Acly | 0.33 ± 0.16 | 1.00 ± 0.33 a | 0.70 ± 0.23 ab | 0.48 ± 0.27 b | <0.001 | 0.002 |
Acaca | 0.36 ± 0.20 | 1.00 ± 0.27 | 0.74 ± 0.35 | 0.66 ± 0.33 | <0.001 | 0.055 |
Fasn | 0.33 ± 0.15 | 1.00 ± 0.39 a | 0.90 ± 0.36 ab | 0.57 ± 0.27 b | <0.001 | 0.035 |
G6pd | 0.28 ± 0.08 | 1.00 ± 0.39 a | 0.56 ± 0.35 b | 0.27 ± 0.18 c | <0.001 | <0.001 |
Me1 | 0.27 ± 0.15 | 1.00 ± 0.39 a | 0.45 ± 0.18 b | 0.30 ± 0.07 b | <0.001 | <0.001 |
Desaturation of fatty acids | ||||||
Fads1 | 0.69 ± 0.25 | 1.00 ± 0.36 a | 0.44 ± 0.16 b | 0.26 ± 0.10 c | <0.001 | <0.001 |
Fads2 | 0.38 ± 0.08 | 1.00 ± 0.25 a | 0.51 ± 0.17 b | 0.36 ± 0.12 c | <0.001 | <0.001 |
Scd1 | 0.43 ± 0.17 | 1.00 ± 0.24 a | 0.85 ± 0.35 ab | 0.60 ± 0.16 b | <0.001 | 0.012 |
Triglyceride synthesis | ||||||
Gpam | 0.15 ± 0.04 | 1.00 ± 0.74 a | 0.46 ± 0.33 b | 0.22 ± 0.10 b | <0.001 | 0.001 |
Cholesterol homeostasis | ||||||
Hmgcr | 0.69 ± 0.36 | 1.00 ± 0.36 a | 0.68 ± 0.33 b | 0.65 ± 0.22 b | 0.075 | 0.044 |
Ldlr | 0.72 ± 0.23 | 1.00 ± 0.31 | 1.01 ± 0.30 | 0.91 ± 0.29 | 0.043 | 0.503 |
Bile acid synthesis | ||||||
Cyp7a1 | 1.12 ± 0.68 | 1.00 ± 0.51 | 0.63 ± 0.32 | 0.50 ± 0.23 | 0.682 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marschall, M.J.M.; Grundmann, S.M.; Gessner, D.K.; Wen, G.; Most, E.; Eder, K.; Ringseis, R. Feeding of Hermetia illucens Larvae Meal Attenuates Hepatic Lipid Synthesis and Fatty Liver Development in Obese Zucker Rats. Nutrients 2023, 15, 287. https://doi.org/10.3390/nu15020287
Marschall MJM, Grundmann SM, Gessner DK, Wen G, Most E, Eder K, Ringseis R. Feeding of Hermetia illucens Larvae Meal Attenuates Hepatic Lipid Synthesis and Fatty Liver Development in Obese Zucker Rats. Nutrients. 2023; 15(2):287. https://doi.org/10.3390/nu15020287
Chicago/Turabian StyleMarschall, Magdalena J. M., Sarah M. Grundmann, Denise K. Gessner, Gaiping Wen, Erika Most, Klaus Eder, and Robert Ringseis. 2023. "Feeding of Hermetia illucens Larvae Meal Attenuates Hepatic Lipid Synthesis and Fatty Liver Development in Obese Zucker Rats" Nutrients 15, no. 2: 287. https://doi.org/10.3390/nu15020287
APA StyleMarschall, M. J. M., Grundmann, S. M., Gessner, D. K., Wen, G., Most, E., Eder, K., & Ringseis, R. (2023). Feeding of Hermetia illucens Larvae Meal Attenuates Hepatic Lipid Synthesis and Fatty Liver Development in Obese Zucker Rats. Nutrients, 15(2), 287. https://doi.org/10.3390/nu15020287