The Association between Dietary Iron Intake and Incidence of Dementia in Adults Aged 60 Years or over in the UK Biobank
Abstract
:1. Introduction
2. Method
2.1. Ethics
2.2. Sample Selection Flowchart
3. Measurement Method
3.1. Dementia Data
3.2. Dietary Intake
3.3. Covariates
4. Statistical Analysis
5. Results
5.1. Baseline Characteristics
5.2. Population Selection
5.3. Incidence of Dementia
5.4. Iron Intake and Incident Dementia
5.5. Moderation Analysis
5.6. Stratification Analysis
5.7. Sensitivity Analysis
6. Discussion
- More than 97.5% of data were obtained from a White Caucasian background leading to poor generalizability to other ethnicities.
- Geographic differences may also exist between the United Kingdom and other nations, considering the varied prevalence of illness complications and levels of primary health care programmes.
- Limited age range for subject selection in our investigation, this study has limited generalizability for those under the age of 60.
- This study used a self-reported questionnaire to calculate iron intake, and this likely leads to measurement errors in iron consumption.
- Subjects who developed dementia may have delayed reporting or diagnosis, and misclassification bias may have reduced reporting. Likewise, the misclassification of dementia subtypes needs to be considered, as AD and VD often have mixed pathology and pathophysiology [7].
- Potentially, medications may interfere with iron absorption and impact dementia pathogenesis.
- There may be insufficient power to establish the synergistic effects or modification effects of the aforementioned medical and physiological conditions. Further studies are needed before a definitive conclusion can be drawn.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagata, K. Alzheimer’s disease and vascular dementia. Nihon Rinsho 2014, 72, 618–630. [Google Scholar]
- World Health Organization. Global Action Plan on the Public Health Response to Dementia 2017–2025; World Health Organization: Geneva, Switzerland, 2017.
- World Health Organization, Dementia. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 25 December 2022).
- Dementia and Alzheimer’s Disease Deaths Including Comorbidities, England and Wales: 2019 Registrations [Internet]. Office for National Statistics. 2020. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/dementiaandalzheimersdiseasedeathsincludingcomorbiditiesenglandandwales/2019registrations (accessed on 25 December 2022).
- Zwerling, J.L.; Cohen, J.A.; Verghese, J. Dementia and caregiver stress. Neurodegener. Dis. Manag. 2016, 6, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Craggs, L.J.L.; Yamamoto, Y.; Ihara, M.; Fenwick, R.; Burke, M.; Oakley, A.E.; Roeber, S.; Duering, M.; Kretzschmar, H.; Kalaria, R.N. White matter pathology and disconnection in the frontal lobe in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Neuropathol. Appl. Neurobiol. 2014, 40, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Kalaria, R.N. The pathology and pathophysiology of vascular dementia. Neuropharmacology 2018, 134, 226–239. [Google Scholar] [CrossRef]
- Deramecourt, V.; Slade, J.Y.; Oakley, A.E.; Perry, R.H.; Ince, P.G.; Maurage, C.A.; Kalaria, R.N. Staging and natural history of cerebrovascular pathology in dementia. Neurology 2012, 78, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Okubo, H.; Inagaki, H.; Gondo, Y.; Kamide, K.; Ikebe, K.; Masui, Y.; Arai, Y.; Ishizaki, T.; Sasaki, S.; Nakagawa, T.; et al. Association between dietary patterns and cognitive function among 70-year-old Japanese elderly: A cross-sectional analysis of the SONIC study. Nutr. J. 2017, 16, 56. [Google Scholar] [CrossRef] [Green Version]
- Hagemeier, J.; Tong, O.; Dwyer, M.G.; Schweser, F.; Ramanathan, M.; Zivadinov, R. Effects of diet on brain iron levels among healthy individuals: An MRI pilot study. Neurobiol. Aging 2015, 36, 1678–1685. [Google Scholar] [CrossRef]
- Zhang, H.; Hardie, L.; Greenwood, D.; Cade, J. Meat consumption is associated with higher dementia prevalence: A cross-sectional analysis of UK Biobank. Proc. Nutr. Soc. 2021, 80. [Google Scholar] [CrossRef]
- Liu, W.; Xing, S.; Wei, F.; Yao, Y.; Zhang, H.; Li, Y.-C.; Liu, Z. Excessive Dietary Salt Intake Exacerbates Cognitive Impairment Progression and Increases Dementia Risk in Older Adults. J. Am. Med. Dir. Assoc. 2022. [Google Scholar] [CrossRef]
- Pase, M.P.; Himali, J.J.; Beiser, A.S.; Aparicio, H.J.; Satizabal, C.L.; Vasan, R.S.; Seshadri, S.; Jacques, P.F. Sugar-and artificially sweetened beverages and the risks of incident stroke and dementia: A prospective cohort study. Stroke 2017, 48, 1139–1146. [Google Scholar] [CrossRef] [Green Version]
- Barnard, N.D.; Bunner, A.E.; Agarwal, U. Saturated and trans fats and dementia: A systematic review. Neurobiol. Aging 2014, 35, S65–S73. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, G.; Lankhorst, S.; Boonstra, A.; Postmus, P.E.; Zweegman, S.; Westerhof, N.; van der Laarse, W.J.; Vonk-Noordegraaf, A. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2011, 37, 1386–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grünblatt, E.; Bartl, J.; Riederer, P. The link between iron, metabolic syndrome, and Alzheimer’s disease. J. Neural. Transm. 2011, 118, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salonen, J.T.; Nyyssonen, K.; Korpela, H.; Tuomilehto, J.; Seppanen, R.; Salonen, R. High Stored Iron Levels Are Associated with Excess Risk of Myocardial-Infarction in Eastern Finnish Men. Circulation 1992, 86, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Bartzokis, G.; Lu, P.H.; Tingus, K.; Peters, D.G.; Amar, C.P.; Tishler, T.A.; Finn, J.P.; Villablanca, P.; Altshuler, L.L.; Mintz, J.; et al. Gender and iron genes may modify associations between brain iron and memory in healthy aging. Neuropsychopharmacology 2011, 36, 1375–1384. [Google Scholar] [CrossRef] [Green Version]
- Beshaw, T.; Demssie, K.; Tefera, M.; Guadie, A. Determination of proximate composition, selected essential and heavy metals in sesame seeds (Sesamum indicum L.) from the Ethiopian markets and assessment of the associated health risks. Toxicol. Rep. 2022, 9, 1806–1812. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Blanco-Rojo, R.; Toxqui, L.; López-Parra, A.M.; Baeza-Richer, C.; Pérez-Granados, A.M.; Arroyo-Pardo, E.; Vaquero, M.P. Influence of diet, menstruation and genetic factors on iron status: A cross-sectional study in Spanish women of childbearing age. Int. J. Mol. Sci. 2014, 15, 4077–4087. [Google Scholar] [CrossRef] [Green Version]
- Cade, J.E.; Moreton, J.A.; O’Hara, B.; Greenwood, D.C.; Moor, J.; Burley, V.J.; Kukalizch, K.; Bishop, D.T.; Worwood, M. Diet and genetic factors associated with iron status in middle-aged women. Am. J. Clin. Nutr. 2005, 82, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Powers, K.; Smith-Weller, T.; Franklin, G.; Longstreth, W.; Swanson, P.; Checkoway, H. Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology 2003, 60, 1761–1766. [Google Scholar] [CrossRef]
- Shi, Z.M.; Li, M.; Wang, Y.F.; Liu, J.H.; El-Obeid, T. High iron intake is associated with poor cognition among Chinese old adults and varied by weight status-a 15-y longitudinal study in 4852 adults. Am. J. Clin. Nutr. 2019, 109, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherbuin, N.; Kumar, R.; Sachdev, P.S.; Anstey, K.J. Dietary mineral intake and risk of mild cognitive impairment: The PATH through life project. Front. Aging Neurosci. 2014, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, K.M.; Smith-Weller, T.; Franklin, G.M.; Longstreth, W.T.; Swanson, P.D., Jr.; Checkoway, H. Dietary fats, cholesterol and iron as risk factors for Parkinson’s disease. Park. Relat. Disord. 2009, 15, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, R. UK Biobank: Protocol for a Large-Scale Prospective Epidemiological Resource; UK Biobank: Stockport, UK, 2007. [Google Scholar]
- Perez-Cornago, A.; Pollard, Z.; Young, H.; van Uden, M.; Andrews, C.; Piernas, C.; Key, T.J.; Mulligan, A.; Lentjes, M. Description of the updated nutrition calculation of the Oxford WebQ questionnaire and comparison with the previous version among 207,144 participants in UK Biobank. Eur. J. Nutr. 2021, 60, 4019–4030. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65 (Suppl. 4), 1220S–1228S, discussion 9S–31S. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.S.; Bradbury, K.E.; Cross, A.J.; Gunter, M.J.; Murphy, N. Physical activity, sedentary behaviour and colorectal cancer risk in the UK Biobank. Br. J. Cancer 2018, 118, 920–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, C.; Welsh, P.; Celis-Morales, C.A.; Mark, P.B.; Mackay, D.; Ghouri, N.; Ho, F.K.; Ferguson, L.D.; Brown, R.; Lewsey, J.; et al. Glycated Hemoglobin, Prediabetes, and the Links to Cardiovascular Disease: Data From UK Biobank. Diabetes Care 2020, 43, 440–445. [Google Scholar] [CrossRef] [Green Version]
- Lyall, D.M.; Ward, J.; Ritchie, S.J.; Davies, G.; Cullen, B.; Celis, C.; Bailey, M.E.; Anderson, J.; Evans, J.; Mckay, D.F.; et al. Alzheimer disease genetic risk factor APOE e4 and cognitive abilities in 111,739 UK Biobank participants. Age Ageing 2016, 45, 511–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biobank, U. 2021. Available online: https://www.ukbiobank.ac.uk (accessed on 25 December 2022).
- Grubić Kezele, T.; Ćurko-Cofek, B. Age-Related Changes and Sex-Related Differences in Brain Iron Metabolism. Nutrients 2020, 12, 2601. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Lane, D.J.R.; Ayton, S.; Bush, A.I. Iron and Alzheimer’s Disease: An Update on Emerging Mechanisms. J. Alzheimers Dis. 2018, 64 (Suppl. S1), S379–S395. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, H.; Budak, H.; Kocpinar, E.F.; Baltaci, N.G.; Erdogan, O. Examining the link between dose-dependent dietary iron intake and Alzheimer’s disease through oxidative stress in the rat cortex. J. Trace. Elem. Med. Biol. 2019, 56, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Berggren, K.L.; Marks, E.; Fox, J.H. Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: A systematic review. Nutr. Rev. 2017, 75, 456–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, T. Systemic iron homeostasis. Physiol. Rev. 2013, 93, 1721–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spotorno, N.; Acosta-Cabronero, J.; Stomrud, E.; Lampinen, B.; Strandberg, O.T.; Van Westen, D.; Hansson, O. Relationship between cortical iron and tau aggregation in Alzheimer’s disease. Brain 2020, 143, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [Green Version]
- Naets, J.P.; Wittek, M. Mechanism of action of androgens on erythropoiesis. Am. J. Physiol. 1966, 210, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Bartzokis, G.; Tishler, T.A.; Lu, P.H.; Villablanca, P.; Altshuler, L.L.; Carter, M.; Huang, D.; Edwards, N.; Mintz, J. Brain ferritin iron may influence age-and gender-related risks of neurodegeneration. Neurobiol. Aging 2007, 28, 414–423. [Google Scholar] [CrossRef]
- Miyake, Y.; Tanaka, K.; Fukushima, W.; Sasaki, S.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; Kawamura, N.; et al. Dietary intake of metals and risk of Parkinson’s disease: A case-control study in Japan. J. Neurol. Sci. 2011, 306, 98–102. [Google Scholar] [CrossRef]
- Yavuz, B.B.; Cankurtaran, M.; Haznedaroglu, I.C.; Halil, M.; Ulger, Z.; Altun, B.; Ariogul, S. Iron deficiency can cause cognitive impairment in geriatric patients. J. Nutr. Health Aging 2012, 16, 220–224. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Butler, J.J.; Cloonan, S.M. Smoking-induced iron dysregulation in the lung. Free. Radic. Biol. Med. 2019, 133, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Pirpamer, L.; Hofer, E.; Gesierich, B.; De Guio, F.; Freudenberger, P.; Seiler, S.; Duering, M.; Jouvent, E.; Duchesnay, E.; Dichgans, M.; et al. Determinants of iron accumulation in the normal aging brain. Neurobiol. Aging 2016, 43, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, T.C.; Mattsson, N.; Weiner, M.W.; Initiative, A.s.D.N. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimer’s Dement. 2014, 10, S122–S145. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Mu, Q.; Kang, Y.; Yang, X.; Shan, L.; Wang, M.; Li, C.; Liu, Y.; Wang, F. Association of Cigarette Smoking With Male Cognitive Impairment and Metal Ions in Cerebrospinal Fluid. Front. Psychiatry 2021, 12, 738358. [Google Scholar] [CrossRef] [PubMed]
- Tuomainen, T.P.; Punnonen, K.; Nyyssönen, K.; Salonen, J.T. Association between body iron stores and the risk of acute myocardial infarction in men. Circulation 1998, 97, 1461–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ownby, R.L.; Crocco, E.; Acevedo, A.; John, V.; Loewenstein, D. Depression and risk for Alzheimer disease: Systematic review, meta-analysis, and metaregression analysis. Arch. Gen. Psychiatry 2006, 63, 530–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef]
- Kagerer, S.M.; Van Bergen, J.M.G.; Li, X.; Quevenco, F.C.; Gietl, A.F.; Studer, S.; Treyer, V.; Meyer, R.; Kaufmann, P.A.; Nitsch, R.M.; et al. APOE4 moderates effects of cortical iron on synchronized default mode network activity in cognitively healthy old-aged adults. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2020, 12, e12002. [Google Scholar] [CrossRef]
- Pan, W.; Chen, H.; Ni, C.; Zong, G.; Yuan, C.; Yang, M. Sex-Specific Associations of Dietary Iron Intake with Brain Iron Deposition on Imaging and Incident Dementia: A Prospective Cohort Study. J. Nutr. Health Aging 2022, 26, 954–961. [Google Scholar] [CrossRef]
- Barbay, M.; Diouf, M.; Roussel, M.; Godefroy, O. Systematic Review and Meta-Analysis of Prevalence in Post-Stroke Neurocognitive Disorders in Hospital-Based Studies. Dement. Geriatr. Cogn. Disord. 2018, 46, 322–334. [Google Scholar] [CrossRef]
- Jian, J.; Pelle, E.; Huang, X. Iron and Menopause: Does Increased Iron Affect the Health of Postmenopausal Women? Mary Ann Liebert, Inc.: New York, NY, USA, 2009. [Google Scholar]
- Chen, B.; Li, G.F.; Shen, Y.; Huang, X.; Xu, Y.J. Reducing iron accumulation: A potential approach for the prevention and treatment of postmenopausal osteoporosis. Exp. Ther. Med. 2015, 10, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Launer, L.J.; Ross, G.W.; Petrovitch, H.; Masaki, K.; Foley, D.; White, L.R.; Havlik, R.J. Midlife blood pressure and dementia: The Honolulu–Asia aging study. Neurobiol. Aging 2000, 21, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.; Schnier, C.; Bush, K.; Rannikmäe, K.; Henshall, D.E.; Lerpiniere, C.; Allen, N.E.; Flaig, R.; Russ, T.C.; Bathgate, D.; et al. Identifying dementia outcomes in UK Biobank: A validation study of primary care, hospital admissions and mortality data. Eur. J. Epidemiol. 2019, 34, 557–565. [Google Scholar] [CrossRef] [PubMed]
Male | |||||||
---|---|---|---|---|---|---|---|
Energy-adjusted iron intake quintiles | |||||||
Total | Q1 | Q2 | Q3 | Q4 | Q5 | p-value | |
Range [mg/day] | 1.46, 48.76 | <12.59 | ≥12.59, <14.24 | ≥14.24, <15.73 | ≥15.73, <17.57 | ≥17.57 | |
n | 41,213 | 8243 | 8243 | 8242 | 8243 | 8242 | |
Age (mean [SD]) | 65.65 (3.35) | 65.39 (3.35) | 65.62 (3.37) | 65.72 (3.35) | 65.76 (3.32) | 65.75 (3.34) | <0.001 |
Ethnicity (%) | <0.001 | ||||||
White | 40,218 (97.59%) | 8007 (97.14%) | 8006 (97.12%) | 8055 (97.73%) | 8090 (98.14%) | 8060 (97.79%) | |
Mixed | 50 (0.12%) | 12 (0.15%) | 14 (0.17%) | 9 (0.11%) | 10 (0.12%) | 5 (0.06%) | |
Non-white | 722 (1.75%) | 182 (2.21%) | 167 (2.03%) | 132 (1.60%) | 102 (1.24%) | 139 (1.69%) | |
Do not know/Prefer not to answer | 223 (0.54%) | 42 (0.51%) | 56 (0.68%) | 46 (0.56%) | 41 (0.50%) | 38 (0.46%) | |
Education level (%) | <0.001 | ||||||
College or University degree | 17,342 (42.08%) | 2620 (31.78%) | 3387 (41.09%) | 3670 (44.53%) | 3807 (46.18%) | 3858 (46.81%) | |
A levels/AS levels or equivalent | 4435 (10.76%) | 843 (10.23%) | 894 (10.85%) | 895 (10.86%) | 912 (11.06%) | 891 (10.81%) | |
O levels/GCSEs or equivalent | 7384 (17.92%) | 1694 (20.55%) | 1515 (18.38%) | 1455 (17.65%) | 1385 (16.80%) | 1335 (16.20%) | |
CSEs or equivalent | 659 (1.60%) | 164 (1.99%) | 127 (1.54%) | 142 (1.72%) | 115 (1.40%) | 111 (1.35%) | |
NVQ or HND or HNC or equivalent | 3832 (9.30%) | 854 (10.36%) | 790 (9.58%) | 746 (9.05%) | 716 (8.69%) | 726 (8.81%) | |
Other professional qualifications, e.g., nursing, teaching | 2319 (5.63%) | 486 (5.90%) | 473 (5.74%) | 446 (5.41%) | 464 (5.63%) | 450 (5.46%) | |
Do not know/Prefer not to answer | 5242 (12.72%) | 1582 (19.19%) | 1057 (12.82%) | 888 (10.77%) | 844 (10.24%) | 871 (10.57%) | |
Income (GBP/annually) (%) | <0.001 | ||||||
<18,000 | 6581 (15.97%) | 1715 (20.81%) | 1342 (16.28%) | 1216 (14.75%) | 1150 (13.95%) | 1158 (14.05%) | |
18,000 to 30,999 | 11,451 (27.78%) | 2348 (28.48%) | 2365 (28.69%) | 2307 (27.99%) | 2213 (26.85%) | 2218 (26.91%) | |
31,000 to 51,999 | 10,817 (26.25%) | 2027 (24.59%) | 2192 (26.59%) | 2182 (26.47%) | 2255 (27.36%) | 2161 (26.22%) | |
52,000 to 100,000 | 7088 (17.20%) | 1156 (14.02%) | 1353 (16.41%) | 1447 (17.56%) | 1563 (18.96%) | 1569 (19.04%) | |
>100,000 | 1787 (4.34%) | 217 (2.63%) | 298 (3.62%) | 399 (4.84%) | 417 (5.06%) | 456 (5.53%) | |
Do not know/Prefer not to answer | 3489 (8.47%) | 780 (9.46%) | 693 (8.41%) | 691 (8.38%) | 645 (7.82%) | 680 (8.25%) | |
Smoking status (%) | <0.001 | ||||||
Never smoked | 18,877 (45.80%) | 3492 (42.36%) | 3741 (45.38%) | 3894 (47.25%) | 3891 (47.20%) | 3859 (46.82%) | |
Ever smoked | 22,228 (53.93%) | 4725 (57.32%) | 4477 (54.31%) | 4327 (52.50%) | 4333 (52.57%) | 4366 (52.97%) | |
Do not know/Prefer not to answer | 108 (0.26%) | 26 (0.32%) | 25 (0.30%) | 21 (0.25%) | 19 (0.23%) | 17 (0.21%) | |
Alcohol status (%) | <0.001 | ||||||
Never drink | 742 (1.80%) | 210 (2.55%) | 158 (1.92%) | 135 (1.64%) | 122 (1.48%) | 117 (1.42%) | |
Previous drinker | 1064 (2.58%) | 320 (3.88%) | 234 (2.84%) | 174 (2.11%) | 159 (1.93%) | 177 (2.15%) | |
Current drinker | 39,381 (95.55%) | 7706 (93.49%) | 7844 (95.16%) | 7930 (96.21%) | 7959 (96.55%) | 7942 (96.36%) | |
Do not know/Prefer not to answer | 26 (0.06%) | 7 (0.08%) | 7 (0.08%) | 3 (0.04%) | 3 (0.04%) | 6 (0.07%) | |
BMI (kg/m2) (mean [SD]) | 27.15 (3.67) | 27.56 (3.86) | 27.20 (3.61) | 27.06 (3.64) | 26.94 (3.55) | 26.97 (3.64) | <0.001 |
Energy intake (kcal/day) (mean [SD]) | 2327 (520) | 2410 (581) | 2267 (499) | 2278 (486) | 2287 (481) | 2394 (529) | <0.001 |
Physical activity (MET-min/week) (mean (SD)) | 2613 (2382) | 2597 (2490) | 2609 (2413) | 2582 (2293) | 2593 (2307) | 2686 (2400) | 0.039 |
Glycated haemoglobin (HbA1c) (mmol/mol) (mean [SD]) | 36.50 (6.42) | 36.84 (6.47) | 36.46 (6.27) | 36.35 (6.18) | 36.32 (6.40) | 36.51 (6.77) | <0.001 |
Blood cholesterol (mmol/L) (mean [SD]) | 5.46 (1.09) | 5.46 (1.11) | 5.47 (1.09) | 5.46 (1.08) | 5.46 (1.07) | 5.43 (1.08) | 0.12 |
Apolipoprotein E4 (APOE4) (%) | 9342 (23.01%) | 1782 (21.93%) | 1837 (22.60%) | 1852 (22.88%) | 1882 (23.16%) | 1989 (24.50%) | 0.002 |
Cardiovascular disease (%) | 3200 (7.76%) | 665 (8.07%) | 599 (7.27%) | 645 (7.83%) | 617 (7.49%) | 674 (8.18%) | 0.15 |
Hypertension (%) | 14,222 (34.51%) | 2910 (35.30%) | 2856 (34.65%) | 2804 (34.02%) | 2809 (34.08%) | 2843 (34.49%) | 0.42 |
Depression (%) | 1309 (3.18%) | 325 (3.94%) | 248 (3.01%) | 231 (2.80%) | 257 (3.12%) | 248 (3.01%) | <0.001 |
Diabetes mellitus (%) | 2266 (5.50%) | 448 (5.43%) | 441 (5.35%) | 424 (5.14%) | 442 (5.36%) | 511 (6.20%) | 0.033 |
Sleep duration = sleep duration ≥7 and ≤9 h (%) | 32,362 (78.52%) | 6250 (75.82%) | 6452 (78.27%) | 6601 (80.09%) | 6591 (79.96%) | 6468 (78.48%) | <0.001 |
Red meat intake (serve/day) (mean [SD]) | 0.37 (0.45) | 0.26 (0.40) | 0.33 (0.40) | 0.37 (0.42) | 0.41 (0.45) | 0.47 (0.54) | <0.001 |
Processed meat intake (serve/day) (mean [SD]) | 0.61 (0.90) | 0.73 (1.06) | 0.65 (0.90) | 0.59 (0.84) | 0.57 (0.83) | 0.50 (0.83) | <0.001 |
Fish intake (serve/day) (mean [SD]) | 3.08 (2.31) | 2.23 (1.85) | 2.68 (1.89) | 3.01 (2.00) | 3.37 (2.26) | 4.10 (2.91) | <0.001 |
Vegetable intake (serve/day) (mean [SD]) | 2.20 (3.95) | 1.85 (3.99) | 1.99 (3.47) | 2.17 (3.70) | 2.29 (3.75) | 2.70 (4.67) | <0.001 |
Fruit intake (serve/day) (mean [SD]) | 0.33 (0.48) | 0.30 (0.48) | 0.31 (0.44) | 0.33 (0.46) | 0.34 (0.47) | 0.35 (0.54) | <0.001 |
Sugar intake (g/day) (mean [SD]) | 129.77 (46.89) | 137.63 (54.33) | 126.13 (44.34) | 126.56 (42.85) | 126.52 (43.02) | 132.01 (47.84) | <0.001 |
Vitamin C intake (mg/day) (mean [SD]) | 152.31 (99.34) | 118.64 (90.37) | 137.75 (87.77) | 150.64 (91.68) | 164.83 (95.58) | 189.69 (114.16) | <0.001 |
Vitamin E intake (mg/day) (mean [SD]) | 9.47 (4.10) | 9.35 (4.48) | 8.93 (3.78) | 9.27 (3.79) | 9.44 (3.87) | 10.34 (4.39) | <0.001 |
Salt intake (%) | <0.001 | ||||||
Never/rarely | 23,589 (57.24%) | 3971 (48.17%) | 4597 (55.77%) | 4817 (58.44%) | 5026 (60.97%) | 5178 (62.82%) | |
Sometimes | 11,005 (26.70%) | 2406 (29.19%) | 2254 (27.34%) | 2214 (26.86%) | 2118 (25.69%) | 2013 (24.42%) | |
Usually | 5229 (12.69%) | 1364 (16.55%) | 1132 (13.73%) | 983 (11.93%) | 895 (10.86%) | 855 (10.37%) | |
Always | 1377 (3.34%) | 498 (6.04%) | 259 (3.14%) | 225 (2.73%) | 203 (2.46%) | 192 (2.33%) | |
Missing data | 13 (0.03%) | 4 (0.05%) | 1 (0.01%) | 3 (0.04%) | 1 (0.01%) | 4 (0.05%) | |
Fat intake (g/day) (mean [SD]) | 84.98 (27.74) | 95.00 (29.70) | 85.24 (26.16) | 83.02 (25.97) | 80.46 (26.12) | 81.18 (28.02) | <0.001 |
Saturated fat intake (g/day) (mean [SD]) | 32.93 (12.39) | 38.82 (13.87) | 33.52 (11.58) | 31.93 (11.35) | 30.33 (11.21) | 30.07 (11.67) | <0.001 |
Polyunsaturated fat intake (g/day) (mean [SD]) | 15.52 (7.01) | 16.76 (7.54) | 15.39 (6.75) | 15.25 (6.64) | 14.96 (6.69) | 15.25 (7.25) | <0.001 |
Iron supplement (%) | 0.021 | ||||||
No | 41,113 (99.76%) | 8220 (99.72%) | 8232 (99.87%) | 8220 (99.73%) | 8229 (99.83%) | 8212 (99.64%) | |
Yes | 100 (0.24%) | 23 (0.28%) | 11 (0.13%) | 22 (0.27%) | 14 (0.17%) | 30 (0.36%) | |
Female | |||||||
Energy-adjusted iron intake quintiles | |||||||
Total | Q1 | Q2 | Q3 | Q4 | Q5 | p-value | |
Range [mg/day] | 0.67, 37.09 | <10.93 | ≥10.93, <12.4 | ≥12.4, <13.71 | ≥13.71, <15.39 | ≥15.39 | |
n | 48,892 | 9779 | 9778 | 9779 | 9778 | 9778 | |
Age (mean [SD]) | 65.17 (3.25) | 65.05 (3.24) | 65.23 (3.28) | 65.18 (3.25) | 65.25 (3.25) | 65.16 (3.22) | <0.001 |
Ethnicity (%) | <0.001 | ||||||
White | 47,771 (97.71%) | 9483 (96.97%) | 9532 (97.48%) | 9588 (98.05%) | 9584 (98.02%) | 9584 (98.02%) | |
Mixed | 95 (0.19%) | 21 (0.21%) | 23 (0.24%) | 14 (0.14%) | 20 (0.20%) | 17 (0.17%) | |
Non-white | 899 (1.84%) | 250 (2.56%) | 197 (2.01%) | 146 (1.49%) | 149 (1.52%) | 157 (1.61%) | |
Do not know/Prefer not to answer | 127 (0.26%) | 25 (0.26%) | 26 (0.27%) | 31 (0.32%) | 25 (0.26%) | 20 (0.20%) | |
Education level (%) | <0.001 | ||||||
College or University degree | 17,420 (35.63%) | 2841 (29.05%) | 3366 (34.42%) | 3621 (37.03%) | 3760 (38.45%) | 3832 (39.19%) | |
A levels/AS levels or equivalent | 5944 (12.16%) | 1115 (11.40%) | 1196 (12.23%) | 1249 (12.77%) | 1210 (12.37%) | 1174 (12.01%) | |
O levels/GCSEs or equivalent | 12,095 (24.74%) | 2588 (26.46%) | 2480 (25.36%) | 2324 (23.77%) | 2414 (24.69%) | 2289 (23.41%) | |
CSEs or equivalent | 1166 (2.38%) | 280 (2.86%) | 241 (2.46%) | 228 (2.33%) | 200 (2.05%) | 217 (2.22%) | |
NVQ or HND or HNC or equivalent | 1558 (3.19%) | 399 (4.08%) | 299 (3.06%) | 300 (3.07%) | 274 (2.80%) | 286 (2.92%) | |
Other professional qualifications, e.g., nursing, teaching | 3726 (7.62%) | 709 (7.25%) | 735 (7.52%) | 766 (7.83%) | 758 (7.75%) | 758 (7.75%) | |
Do not know/Prefer not to answer | 6983 (14.28%) | 1847 (18.89%) | 1461 (14.94%) | 1291 (13.20%) | 1162 (11.88%) | 1222 (12.50%) | |
Income (GBP/annually) (%), | <0.001 | ||||||
<18,000 | 10,153 (20.77%) | 2334 (23.87%) | 2086 (21.33%) | 1914 (19.57%) | 1902 (19.45%) | 1917 (19.61%) | |
18,000 to 30,999 | 13,630 (27.88%) | 2681 (27.42%) | 2744 (28.06%) | 2769 (28.32%) | 2750 (28.12%) | 2686 (27.47%) | |
31,000 to 51,999 | 10,066 (20.59%) | 1831 (18.72%) | 2020 (20.66%) | 2077 (21.24%) | 2067 (21.14%) | 2071 (21.18%) | |
52,000 to 100,000 | 5464 (11.18%) | 909 (9.30%) | 1048 (10.72%) | 1140 (11.66%) | 1206 (12.33%) | 1161 (11.87%) | |
>100,000 | 1324 (2.71%) | 179 (1.83%) | 244 (2.50%) | 288 (2.95%) | 309 (3.16%) | 304 (3.11%) | |
Do not know/Prefer not to answer | 8255 (16.88%) | 1845 (18.87%) | 1636 (16.73%) | 1591 (16.27%) | 1544 (15.79%) | 1639 (16.76%) | |
Smoking status (%) | <0.001 | ||||||
Never smoked | 28,286 (57.85%) | 5507 (56.31%) | 5715 (58.45%) | 5739 (58.69%) | 5728 (58.58%) | 5597 (57.24%) | |
Ever smoked | 20,461 (41.85%) | 4244 (43.40%) | 4023 (41.14%) | 4014 (41.05%) | 4031 (41.23%) | 4149 (42.43%) | |
Do not know/Prefer not to answer | 145 (0.30%) | 28 (0.29%) | 40 (0.41%) | 26 (0.27%) | 19 (0.19%) | 32 (0.33%) | |
Alcohol status (%) | <0.001 | ||||||
Never drink | 2204 (4.51%) | 583 (5.96%) | 482 (4.93%) | 369 (3.77%) | 393 (4.02%) | 377 (3.86%) | |
Previous drinker | 1486 (3.04%) | 404 (4.13%) | 289 (2.96%) | 262 (2.68%) | 253 (2.59%) | 278 (2.84%) | |
Current drinker | 45,157 (92.36%) | 8779 (89.77%) | 8998 (92.02%) | 9139 (93.46%) | 9124 (93.31%) | 9117 (93.24%) | |
Do not know/Prefer not to answer | 45 (0.09%) | 13 (0.13%) | 9 (0.09%) | 9 (0.09%) | 8 (0.08%) | 6 (0.06%) | |
BMI (kg/m2) (mean (SD)) | 26.64 (4.64) | 27.30 (5.03) | 26.79 (4.70) | 26.49 (4.48) | 26.34 (4.40) | 26.31 (4.51) | <0.001 |
Energy intake (kcal/day) (mean [SD]) | 1952 (460) | 2019 (519) | 1905 (441) | 1903 (435) | 1926 (430) | 2009 (455) | <0.001 |
Physical activity (MET-min/week) (mean [SD]) | 2555 (2106) | 2477 (2094) | 2536 (2134) | 2507 (2021) | 2601 (2135) | 2655 (2141) | <0.001 |
Glycated haemoglobin (HbA1c) (mmol/mol) (mean [SD]) | 36.44 (5.30) | 36.81 (5.35) | 36.53 (5.76) | 36.46 (5.45) | 36.21 (4.86) | 36.21 (5.02) | <0.001 |
Blood cholesterol (mmol/L) (mean [SD]) | 6.10 (1.09) | 6.11 (1.09) | 6.12 (1.11) | 6.12 (1.08) | 6.11 (1.09) | 6.06 (1.06) | <0.001 |
Apolipoprotein E4 (APOE4) (%) | 11,272 (23.59%) | 2115 (22.13%) | 2243 (23.46%) | 2259 (23.61%) | 2346 (24.56%) | 2309 (24.17%) | 0.001 |
Cardiovascular disease (%) | 1144 (2.34%) | 249 (2.55%) | 231 (2.36%) | 232 (2.37%) | 209 (2.14%) | 223 (2.28%) | 0.43 |
Hypertension (%) | 13,754 (28.13%) | 2969 (30.36%) | 2756 (28.19%) | 2720 (27.81%) | 2645 (27.05%) | 2664 (27.24%) | <0.001 |
Depression (%) | 2452 (5.02%) | 571 (5.84%) | 487 (4.98%) | 455 (4.65%) | 461 (4.71%) | 478 (4.89%) | <0.001 |
Diabetes mellitus (%) | 1347 (2.76%) | 281 (2.87%) | 273 (2.79%) | 265 (2.71%) | 256 (2.62%) | 272 (2.78%) | 0.85 |
Sleep duration = sleep duration ≥7 and ≤9 h (%) | 37,044 (75.77%) | 7257 (74.21%) | 7419 (75.87%) | 7441 (76.09%) | 7498 (76.68%) | 7429 (75.98%) | 0.001 |
Red meat intake (serve/day) (mean [SD]) | 0.28 (0.39) | 0.20 (0.34) | 0.25 (0.35) | 0.29 (0.37) | 0.32 (0.39) | 0.36 (0.46) | <0.001 |
Processed meat intake (serve/day) (mean [SD]) | 0.42 (0.69) | 0.49 (0.78) | 0.45 (0.71) | 0.42 (0.66) | 0.39 (0.64) | 0.35 (0.66) | <0.001 |
Fish intake (serve/day) (mean [SD]) | 3.58 (2.45) | 2.58 (1.92) | 3.11 (1.98) | 3.47 (2.13) | 3.91 (2.32) | 4.80 (3.11) | <0.001 |
Vegetable intake (serve/day) (mean [SD]) | 2.63 (4.18) | 2.20 (4.06) | 2.48 (4.07) | 2.50 (3.71) | 2.79 (4.37) | 3.16 (4.58) | <0.001 |
Fruit intake (serve/day) (mean [SD]) | 0.35 (0.46) | 0.33 (0.47) | 0.34 (0.45) | 0.35 (0.45) | 0.36 (0.45) | 0.36 (0.49) | <0.001 |
Sugar intake (g/day) (mean [SD]) | 118.55 (43.10) | 122.17 (48.37) | 114.72 (40.35) | 114.56 (39.98) | 117.11 (40.31) | 124.20 (44.96) | <0.001 |
Vitamin C (mg/day) (mean [SD]) | 160.68 (99.41) | 126.53 (90.16) | 145.52 (86.79) | 158.19 (89.65) | 171.41 (95.28) | 201.74 (115.91) | <0.001 |
Vitamin E (mg/day) (mean [SD]) | 9.25 (3.84) | 8.92 (4.18) | 8.79 (3.51) | 8.88 (3.50) | 9.35 (3.62) | 10.32 (4.10) | <0.001 |
Salt intake (%) | <0.001 | ||||||
Never/rarely | 29,485 (60.31%) | 5433 (55.56%) | 5833 (59.65%) | 6026 (61.62%) | 6035 (61.72%) | 6158 (62.98%) | |
Sometimes | 12,998 (26.59%) | 2771 (28.34%) | 2631 (26.91%) | 2516 (25.73%) | 2576 (26.34%) | 2504 (25.61%) | |
Usually | 4926 (10.08%) | 1161 (11.87%) | 1024 (10.47%) | 965 (9.87%) | 918 (9.39%) | 858 (8.77%) | |
Always | 1467 (3.00%) | 413 (4.22%) | 285 (2.91%) | 268 (2.74%) | 247 (2.53%) | 254 (2.60%) | |
Missing data | 16 (0.03%) | 1 (0.01%) | 5 (0.05%) | 4 (0.04%) | 2 (0.02%) | 4 (0.04%) | |
Fat intake (g/day) (mean [SD]) | 72.13 (24.40) | 80.98 (26.55) | 72.83 (23.33) | 69.90 (22.75) | 68.69 (22.84) | 68.25 (24.02) | <0.001 |
Saturated fat intake (g/day) (mean [SD]) | 27.68 (10.55) | 32.96 (11.81) | 28.27 (9.87) | 26.64 (9.61) | 25.69 (9.52) | 24.85 (9.75) | <0.001 |
Polyunsaturated fat intake (g/day) (mean [SD]) | 13.38 (6.29) | 14.39 (6.98) | 13.42 (6.18) | 12.97 (5.98) | 12.90 (5.85) | 13.20 (6.29) | <0.001 |
Iron supplement use (%) | 0.041 | ||||||
No | 48,682 (99.57%) | 9726 (99.46%) | 9740 (99.61%) | 9742 (99.62%) | 9736 (99.57%) | 9738 (99.59%) | |
Yes | 210 (0.43%) | 53 (0.54%) | 38 (0.39%) | 37 (0.38%) | 42 (0.43%) | 40 (0.41%) |
Female (n = 48,892, number of cases = 492) | |||||
---|---|---|---|---|---|
Energy-adjusted iron intake quintiles | |||||
Q1 | Q2 | Q3 | Q4 | Q5 | |
Person-years (py) | 114,059.31 | 114,990.72 | 115,057.01 | 115,013.13 | 115,183.31 |
Case | 110 | 107 | 88 | 96 | 91 |
Incidence rate (per 104 py) (95%CI) | 9.64 (8, 11.62) | 9.3 (7.69, 11.24) | 7.64 (6.2, 9.42) | 8.35 (6.83, 10.20) | 7.90 (6.43, 9.70) |
M1: HR (95% CI) | 1.3 (0.98, 1.72) | 1.21 (0.91, 1.6) | Reference | 1.08 (0.81, 1.44) | 1.04 (0.77, 1.39) |
p-value | 0.068 | 0.192 | - | 0.608 | 0.809 |
M2: HR (95%CI) | 1.22 (0.92, 1.63) | 1.17 (0.88, 1.56) | - | 1.04 (0.78, 1.4) | 1.04 (0.77, 1.4) |
p-values | 0.175 | 0.27 | - | 0.789 | 0.8 |
M3: HR (95% CI) | 1.14 (0.84, 1.54) | 1.15 (0.87, 1.54) | - | 0 (0, 1.42) | 1.09 (0.8, 1.48) |
M3: p-value | 0.398 | 0.327 | - | 0.717 | 0.597 |
Male (n = 41,213, number of cases = 560) | |||||
Energy-adjusted iron intake quintiles | |||||
Q1 | Q2 | Q3 | Q4 | Q5 | |
Person-years (py) | 95,017.41 | 95,923.62 | 96,008.321 | 96,295.606 | 95,765.02 |
Case | 115 | 113 | 107 | 90 | 135 |
Incidence rate (per 104 py) (95%CI) | 12.1 (10.08, 14.53) | 11.78 (9.79, 14.16) | 11.14 (9.22, 13.46) | 9.35 (7.60, 11.49) | 14.10 (11.91, 16.69) |
M1: HR (95% CI) | 1.38 (1.05, 1.82) | 1.29 (0.98, 1.7) | 1.21 (0.91, 1.6) | Reference | 1.52 (1.16, 1.98) |
p-value | 0.022 | 0.074 | 0.192 | - | 0.002 |
M2: HR (95%CI) | 1.29 (0.97, 1.71) | 1.29 (0.97, 1.7) | 1.19 (0.9, 1.59) | - | 1.51 (1.15, 1.98) |
p-values | 0.075 | 0.077 | 0.225 | - | 0.003 |
M3: HR (95% CI) | 1.37 (1.01, 1.86) | 1.34 (1.01, 1.79) | 1.21 (0.91, 1.62) | - | 1.46 (1.11, 1.92) |
M3: p-value | 0.042 | 0.044 | 0.188 | - | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Chen, Y.; Lu, X.; Xu, X.; Bulloch, G.; Zhu, S.; Zhu, Z.; Ge, Z.; Wang, W.; Shang, X.; et al. The Association between Dietary Iron Intake and Incidence of Dementia in Adults Aged 60 Years or over in the UK Biobank. Nutrients 2023, 15, 260. https://doi.org/10.3390/nu15020260
Liu J, Chen Y, Lu X, Xu X, Bulloch G, Zhu S, Zhu Z, Ge Z, Wang W, Shang X, et al. The Association between Dietary Iron Intake and Incidence of Dementia in Adults Aged 60 Years or over in the UK Biobank. Nutrients. 2023; 15(2):260. https://doi.org/10.3390/nu15020260
Chicago/Turabian StyleLiu, Jiahao, Yutong Chen, Xi Lu, Xiaojing Xu, Gabriella Bulloch, Susan Zhu, Zhuoting Zhu, Zongyuan Ge, Wei Wang, Xianwen Shang, and et al. 2023. "The Association between Dietary Iron Intake and Incidence of Dementia in Adults Aged 60 Years or over in the UK Biobank" Nutrients 15, no. 2: 260. https://doi.org/10.3390/nu15020260
APA StyleLiu, J., Chen, Y., Lu, X., Xu, X., Bulloch, G., Zhu, S., Zhu, Z., Ge, Z., Wang, W., Shang, X., & He, M. (2023). The Association between Dietary Iron Intake and Incidence of Dementia in Adults Aged 60 Years or over in the UK Biobank. Nutrients, 15(2), 260. https://doi.org/10.3390/nu15020260