Dissecting the Association between Gut Microbiota and Brain Structure Change Rate: A Two-Sample Bidirectional Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. GWAS Datasets of Longitudinal Lifespan Brain Structure Changes
2.2. GWAS Dataset of Gut Microbiota
2.3. Assessing Bidirectional Causal Relationships between Longitudinal Lifespan Brain Structure Changes and Gut Microbiota
2.4. Sensitivity Analyses
3. Results
3.1. Causal Effect of Gut Microbiota on Longitudinal Lifespan Brain Structure Changes
3.2. Causal Effect of Longitudinal Lifespan Brain Structure Changes on Gut Microbiota
3.3. Bidirectional Causal Effects between Gut Microbiota and Longitudinal Lifespan Brain Structure Changes
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stiles, J.; Jernigan, T.L. The basics of brain development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef]
- Brouwer, R.M.; Klein, M.; Grasby, K.L.; Schnack, H.G.; Jahanshad, N.; Teeuw, J.; Thomopoulos, S.I.; Sprooten, E.; Franz, C.E.; Gogtay, N.; et al. Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat. Neurosci. 2022, 25, 421–432. [Google Scholar] [CrossRef]
- Paus, T.; Bernard, M.; Chakravarty, M.M.; Davey Smith, G.; Gillis, J.; Lourdusamy, A.; Melka, M.G.; Leonard, G.; Pavlidis, P.; Perron, M.; et al. KCTD8 gene and brain growth in adverse intrauterine environment: A genome-wide association study. Cereb. Cortex 2012, 22, 2634–2642. [Google Scholar] [CrossRef]
- Gomes da Silva, S.; Arida, R.M. Physical activity and brain development. Expert Rev. Neurother. 2015, 15, 1041–1051. [Google Scholar] [CrossRef]
- Miguel, P.M.; Pereira, L.O.; Silveira, P.P.; Meaney, M.J. Early environmental influences on the development of children’s brain structure and function. Dev. Med. Child Neurol. 2019, 61, 1127–1133. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.R.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef]
- Bonder, M.J.; Kurilshikov, A.; Tigchelaar, E.F.; Mujagic, Z.; Imhann, F.; Vila, A.V.; Deelen, P.; Vatanen, T.; Schirmer, M.; Smeekens, S.P.; et al. The effect of host genetics on the gut microbiome. Nat. Genet. 2016, 48, 1407–1412. [Google Scholar] [CrossRef]
- Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T.; et al. Human genetics shape the gut microbiome. Cell 2014, 159, 789–799. [Google Scholar] [CrossRef]
- Kurilshikov, A.; Medina-Gomez, C.; Bacigalupe, R.; Radjabzadeh, D.; Wang, J.; Demirkan, A.; Le Roy, C.I.; Raygoza Garay, J.A.; Finnicum, C.T.; Liu, X.; et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 2021, 53, 156–165. [Google Scholar] [CrossRef]
- Turpin, W.; Espin-Garcia, O.; Xu, W.; Silverberg, M.S.; Kevans, D.; Smith, M.I.; Guttman, D.S.; Griffiths, A.; Panaccione, R.; Otley, A.; et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 2016, 48, 1413–1417. [Google Scholar] [CrossRef]
- Kishikawa, T.; Maeda, Y.; Nii, T.; Motooka, D.; Matsumoto, Y.; Matsushita, M.; Matsuoka, H.; Yoshimura, M.; Kawada, S.; Teshigawara, S.; et al. Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann. Rheum. Dis. 2020, 79, 103–111. [Google Scholar] [CrossRef]
- Moschen, A.R.; Gerner, R.R.; Wang, J.; Klepsch, V.; Adolph, T.E.; Reider, S.J.; Hackl, H.; Pfister, A.; Schilling, J.; Moser, P.L.; et al. Lipocalin 2 Protects from Inflammation and Tumorigenesis Associated with Gut Microbiota Alterations. Cell Host Microbe 2016, 19, 455–469. [Google Scholar] [CrossRef]
- Wang, J.; Jia, H. Metagenome-wide association studies: Fine-mining the microbiome. Nat. Rev. Microbiol. 2016, 14, 508–522. [Google Scholar] [CrossRef]
- Zhu, F.; Guo, R.; Wang, W.; Ju, Y.; Wang, Q.; Ma, Q.; Sun, Q.; Fan, Y.; Xie, Y.; Yang, Z.; et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol. Psychiatry 2020, 25, 2905–2918. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut Microbes and the Brain: Paradigm Shift in Neuroscience. J. Neurosci. 2014, 34, 15490–15496. [Google Scholar] [CrossRef]
- Sampson, T.R.; Mazmanian, S.K. Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host Microbe 2015, 17, 565–576. [Google Scholar] [CrossRef]
- Burgess, S.; Timpson, N.J.; Ebrahim, S.; Davey Smith, G. Mendelian randomization: Where are we now and where are we going? Int. J. Epidemiol. 2015, 44, 379–388. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, S.L.; Kwok, M.K.; Leung, G.M.; Schooling, C.M. The Roles of 27 Genera of Human Gut Microbiota in Ischemic Heart Disease, Type 2 Diabetes Mellitus, and Their Risk Factors: A Mendelian Randomization Study. Am. J. Epidemiol. 2018, 187, 1916–1922. [Google Scholar] [CrossRef]
- Sanna, S.; van Zuydam, N.R.; Mahajan, A.; Kurilshikov, A.; Vich Vila, A.; Võsa, U.; Mujagic, Z.; Masclee, A.A.M.; Jonkers, D.; Oosting, M.; et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 2019, 51, 600–605. [Google Scholar] [CrossRef]
- Hedman, A.M.; van Haren, N.E.; Schnack, H.G.; Kahn, R.S.; Hulshoff Pol, H.E. Human brain changes across the life span: A review of 56 longitudinal magnetic resonance imaging studies. Hum. Brain Mapp. 2012, 33, 1987–2002. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Kawasawa, Y.I.; Cheng, F.; Zhu, Y.; Xu, X.; Li, M.; Sousa, A.M.; Pletikos, M.; Meyer, K.A.; Sedmak, G.; et al. Spatio-temporal transcriptome of the human brain. Nature 2011, 478, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tong, X.; Zou, Y.; Lin, X.; Zhao, H.; Tian, L.; Jie, Z.; Wang, Q.; Zhang, Z.; Lu, H.; et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat. Genet. 2022, 54, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Pierce, B.L.; Ahsan, H.; Vanderweele, T.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 2011, 40, 740–752. [Google Scholar] [CrossRef]
- Brion, M.J.; Shakhbazov, K.; Visscher, P.M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 2013, 42, 1497–1501. [Google Scholar] [CrossRef]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 2017, 36, 1783–1802. [Google Scholar] [CrossRef]
- Hartwig, F.P.; Davey Smith, G.; Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018, 7, e34408. [Google Scholar] [CrossRef]
- DeLisi, L.E.; Sakuma, M.; Maurizio, A.M.; Relja, M.; Hoff, A.L. Cerebral ventricular change over the first 10 years after the onset of schizophrenia. Psychiatry Res. 2004, 130, 57–70. [Google Scholar] [CrossRef]
- Slobodkin, A. The Family Peptostreptococcaceae. In Prokaryotes Firmicutes Tenericutes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 291–302. [Google Scholar] [CrossRef]
- Yu, M.; Jia, H.; Zhou, C.; Yang, Y.; Zhao, Y.; Yang, M.; Zou, Z. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J. Pharm. Biomed. Anal. 2017, 138, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, X.; Li, Z.; Zou, Z.; Dou, S.; Li, G.; Yan, F.; Chen, B.; Li, Y. Alterations in Gut Microbiota Are Correlated With Serum Metabolites in Patients With Insomnia Disorder. Front. Cell. Infect. Microbiol. 2022, 12, 722662. [Google Scholar] [CrossRef] [PubMed]
- Falgàs, N.; Illán-Gala, I.; Allen, I.E.; Mumford, P.; Essanaa, Y.M.; Le, M.M.; You, M.; Grinberg, L.T.; Rosen, H.J.; Neylan, T.C.; et al. Specific cortical and subcortical grey matter regions are associated with insomnia severity. PLoS ONE 2021, 16, e0252076. [Google Scholar] [CrossRef] [PubMed]
- Foland-Ross, L.C.; Sacchet, M.D.; Prasad, G.; Gilbert, B.; Thompson, P.M.; Gotlib, I.H. Cortical thickness predicts the first onset of major depression in adolescence. Int. J. Dev. Neurosci. 2015, 46, 125–131. [Google Scholar] [CrossRef]
- Ferrulli, A.; Drago, L.; Gandini, S.; Massarini, S.; Bellerba, F.; Senesi, P.; Terruzzi, I.; Luzi, L. Deep Transcranial Magnetic Stimulation Affects Gut Microbiota Composition in Obesity: Results of Randomized Clinical Trial. Int. J. Mol. Sci. 2021, 22, 4692. [Google Scholar] [CrossRef]
- Pell, G.S.; Roth, Y.; Zangen, A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: Influence of timing and geometrical parameters and underlying mechanisms. Prog. Neurobiol. 2011, 93, 59–98. [Google Scholar] [CrossRef]
- Sagheddu, V.; Patrone, V.; Miragoli, F.; Puglisi, E.; Morelli, L. Infant Early Gut Colonization by Lachnospiraceae: High Frequency of Ruminococcus gnavus. Front. Pediatr. 2016, 4, 57. [Google Scholar] [CrossRef]
- Oliphant, K.; Ali, M.; D’Souza, M.; Hughes, P.D.; Sulakhe, D.; Wang, A.Z.; Xie, B.; Yeasin, R.; Msall, M.E.; Andrews, B.; et al. Bacteroidota and Lachnospiraceae integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment. Gut Microbes 2021, 13, 1997560. [Google Scholar] [CrossRef]
- Dufford, A.J. Editorial: Prenatal Depressive Symptoms, Cortical Morphology, and Reward Sensitivity in Preschoolers. J. Am. Acad. Child Adolesc. Psychiatry 2022, 61, 360–361. [Google Scholar] [CrossRef]
- Opel, N.; Amare, A.T.; Redlich, R.; Repple, J.; Kaehler, C.; Grotegerd, D.; Dohm, K.; Zaremba, D.; Leehr, E.J.; Böhnlein, J.; et al. Cortical surface area alterations shaped by genetic load for neuroticism. Mol. Psychiatry 2020, 25, 3422–3431. [Google Scholar] [CrossRef]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Real, J.M.; Serino, M.; Blasco, G.; Puig, J.; Daunis-i-Estadella, J.; Ricart, W.; Burcelin, R.; Fernández-Aranda, F.; Portero-Otin, M. Gut Microbiota Interacts With Brain Microstructure and Function. J. Clin. Endocrinol. Metab. 2015, 100, 4505–4513. [Google Scholar] [CrossRef]
- Li, S.; Song, J.; Ke, P.; Kong, L.; Lei, B.; Zhou, J.; Huang, Y.; Li, H.; Li, G.; Chen, J.; et al. The gut microbiome is associated with brain structure and function in schizophrenia. Sci. Rep. 2021, 11, 9743. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Davey Smith, G.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Holmes, M.V.; Minelli, C.; Relton, C.L.; et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2020, 4, 186. [Google Scholar] [CrossRef]
Exposures | Outcomes | No. of SNPs | Method | Beta (95% CI) | P | Heterogeneity Test | Pleiotropy Test | |
---|---|---|---|---|---|---|---|---|
Cochran’s Q | P | PIntercept | ||||||
Family Peptostreptococcaceae | Age-independent cortical GM volume | 10 | IVW | 824.12 (406.58~1241.66) | 1.09 × 10−4 | 9.73 | 0.37 | / |
10 | WM | 602.15 (5.48~1198.82) | 4.79 × 10−2 | / | / | / | ||
10 | MR Egger | −1237.93 (−3192.64~716.78) | 0.25 | / | / | 0.07 | ||
Genus Faecalibacterium | Linear change rate of average cortical thickness | 5 | IVW | −0.45 (−0.64~−0.26) | 4.89 × 10−6 | 0.92 | 0.92 | / |
5 | WM | −0.47 (−0.73~−0.21) | 3.82 × 10−4 | / | / | / | ||
5 | MR Egger | −0.17 (−0.98~0.64) | 0.71 | / | / | 0.53 | ||
Genus Faecalibacterium | Linear change rate of cortical GM volume | 5 | IVW | −95.90 (−139.49~−52.31) | 1.62 × 10−5 | 0.91 | 0.92 | / |
5 | WM | −94.5804 (−154.88~−34.28) | 2.11 × 10−3 | / | / | / | ||
5 | MR Egger | −68.3635 (−250.71~113.98) | 0.52 | / | / | 0.78 | ||
Age-independent surface area | Genus Lachnospiraceae | 4 | IVW | 6.41 × 10−4 (−0.001~−0.0003) | 2.15 × 10−4 | 2.26 | 0.52 | / |
4 | WM | 6.19 × 10−4 (−0.001~−0.0002) | 5.17 × 10−3 | / | / | / | ||
4 | MR Egger | 3.20 × 10−5 (−0.004~0.004) | 0.99 | / | / | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Cheng, S.; Yang, X.; Liu, L.; Cheng, B.; Meng, P.; Pan, C.; Wen, Y.; Jia, Y.; Liu, H.; et al. Dissecting the Association between Gut Microbiota and Brain Structure Change Rate: A Two-Sample Bidirectional Mendelian Randomization Study. Nutrients 2023, 15, 4227. https://doi.org/10.3390/nu15194227
Huang H, Cheng S, Yang X, Liu L, Cheng B, Meng P, Pan C, Wen Y, Jia Y, Liu H, et al. Dissecting the Association between Gut Microbiota and Brain Structure Change Rate: A Two-Sample Bidirectional Mendelian Randomization Study. Nutrients. 2023; 15(19):4227. https://doi.org/10.3390/nu15194227
Chicago/Turabian StyleHuang, Huimei, Shiqiang Cheng, Xuena Yang, Li Liu, Bolun Cheng, Peilin Meng, Chuyu Pan, Yan Wen, Yumeng Jia, Huan Liu, and et al. 2023. "Dissecting the Association between Gut Microbiota and Brain Structure Change Rate: A Two-Sample Bidirectional Mendelian Randomization Study" Nutrients 15, no. 19: 4227. https://doi.org/10.3390/nu15194227
APA StyleHuang, H., Cheng, S., Yang, X., Liu, L., Cheng, B., Meng, P., Pan, C., Wen, Y., Jia, Y., Liu, H., & Zhang, F. (2023). Dissecting the Association between Gut Microbiota and Brain Structure Change Rate: A Two-Sample Bidirectional Mendelian Randomization Study. Nutrients, 15(19), 4227. https://doi.org/10.3390/nu15194227