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Abstract: The connection between the gut microbiota and brain structure changes is still unclear. We
conducted a Mendelian randomization (MR) study to examine the bidirectional causality between
the gut microbiota (211 taxa, including 131 genera, 35 families, 20 orders, 16 classes and 9 phyla;
N = 18,340 individuals) and age-independent/dependent longitudinal changes in brain structure
across the lifespan (N = 15,640 individuals aged 4~99 years). We identified causal associations be-
tween the gut microbiota and age-independent/dependent longitudinal changes in brain structure,
such as family Peptostreptococcaceae with age-independent longitudinal changes of cortical gray matter
(GM) volume and genus Faecalibacterium with age-independent average cortical thickness and cortical
GM volume. Taking age-independent longitudinal changes in brain structure across the lifespan as
exposures, there were causal relationships between the surface area and genus Lachnospiraceae. Our
findings may serve as fundamentals for further research on the genetic mechanisms and biological
treatment of complex traits and diseases associated with the gut microbiota and the brain structure
change rate.

Keywords: gut microbiota; brain structure; longitudinal changes; Mendelian randomization

1. Introduction

The development of the human brain is a lengthy process that commences during the
third week of gestation with the differentiation of neural progenitor cells and continues
at least through late adolescence, and some argue, throughout the entire lifespan [1]. Ac-
cording to previous studies, this process is subject to the interplay of genetic factors and
a dynamic environment [2]. Paus et al. established a correlation between the total brain
volume and genetic variances within the KCTD8 locus among female adolescents [3]. They
also observed a pronounced interaction between genes and the environment, particularly
concerning the total cortical surface [3]. This observation was interpreted in the context
of heightened adversity-induced apoptosis of progenitor cells during brain development,
possibly influenced by a KCTD8 variant [3]. Socio-economic status, substance use, physical
activity and nutrition are considered environmental factors that contribute to the devel-
opment of the brain [4,5]. Longitudinal investigations play a pivotal role in pinpointing
the genetic and environmental elements that impact the pace of alterations in the brain
structure across the lifespan, encompassing both development and aging.
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The gut microbiota, which co-develop with the host from birth, undergo dynamic
changes throughout growth in response to various dietary patterns and pathological,
physiological and environmental conditions [6]. Large-scale twin, family and population-
based investigations have unveiled intriguing connections between the microbiome and
host genetics, demonstrating that a proportion of bacterial taxa exhibits heritability [7–10].
Recently, metagenome-wide association studies (MWAS) have highlighted the potential
roles of the gut microbiome in multiple complex conditions, such as neuropsychiatric
disorders and autoimmune diseases, and they have delved into mechanistic explorations
for diseases such as schizophrenia and obesity [11–14]. Cryan et al. proposed that the gut
microbiota constitutes a central component of the signals within the microbiota–gut–brain
axis, a bidirectional communication network involving the nervous system, gut microbiota,
and neuroendocrine and neuroimmune pathways [15–17]. The gut microbiome has been
proven to be associated with numerous physiological states, yet the debate regarding
causality still hangs in doubt.

As the gut microbiome is considered to be involved in multiple complex traits and
diseases and it interacts with the brain through the brain–gut axis, causality still remains an
unresolved issue in this field. Mendelian randomization (MR) presents an opportunity to
discern the causal and noncausal effects of exposures and outcomes based on cross-sectional
data, obviating the need for randomized controlled trials or animal studies [18]. MR uses
genetic polymorphisms as a proxy for exposure to infer a causal relationship between
exposure and outcome. For example, a prior investigation employed MR to explore the
relationships between ischemic heart disease and the gut microbiota [19]. More recently,
MR was applied to validate that an elevated relative abundance of bacteria producing the
fecal volatile short-chain fatty acid (SCFA) butyrate was causally linked to an improved
insulin response to oral glucose challenges. Conversely, another fecal SCFA, propionate,
was causally associated with an elevated risk of type 2 diabetes [20]. Nonetheless, the
potential interactions between longitudinal changes in the brain structure over the lifespan
and the gut microbiota were not clear until now.

In this study, by using the latest GWAS summary statistics of longitudinal lifespan
brain structure changes and gut microbiota, we conducted a bidirectional MR analysis to
systematically explore the interactions between longitudinal changes in brain structure
across the lifespan and the gut microbiota. These findings may serve as fundamentals for
further research on the genetic mechanisms and biological treatment of complex traits and
diseases associated with the gut microbiota and brain structure changes.

2. Materials and Methods
2.1. GWAS Datasets of Longitudinal Lifespan Brain Structure Changes

The latest GWAS summary datasets of longitudinal lifespan brain structure changes
scanned through magnetic resonance imaging on more than one occasion stem from a
recently published investigation [2]. Briefly, Brouwer et al. conducted an extensive age-
independent meta-analysis and age-dependent meta-regression GWAS analysis to pinpoint
genetic loci associated with annual change rates in various morphological brain metrics.
These encompassed eight global metrics (total brain excluding brainstem but including
cerebellum, average cortical thickness, surface area measured at the gray–white matter
boundary, volumes of the cortical and cerebellar gray and white matter, and total lateral
ventricle volume) and seven subcortical metrics (caudate, thalamus, putamen, hippocam-
pus, pallidum, nucleus accumbens and amygdala). This extensive analysis utilized data
collected from 40 longitudinal cohorts, encompassing a total of 15,640 participants aged
from 4 to 99 years. Given the nonuniform rate of brain structure changes across different
ages [21] and the concurrent development and age-related shifts in gene expression [22],
that study assessed whether the identified genetic variants exhibited age-dependent effects.
In essence, this involved examining whether these variants differentially influenced the
rates of brain changes at various life stages using genome-wide meta-regression models
featuring linear or quadratic age effects. The basic characteristics of the study population,
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such as sample size and demographic information, are summarized in Supplementary
Table S1.

2.2. GWAS Dataset of Gut Microbiota

The latest GWAS summary statistics of gut microbiota have been extracted from a
recently conducted investigation [9]. Briefly, the researchers orchestrated the harmonization
of 16S ribosomal RNA (rRNA) gene sequencing profiles and genotyping data from an
extensive pool of 18,340 individuals collected from 24 different cohorts. The primary
objective was to discern the influence of host genetics on the relative abundance and
composition of the gut microbiota. Due to the included cohorts exhibiting differences
in sample collection protocols, the DNA purification kits utilized for fecal sample DNA
extraction, the genotyping array platforms, the specific 16S rRNA gene domains selected,
the quality control steps after sequencing, and the software employed to merge paired-
end sequencing tags, following rigorous quality control procedures and the merging of
reads, all cohorts uniformly applied a standardized 16S processing pipeline (available
at https://github.com/alexa-kur/miQTL_cookbook/) (accessed on 9 June 2022). This
comprehensive analysis encompassed a total of 211 taxa, which included 9 phyla, 16 classes,
20 orders, 35 families and 131 genera. These taxa were retained for subsequent analysis as
they met the established taxon inclusion criteria. For a more detailed account of the sample
characteristics, quality control procedures, and statistical methodologies employed, please
refer to the aforementioned earlier study. The basic characteristics of the study cohorts
included in the GWAS of gut microbiota, such as sample size and demographic information,
are summarized in Supplementary Table S2.

2.3. Assessing Bidirectional Causal Relationships between Longitudinal Lifespan Brain Structure
Changes and Gut Microbiota

To evaluate the bidirectional causal relationship between brain structure changes and
gut microbiota, we conducted a two-sample Mendelian randomization (MR) analysis em-
ploying the “TwoSampleMR” R package. We selected all single-nucleotide polymorphisms
(SNPs) with a relatively lenient threshold of p < 1 × 10−5 in the MR analyses as instru-
ment variables. This strategy allowed us to amass a larger number of SNPs for sensitivity
analyses, an approach that has been widely adopted previously [20,23]. For instrumental
variables, we exclusively retained independent SNPs characterized by an r2 value of less
than 0.001 and situated within a 10,000 kb range, according to the 1000 Genomes European
data implemented in the “TwoSampleMR” package. To gauge the robustness of the se-
lected instrumental variables, we estimated the F statistic [24], with an F statistic exceeding
10 commonly considered as a typical threshold for strong instrumental variables [25]. We
limited our analysis to results derived from at least three shared SNPs.

MR causality tests were assessed by using the Wald ratio, and we pooled Wald ratios
through meta-analysis using the inverse variance weighted (IVW) method [26]. The IVW
method operates on the assumption of no (unbalanced) horizontal pleiotropy. Addition-
ally, we evaluated the causality using additional methods, such as the weighted median
method [27], which served as an alternative approach to IVW. A nominal p value of 0.05
was used as the threshold for statistical significance, and in cases of the 211 endpoints for
each of the rate of brain changes, we considered a p value below 2.37 × 10−4 (0.05/211) to
be the multiple testing corrected level of significance. p values between 2.37 × 10−4 and
0.05 were considered to be suggestive of significance.

2.4. Sensitivity Analyses

The significant MR results were verified after correction by sensitivity analyses.
First, we executed an MR-Egger regression to examine the potential bias of directional
pleiotropy [28]. The intercept in the Egger regression indicates the mean pleiotropic effect
of all genetic variants, which is interpreted as evidence of pleiotropy when the value differs
from zero (p < 0.05). We further estimated the heterogeneity of our findings by employing
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Cochran’s Q statistic [26] and conducting leave-one-out analyses [29] to check whether the
causal association was obviously driven by a single SNP (a p value of <0.05 was regarded
as an outlier).

3. Results

The most significant bidirectional causal associations between the gut microbiota and
longitudinal lifespan brain structure changes are presented in Figure 1.
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Figure 1. The most significant bidirectional causal associations between the gut microbiota and
longitudinal lifespan brain structure changes. (A) Age−independent longitudinal lifespan brain
structure changes as exposures or outcomes. (B) Age−dependent longitudinal linear lifespan brain
structure changes as exposures or outcomes. (C) Age-dependent longitudinal quadratic lifespan
brain structure changes as exposures or outcomes. All associations are presented as the number of
significant/suggestive significant gut microbiota and brain structure pairs and the p values of the
Mendelian randomization analysis. The text in orange indicates the gut microbiota as exposures and
blue indicates the change rate of brain structures as exposures. The significant causal relationships
are highlighted in bold face.
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3.1. Causal Effect of Gut Microbiota on Longitudinal Lifespan Brain Structure Changes

With the age-independent longitudinal lifespan brain structure changes as outcomes,
the IVW approach identified 1 significant and 130 suggestive causal relationships between
the gut microbiota and the brain changes, such as family Peptostreptococcaceae with cortical
gray matter (GM) volume (beta = 824.12, 95% confidence interval (CI) = 406.578~1241.66,
p value = 1.09 × 10−4). The full results are summarized in Supplementary Table S3.

With the age-dependent longitudinal lifespan brain structure changes as outcomes, the
IVW approach identified 2 significant and 109 suggestive causal relationships between the
gut microbiota and the linear change rate of brain structures, such as genus Faecalibacterium
with average cortical thickness (beta = −0.45, 95% CI = −0.64~−0.26, p value = 4.89 × 10−6)
and cortical GM volume (beta = −95.90, 95% CI = −139.49~−52.31, p value = 1.62 × 10−5).
In addition, the IVW approach identified 163 suggestive causal relationships between the
gut microbiota and the quadratic change rate of brain structures, such as order Victivallales
with hippocampus (beta = 0.04, 95% CI = 0.02~0.06, p value = 6.00 × 10−4) and genus
Ruminococcaceae with cerebellum GM (beta = 0.39, 95% CI = 0.16~0.61, p value = 9.33 × 10−4).
The full results are summarized in Supplementary Tables S4 and S5.

3.2. Causal Effect of Longitudinal Lifespan Brain Structure Changes on Gut Microbiota

With the age-independent longitudinal lifespan brain structure changes as exposures,
the IVW approach identified 1 significant and 126 suggestive causal relationships between
the brain changes and gut microbiota, such as surface area with genus Lachnospiraceae
(beta = 6.41 × 10−4, 95% CI = −0.0010~−0.0003, p value = 2.15 × 10−4). The full results are
summarized in Supplementary Table S6.

For the age-dependent longitudinal lifespan brain structure changes, the IVW ap-
proach identified 113 suggestive causal relationships between the gut microbiota and the
linear change rate of brain structures, such as the nucleus accumbens with genus Lactobacil-
lus (beta = −0.60, 95% CI = −0.94~−0.26, p value = 6.07 × 10−4) and average cortical thick-
ness with family Oxalobacteraceae (beta = 0.56, 95% CI = 0.23~0.89, p value = 8.14 × 10−4).
In addition, the IVW approach identified 99 suggestive causal relationships between the gut
microbiota and the quadratic change rate of brain structures, such as cortical GM volume
with phylum Lentisphaerae (beta = 0.06, 95% CI = 0.03~0.09, p value = 2.90 × 10−4) and class
Lentisphaeria (beta = 0.06, 95% CI = 0.02~0.09, p value = 4.51 × 10−4). The full results are
summarized in Supplementary Tables S7 and S8.

3.3. Bidirectional Causal Effects between Gut Microbiota and Longitudinal Lifespan Brain
Structure Changes

We also observed bidirectional suggestive causal effects between the gut microbiota
and longitudinal lifespan brain structure changes, including 8 pairs for the age-independent
change rate, such as genus Bifidobacterium with the nucleus accumbens (betaexposure =
−3.67, 95% CIexposure = −7.01~−0.32, Pexposure = 3.16 × 10−2; betaoutcome = 0.01, 95%
CIoutcome = 0.003~0.017, Poutcome = 7.40 × 10−3), 2 pairs for the age-dependent linear
change rate, such as genus Lactobacillus with the nucleus accumbens (betaexposure = 0.13,
95% CIexposure = 0.006~0.258, Pexposure = 3.99 × 10−2; betaoutcome = −0.60, 95% CIoutcome =
−0.94~−0.26, Poutcome = 6.10 × 10−4), and 10 pairs for the age-dependent quadratic change
rate of the brain structure, such as genus Alistipes with hippocampus (betaexposure = −0.04,
95% CIexposure = −0.067~−0.007, Pexposure = 1.58 × 10−2; betaoutcome = 1.00, 95% CIoutcome
= 0.31~1.69, Poutcome = 4.67 × 10−3) (Table 1).
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Table 1. The significant bidirectional causal associations between the gut microbiota and longitudinal lifespan brain structure changes.

Exposures Outcomes No. of SNPs Method Beta (95% CI) P
Heterogeneity Test Pleiotropy Test

Cochran’s Q P PIntercept

Family
Peptostreptococcaceae

Age-independent
cortical GM volume

10 IVW 824.12
(406.58~1241.66) 1.09 × 10−4 9.73 0.37 /

10 WM 602.15
(5.48~1198.82) 4.79 × 10−2 / / /

10 MR Egger −1237.93
(−3192.64~716.78) 0.25 / / 0.07

Genus
Faecalibacterium

Linear change rate of
average cortical

thickness

5 IVW −0.45
(−0.64~−0.26) 4.89 × 10−6 0.92 0.92 /

5 WM −0.47
(−0.73~−0.21) 3.82 × 10−4 / / /

5 MR Egger −0.17
(−0.98~0.64) 0.71 / / 0.53

Genus
Faecalibacterium

Linear change rate of
cortical GM volume

5 IVW −95.90
(−139.49~−52.31) 1.62 × 10−5 0.91 0.92 /

5 WM −94.5804
(−154.88~−34.28) 2.11 × 10−3 / / /

5 MR Egger −68.3635
(−250.71~113.98) 0.52 / / 0.78

Age-independent
surface area

Genus
Lachnospiraceae

4 IVW 6.41 × 10−4

(−0.001~−0.0003) 2.15 × 10−4 2.26 0.52 /

4 WM 6.19 × 10−4

(−0.001~−0.0002) 5.17 × 10−3 / / /

4 MR Egger 3.20 × 10−5

(−0.004~0.004)
0.99 / / 0.77

GM, gray matter; CI, confidence interval; SNPs, single nucleotide polymorphisms; IVW, inverse variance weighted; WM, weighted median.



Nutrients 2023, 15, 4227 7 of 11

3.4. Sensitivity Analyses

We conducted a series of sensitivity analyses to corroborate the putative causal rela-
tionships between the gut microbiota and longitudinal lifespan brain structure changes
obtained from bidirectional MR. First, leave-one-out analyses revealed that no single SNP
influenced the causal estimates. The detailed results of the leave-one-out sensitivity analy-
sis are presented in Supplementary Tables S9–S14. Second, the MR-Egger intercepts of all
associations were found in close proximity to zero, suggesting the absence of significant
pleiotropy. Third, the directions of the association from other MR methods were the same
as those of the IVW method, which supports the reliability of our inferred causal effects.
Overall, the sensitivity analyses confirmed the reliability of our putative causal effects in
both the forward and reverse MR results.

4. Discussion

This bidirectional MR analysis provides evidence in favor of interactions between
the gut microbiota and age-independent and age-dependent longitudinal lifespan brain
structure changes. To the best of our knowledge, this is the first large-scale MR study to
systematically identify the bidirectional causal relationship between the gut microbiota
and change rate of brain structure across the lifespan. As reported by previous studies,
the gut microbiota and altered brain growth or rates of decline are implicated in multiple
complex diseases, such as autoimmune diseases, neuropsychiatric disorders and metabolic
diseases [12,14,30]. Our findings may serve as a foundation for further research on the
genetic mechanisms and biological treatment of those complex diseases.

We observed a causal effect of family Peptostreptococcaceae on cortical gray matter (GM)
volume. The family of Peptostreptococcaceae, belonging to the order Clostridiales, comprises
several genera, namely Acetoanaerobium, Peptostreptococcus, Filifactor, Sporacetigenium, Proteo-
catella and Tepidibacter [31]. Previous studies have reported that Peptostreptococcaceae were
dominant in healthy controls compared with insomnia patients and significantly decreased
in a depression rat model [32,33]. Interestingly, recent findings have shown that the cortical
gray matter structure has the capacity to predict the subsequent onset of depression, and
certain cortical and subcortical grey matter regions have been linked to the severity of
insomnia [34,35]. Based on this evidence, we hypothesized that Peptostreptococcaceae could
potentially play a mediating role in the communication between gut microbiota and the
brain during the development of depression and insomnia disorders. However, further
studies are needed to validate this hypothesis.

Genus Faecalibacterium showed a causal effect on the average cortical thickness and
cortical GM volume in the current study. In a recent randomized clinical trial, the impact of
a 5-week treatment involving high-frequency and low-frequency deep transcranial mag-
netic stimulation (dTMS), as well as sham stimulation, on the gut microbiota composition
of individuals with obesity was investigated. Interestingly, the high-frequency dTMS group
exhibited a significant increase in the abundance of Faecalibacterium reads compared to
their baseline levels [36]. Given the capacity of dTMS for modulating cortical excitability,
the reward system and, indirectly, the autonomic nervous system [37], the researchers pro-
posed the hypothesis that dTMS might influence the brain–gut communication pathways
and, consequently, the composition of the gut microbiota in individuals with obesity [36].
However, further experimental studies are warranted to explore potential associations
between microbiota changes and metabolic and neurohormonal alterations.

We found that surface area had a significant causal effect on genus Lachnospiraceae
in our MR analysis. Lachnospiraceae, the main genera detected in human intestine, can be
detected in early infancy and it is even present in meconium [38]. It has been reported
by a recent study that preterm infants with suboptimal head circumference growth, an
established early marker for neurodevelopment outcomes, exhibited a reduction in the
abundance or prevalence of Lachnospiraceae [39]. In addition, both cortical surface area and
Lachnospiraceae appeared to be involved in depressive syndromes and other neuropsychi-
atric disorders [40–42]. Oliphant et al. demonstrated that neonatal systemic inflammation
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in rats can result in changes in blood–brain barrier permeability and behavior. Therefore,
it is plausible that Lachnospiraceae may impact neurodevelopment by influencing energy
resources and immune responses [39]. Given that human brain development is a protracted
process commencing in the third gestational week [1], we propose that cortical surface area
may mediate depression and other neuropsychiatric disorders through its potential effects
on Lachnospiraceae.

We also observed bidirectional suggestive causal effects between the gut microbiota
and longitudinal lifespan brain structure changes through the MR analysis. The ‘gut–
microbiota–brain axis’ encompasses a complex network of interactions between various
biological systems, enabling bidirectional communication between gut bacteria and the
brain. This axis plays a vital role in maintaining the balance of the host’s gastrointesti-
nal, central nervous and microbial systems [43]. As reported by a previous study, the
gut microbiota has been implicated in numerous conditions, including anxiety, autism,
schizophrenia, Alzheimer’s disease and Parkinson’s disease [43]. Future studies aimed at
comprehending the mechanisms involving the microbiota–gut–brain axis and exploring
microbial-based interventions and therapeutic strategies for these intricate disorders are of
paramount interest.

According to previous studies, the relative abundance of the Actinobacteria phylum
was linked to magnetic resonance imaging–diffusion tensor imaging variable differences in
the thalamus, hypothalamus and amygdala between obese and non-obese subjects [44]. In
schizophrenia patients, the regional homogeneity indexes in the right superior temporal
cortex and the left cuneus were negatively correlated with the abundance of the genus
Roseburia [45]. However, we found that there is limited reported information about the brain
structure and gut microbiota from healthy humans and the available data from human and
rodent studies do not directly address the associations between specific brain parameters
and the gut microbiota we examined in our study. We believe that emphasizing the current
gaps in this area will underscore the need for future investigations.

MR is a powerful tool for inferring causality from genetic data, but it does come with
its own set of assumptions and limitations. One of the key assumptions in MR analysis is
the validity of instrumental variables. Instrumental variables should be strongly associated
with the exposure of interest, independent of confounders, and unrelated to the outcome
except through the exposure. It is crucial to mention that violations of these assumptions
can potentially bias MR estimates. In addition, genetic variants may affect the outcome
through pathways other than the exposure. This is an important consideration because it
can introduce bias into MR estimates.

However, some limitations of the current study should be noted. Firstly, we only
observed a few significant bidirectional causal relationships between gut microbiota and
age-independent and age-dependent longitudinal lifespan brain structure changes. In
accordance with established guidelines for conducting MR analyses, adopting an exces-
sively conservative approach to multiple testing is deemed unnecessary. This is due to the
generally limited statistical power of MR studies and the inherent nature of MR, which
typically explores exposure–outcome relationships with pre-existing epidemiological or
biological support [46]. We suggest that the suggestive causal associations observed be-
tween the gut microbiota and the change rate of the brain structure should also be given
attention. Secondly, it is noteworthy that the GWAS summary statistics utilized in the
current study predominantly originate from European populations. Therefore, it is essen-
tial to exercise caution when generalizing the findings to other ethnic groups. Thirdly,
the primary objective of this study was to evaluate the bidirectional causal relationships
between gut microbiota and age-independent or age-dependent longitudinal lifespan brain
structure changes. To corroborate these findings and elucidate the potential genetic mecha-
nisms underpinning the observed interactions, further functional experimental research
is warranted. Moreover, potential confounders, including diet, lifestyle and medication
use may influence the observed associations between the gut microbiota and changes in
brain structure. These traits have been reported by previous studies to influence the gut
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microbiota and alterations of brain structure. Thus, the importance of conducting more
longitudinal studies cannot be overstated, as they are essential for identifying the genetic
and environmental factors that influence alterations in the abundance and composition of
gut microbiota throughout the course of development and aging.

5. Conclusions

In summary, by adopting the widely used genetic approach, we performed a large-
scale two-sample bidirectional MR analysis to explore the causal associations between
the gut microbiota and age-independent and age-dependent longitudinal lifespan brain
structure changes. Our study identified modest interactions between the gut microbiota
and age-independent and age-dependent longitudinal lifespan brain structure changes.
These findings may provide novel ideas for future research on the pathogenesis of complex
traits and diseases associated with the gut microbiota and change rate of brain structures.
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