Diet, Supplementation and Nutritional Habits of Climbers in High Mountain Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.2.1. Nutrition Survey
2.2.2. Nutritional Analysis of the Diet
2.2.3. Anthropometric Measurements
2.2.4. Measurement of Energy Expenditure
2.2.5. Statistical Analysis
3. Results
3.1. Survey Analysis
3.2. Analysis of Nutritional Value of Diet
4. Discussion
Limitations and Directions for Future Research
5. Conclusions
- The climbers’ diet was low in calories in relation to the high energy requirements, the protein supply was too low, and the fat supply was too high. Mountain climbers should aim to increase the supply of carbohydrates.
- During climbing, climbers usually take snacks (bars, energy gels, gummies), which are a great supplement to carbohydrates. Providing adequate fiber outside base camp during a climb can be a problem, so especially at base camp, where food availability is greater, it is worthwhile to ensure a supply of foods abundant in this dietary component.
- The use of a protein supplement at high altitudes seems to be a practical strategy that can reduce the loss of lean body mass. There are many supplements with well-documented effects in sports (e.g., beetroot juice, caffeine, probiotics, omega-3 fatty acids, essential minerals and vitamins) that are worth considering as a supplement to the diet.
- There is a need to develop nutritional and supplementation recommendations that would serve as guidelines for climbers, improving their well-being and exercise capacity in severe high-mountain conditions, which would take into account their individual taste preferences.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huey, R.B.; Carroll, C.; Salisbury, R.; Wang, J.-L. Mountaineers on Mount Everest: Effects of Age, Sex, Experience, and Crowding on Rates of Success and Death. PLoS ONE 2020, 15, e0236919. [Google Scholar] [CrossRef] [PubMed]
- Korzeniewski, K.; Nitsch-Osuch, A.; Guzek, A.; Juszczak, D. High Altitude Pulmonary Edema in Mountain Climbers. Respir. Physiol. Neurobiol. 2015, 209, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Swenson, E.; Bärtsch, P. High Altitude: Human Adaptation to Hypoxia; Springer: New York, NY, USA, 2014. [Google Scholar]
- Krzeszowiak, J.; Jaremków, A.; Pijanowska, A.; Zawadzki, M. Rola Stresu Oksydacyjnego w Rozwoju Ostrej Choroby Górskiej Oraz Potencjalne Metody Jej Zapobiegania. Pol. J. Sports Med. 2016, 32, 145–156. [Google Scholar] [CrossRef]
- Hackett, P.; Roach, R. High-Altitude Medicine and Physiology. In Wilderness Medicine; Paul, S., Ed.; Elsevier Inc: Mosby, VI, USA, 2012; pp. 2–31. [Google Scholar]
- McKenna, Z.J.; Pereira, F.G.; Gillum, T.L.; Amorim, F.T.; Deyhle, M.R.; Mermier, C.M. High-Altitude Exposures and Intestinal Barrier Dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 322, R192–R203. [Google Scholar] [CrossRef]
- Westerterp, K.R. Energy and Water Balance at High Altitude. News Physiol. Sci. 2001, 16, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Hamad, N.; Travis, S.P.L. Weight Loss at High Altitude: Pathophysiology and Practical Implications. Eur. J. Gastroenterol. Hepatol. 2006, 18, 5–10. [Google Scholar] [CrossRef]
- Rose, M.S.; Houston, C.S.; Fulco, C.S.; Coates, G.; Sutton, J.R.; Cymerman, A. Operation Everest. II: Nutrition and Body Composition. J. Appl. Physiol. 1988, 65, 2545–2551. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Meijer, E.P.; Rubbens, M.; Robach, P.; Richalet, J.-P. Operation Everest III: Energy and Water Balance. Pflug. Arch. 2000, 439, 483–488. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Kayser, B.; Brouns, F.; Herry, J.P.; Saris, W.H. Energy Expenditure Climbing Mt. Everest. J. Appl. Physiol. 1992, 73, 1815–1819. [Google Scholar] [CrossRef]
- Reynolds, R.D.; Lickteig, J.A.; Deuster, P.A.; Howard, M.P.; Conway, J.M.; Pietersma, A.; deStoppelaar, J.; Deurenberg, P. Energy Metabolism Increases and Regional Body Fat Decreases While Regional Muscle Mass Is Spared in Humans Climbing Mt. Everest. J. Nutr. 1999, 129, 1307–1314. [Google Scholar] [CrossRef]
- Reynolds, R.D.; Lickteig, J.A.; Howard, M.P.; Deuster, P.A. Intakes of High Fat and High Carbohydrate Foods by Humans Increased with Exposure to Increasing Altitude During an Expedition to Mt. Everest. J. Nutr. 1998, 128, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Armellini, F.; Zamboni, M.; Robbi, R.; Todesco, T.; Bissoli, L.; Mino, A.; Angelini, G.; Micciolo, R.; Bosello, O. The Effects of High Altitude Trekking on Body Composition and Resting Metabolic Rate. Horm. Metab. Res. 1997, 29, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Pulfrey, S.M.; Jones, P.J. Energy Expenditure and Requirement While Climbing above 6000 m. J. Appl. Physiol. 1996, 81, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, G.E. Nutrient Requirements at High Altitude. Clin. Sports Med. 1999, 18, 607–621. [Google Scholar] [CrossRef]
- Gatterer, H.; Wille, M.; Faulhaber, M.; Lukaski, H.; Melmer, A.; Ebenbichler, C.; Burtscher, M. Association between Body Water Status and Acute Mountain Sickness. PLoS ONE 2013, 8, e73185. [Google Scholar] [CrossRef]
- Palubiski, L.M.; O’halloran, K.D.; Neill, O. Renal Physiological Adaptation to High Altitude: A Systematic Review. Front. Physiol. 2020, 1, 756. [Google Scholar] [CrossRef]
- Nybo, L. CNS Fatigue and Prolonged Exercise: Effect of Glucose Supplementation. Med. Sci. Sports Exerc. 2003, 35, 589–594. [Google Scholar] [CrossRef]
- Hoppeler, H.; Kleinert, E.; Schlegel, C.; Claassen, H.; Howald, H.; Kayar, S.R.; Cerretelli, P. II. Morphological Adaptations of Human Skeletal Muscle to Chronic Hypoxia. Int. J. Sports Med. 1990, 11, S3–S9. [Google Scholar] [CrossRef]
- Sergi, G.; Imoscopi, A.; Sarti, S.; Perissinotto, E.; Coin, A.; Inelmen, E.M.; Zambon, S.; Busetto, L.; Seresin, C.; Manzato, E. Changes in Total Body and Limb Composition and Muscle Strength after a 6–8 Weeks Sojourn at Extreme Altitude (5000–8000 m). J. Sports Med. Phys. Fit. 2010, 50, 450–455. [Google Scholar]
- Murdoch, D.R. Symptoms of Infection and Altitude Illness among Hikers in the Mount Everest Region of Nepal. Aviat. Space Environ. Med. 1995, 66, 148–151. [Google Scholar]
- Castellani, J.W.; Muza, S.R.; Cheuvront, S.N.; Sils, I.V.; Fulco, C.S.; Kenefick, R.W.; Beidleman, B.A.; Sawka, M.N. Effect of Hypohydration and Altitude Exposure on Aerobic Exercise Performance and Acute Mountain Sickness. J. Appl. Physiol. 2010, 109, 1792–1800. [Google Scholar] [CrossRef] [PubMed]
- Ladd, E.; Shea, K.M.; Bagley, P.; Auerbach, P.S.; Pirrotta, E.A.; Wang, E.; Lipman, G.S. Hydration Status as a Predictor of High-Altitude Mountaineering Performance. Cureus 2016, 8, e918. [Google Scholar] [CrossRef]
- Sharma, P.; Mohanty, S.; Ahmad, Y. A Study of Survival Strategies for Improving Acclimatization of Lowlanders at High-Altitude. Heliyon 2023, 9, 2405–8440. [Google Scholar] [CrossRef] [PubMed]
- Dünnwald, T.; Gatterer, H.; Faulhaber, M.; Arvandi, M.; Schobersberger, W. Body Composition and Body Weight Changes at Different Altitude Levels: A Systematic Review and Meta-Analysis. Front. Physiol. 2019, 10, 430. [Google Scholar] [CrossRef]
- Wing-Gaia, S.L. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude. Nutrients 2014, 6, 665. [Google Scholar] [CrossRef] [PubMed]
- Bondi, D.; Aloisi, A.M.; Pietrangelo, T.; Piccinelli, R.; Le Donne, C.; Jandova, T.; Pieretti, S.; Taraborrelli, M.; Santangelo, C.; Lattanzi, B.; et al. Feeding Your Himalayan Expedition: Nutritional Signatures and Body Composition Adaptations of Trekkers and Porters. Nutrients 2021, 13, 460. [Google Scholar] [CrossRef]
- Mariscal-Arcas, M.; Carvajal, C.; Monteagudo, C.; Lahtinen, J.; Fernández de Alba, M.C.; Feriche, B.; Olea-Serrano, F. Nutritional Analysis of Diet at Base Camp of a Seven Thousand-Metre Mountain in the Himalayas. Rev. Andal. Med. Deporte 2010, 3, 127–132. [Google Scholar]
- Kasprzak, Z.; Sliwicka, E.; Hennig, K.; Pilaczyńska-Szczeniak, A.; Huta-Osiecka, A.; Nowak, A. Vitamin D, Iron Metabolism, and Diet in Alpinists During a 2-Week High-Altitude Climb. High. Alt. Med. Biol. 2015, 16, 230–235. [Google Scholar] [CrossRef]
- Jeżewska-Zychowicz, M.; Gawęcki, J.; Wądołowska, L.; Czarnocińska, J.; Galiński, G.; Kołłajtis-Dołowy, A.; Roszkowski, W.; Wawrzyniak, A.; Przybyłowicz, K.; Krusińska, B.; et al. Questionnaire for the Study of Dietary Views and Habits for Persons Aged 16 to 65 Years, Version 1.1—Interviewer–Researcher Administered Questionnaire. In Questionnaire for the Study of Views and Dietary Habits and Procedure for DATA Processing; Gawęcki, J., Ed.; Committee for Science of Human Nutrition of the Polish Academy of Sciences: Warszawa, Poland, 2014; pp. 3–20. [Google Scholar]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tables of Composition and Nutritional Value of Foods, 2nd ed.; PZWL Medical Publishing House: Warszawa, Poland, 2017. [Google Scholar]
- Lukaski, H.C. Vitamin and Mineral Status: Effects on Physical Performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef]
- Benardot, D. Advanced Sports Nutrition; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- European Food Safety Authority (EFSA). Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef]
- Thomas, D.; Erdman, K.; Burke, L. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.B. Physiology of Difficult Rock Climbing. Eur. J. Appl. Physiol. 2004, 91, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.B.; Martin, D.T.; Schmeling, M.H.; Silta, B.C.; Watts, A.G. Exertional Intensities and Energy Requirements of Technical Mountaineering at Moderate Altitude. J. Sports Med. Phys. Fit. 1990, 30, 365–376. [Google Scholar]
- Kayser, B.; Verges, S. Hypoxia, Energy Balance and Obesity: From Pathophysiological Mechanisms to New Treatment Strategies. Obes. Rev. 2013, 14, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Ocobock, C.J. Body Fat Attenuates Muscle Mass Catabolism among Physically Active Humans in Temperate and Cold High Altitude Environments. Am. J. Hum. Biol. 2017, 29, e23013. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Westerterp, K.R.; Rubbens, M.; Verwegen, C.R.T.; Richelet, J.-P.; Gardette, B. Appetite at “High Altitude” [Operation Everest III (Comex-’97)]: A Simulated Ascent of Mount Everest. J. Appl. Physiol. 1999, 87, 391–399. [Google Scholar] [CrossRef]
- Luks, A.M.; Ainslie, P.N.; Lawley, J.S.; Roach, R.C.; Simonson, T.S. Ward, Milledge and West’s High Altitude Medicine and Physiology, 6th ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Hudlicka, O. Microcirculation in Skeletal Muscle. Muscles Ligaments Tendons J. 2011, 1, 3–11. [Google Scholar]
- Butterfield, G.E.; Gates, J.; Fleming, S.; Brooks, G.A.; Sutton, J.R.; Reeves, J.T. Increased Energy Intake Minimizes Weight Loss in Men at High Altitude. J. Appl. Physiol. 1992, 72, 1741–1748. [Google Scholar] [CrossRef]
- Praz, C.; Granges, M.; Burtin, C.; Kayser, B. Nutritional Behaviour and Beliefs of Ski-Mountaineers: A Semi-Quantitative and Qualitative Study. J. Int. Soc. Sports Nutr. 2015, 12, 46. [Google Scholar] [CrossRef]
- Jeukendrup, A. A Step towards Personalized Sports Nutrition: Carbohydrate Intake during Exercise. Sports Med. 2014, 44, 25–33. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Carbohydrate Intake during Exercise and Performance. Nutrition 2004, 20, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, A.L.; Braun, B.; Marquez, J. Making Molehills out of Mountains: Maintaining High Performance at Altitude. ACSMs Health Fit. J. 2008, 12, 15–21. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [Google Scholar] [CrossRef] [PubMed]
- Péronnet, F.; Massicotte, D.; Folch, N.; Melin, B.; Koulmann, N.; Jimenez, C.; Bourdon, L.; Launay, J.C.; Savourey, G. Substrate Utilization during Prolonged Exercise with Ingestion of 13C-Glucose in Acute Hypobaric Hypoxia (4300 m). Eur. J. Appl. Physiol. 2006, 97, 527–534. [Google Scholar] [CrossRef]
- Fulco, C.S.; Kambis, K.W.; Friedlander, A.L.; Rock, P.B.; Muza, S.R.; Cymerman, A. Carbohydrate Supplementation Improves Time-Trial Cycle Performance during Energy Deficit at 4300-m Altitude. J. Appl. Physiol. 2005, 99, 867–876. [Google Scholar] [CrossRef]
- Fulco, C.S.; Zupan, M.; Muza, S.R.; Rock, P.B.; Kambis, K.; Payn, T.; Hannon, M.; Glickman, E.; Cymerman, A. Carbohydrate Supplementation and Endurance Performance of Moderate Altitude Residents at 4300 m. Int. J. Sports Med. 2007, 28, 437–443. [Google Scholar] [CrossRef]
- Pasiakos, S.M. Nutritional Requirements for Sustaining Health and Performance During Exposure to Extreme Environments. Annu. Rev. Nutr. 2020, 40, 221–245. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Berryman, C.E.; Wilson, M.A.; Luippold, A.J.; Kenefick, R.W.; Young, A.J.; Pasiakos, S.M. Effects of Carbohydrate Supplementation on Aerobic Exercise Performance during Acute High Altitude Exposure and after 22 Days of Acclimatization and Energy Deficit. J. Int. Soc. Sports Nutr. 2022, 17, 4. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut. Nature 2014, 505, 559. [Google Scholar] [CrossRef]
- Viscor, G.; Corominas, J.; Carceller, A. Nutrition and Hydration for High-Altitude Alpinism: A Narrative Review. Int. J. Environ. Res. Public. Health 2023, 20, 3186. [Google Scholar] [CrossRef] [PubMed]
- Katayama, K.; Goto, K.; Ishida, K.; Ogita, F. Substrate Utilization during Exercise and Recovery at Moderate Altitude. Metabolism 2010, 59, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.C.; Butterfield, G.E.; Cymerman, A.; Reeves, J.T.; Wolfel, E.E.; Brooks, G.A. Acclimatization to 4,300-m Altitude Decreases Reliance on Fat as a Substrate. J. Appl. Physiol. 1996, 81, 1762–1771. [Google Scholar] [CrossRef]
- Drummond, M.J.; Dreyer, H.C.; Fry, C.S.; Glynn, E.L.; Rasmussen, B.B. Nutritional and Contractile Regulation of Human Skeletal Muscle Protein Synthesis and MTORC1 Signaling. J. Appl. Physiol. 2009, 106, 1374–1384. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; Cao, J.J.; Margolis, L.M.; Sauter, E.R.; Whigham, L.D.; McClung, J.P.; Rood, J.C.; Carbone, J.W.; Combs, G.F.; Young, A.J. Effects of High-Protein Diets on Fat-Free Mass and Muscle Protein Synthesis Following Weight Loss: A Randomized Controlled Trial. FASEB J. 2013, 27, 3837–3847. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Berryman, C.E.; Carrigan, C.T.; Young, A.J.; Carbone, J.W. Muscle Protein Turnover and the Molecular Regulation of Muscle Mass during Hypoxia. Med. Sci. Sports Exerc. 2017, 49, 1340–1350. [Google Scholar] [CrossRef]
- Dhillon, J.; Craig, B.A.; Leidy, H.J.; Amankwaah, A.F.; Osei-Boadi Anguah, K.; Jacobs, A.; Jones, B.L.; Jones, J.B.; Keeler, C.L.; Keller, C.E.M.; et al. The Effects of Increased Protein Intake on Fullness: A Meta-Analysis and Its Limitations. J. Acad. Nutr. Diet. 2016, 116, 968–983. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Kayser, B. Body Mass Regulation at Altitude. Eur. J. Gastroenterol. Hepatol. 2006, 18, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Berryman, C.E.; Young, A.J.; Karl, J.P.; Kenefick, R.W.; Margolis, L.M.; Cole, R.E.; Carbone, J.W.; Lieberman, H.R.; Kim, I.Y.; Ferrando, A.A.; et al. Severe Negative Energy Balance during 21 d at High Altitude Decreases Fat-Free Mass Regardless of Dietary Protein Intake: A Randomized Controlled Trial. FASEB J. 2018, 32, 894–905. [Google Scholar] [CrossRef]
- Wilber, R. Altitude Training and Athletic Performance; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Mawson, J.T.; Braun, B.; Rock, P.B.; Moore, L.G.; Mazzeo, R.; Butterfield, G.E. Women at Altitude: Energy Requirement at 4300 m. J. Appl. Physiol. 2000, 88, 272–281. [Google Scholar] [CrossRef]
- Scott, D.; Rycroft, J.A.; Aspen, J.; Chapman, C.; Brown, B. The Effect of Drinking Tea at High Altitude on Hydration Status and Mood. Eur. J. Appl. Physiol. 2004, 91, 493–498. [Google Scholar] [CrossRef]
- Küpper, T.; Schoffl, V.; Milledge, J.S. Traveller’s Diarrhoea—Prevention and Treatment in the Mountains. Med. Sport. 2010, 14, 157–160. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A Review of Caffeine’s Effects on Cognitive, Physical and Occupational Performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, Y.; Wang, X.; Deng, Y.; Zheng, X. Cognition and Brain Activation in Response to Various Doses of Caffeine: A Near-Infrared Spectroscopy Study. Front. Psychol. 2020, 11, 1393. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.A.; Daniels, D.; Calder, P.C.; Castell, L.M.; Pedlar, C.R. Are There Benefits from the Use of Fish Oil Supplements in Athletes? A Systematic Review. Adv. Nutr. 2020, 11, 1300. [Google Scholar] [CrossRef] [PubMed]
- Mcglory, C.; Wardle, S.L.; Macnaughton, L.S.; Witard, O.C.; Scott, F.; Dick, J.; Bell, J.G.; Phillips, S.M.; Galloway, S.D.R.; Hamilton, D.L.; et al. Fish Oil Supplementation Suppresses Resistance Exercise and Feeding-induced Increases in Anabolic Signaling without Affecting Myofibrillar Protein Synthesis in Young Men. Physiol. Rep. 2016, 4, e12715. [Google Scholar] [CrossRef] [PubMed]
- Black, K.E.; Witard, O.C.; Baker, D.; Healey, P.; Lewis, V.; Tavares, F.; Christensen, S.; Pease, T.; Smith, B. Adding Omega-3 Fatty Acids to a Protein-Based Supplement during Pre-Season Training Results in Reduced Muscle Soreness and the Better Maintenance of Explosive Power in Professional Rugby Union Players. Eur. J. Sport. Sci. 2018, 18, 1357–1367. [Google Scholar] [CrossRef]
- Bailey, D.M.; Davies, B. Acute Mountain Sickness; Prophylactic Benefits of Antioxidant Vitamin Supplementation at High Altitude. High. Alt. Med. Biol. 2001, 2, 21–29. [Google Scholar] [CrossRef]
- Shannon, O.M.; McGawley, K.; Nybäck, L.; Duckworth, L.; Barlow, M.J.; Woods, D.; Siervo, M.; O’Hara, J.P. “Beet-Ing” the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude. Sports Med. 2017, 47, 2155–2169. [Google Scholar] [CrossRef]
- Rossetti, G.M.K.; MacDonald, J.H.; Wylie, L.J.; Little, S.J.; Newton, V.; Wood, B.; Hawkins, K.A.; Beddoe, R.; Davies, H.E.; Oliver, S.J. Dietary Nitrate Supplementation Increases Acute Mountain Sickness Severity and Sense of Effort during Hypoxic Exercise. J. Appl. Physiol. 2017, 123, 983–992. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Ascent to Altitude as a Weight Loss Method: The Good and Bad of Hypoxia Inducible Factor Activation. Obesity 2014, 22, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Karl, J.P.; Cole, R.E.; Berryman, C.E.; Finlayson, G.; Radcliffe, P.N.; Kominsky, M.T.; Murphy, N.E.; Carbone, J.W.; Rood, J.C.; Young, A.J.; et al. Appetite Suppression and Altered Food Preferences Coincide with Changes in Appetite-Mediating Hormones during Energy Deficit at High Altitude, but Are Not Affected by Protein Intake. High. Alt. Med. Biol. 2018, 19, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Aeberli, I.; Erb, A.; Spliethoff, K.; Meier, D.; Götze, O.; Frühauf, H.; Fox, M.; Finlayson, G.S.; Gassmann, M.; Berneis, K.; et al. Disturbed Eating at High Altitude: Influence of Food Preferences, Acute Mountain Sickness and Satiation Hormones. Eur. J. Nutr. 2013, 52, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Takamata, A.; Mack, G.W.; Gillen, C.M.; Nadel, E.R. Sodium Appetite, Thirst, and Body Fluid Regulation in Humans during Rehydration without Sodium Replacement. Am. J. Physiol. 1994, 266, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Zaccaria, M.; Rocco, S.; Noventa, D.; Varnier, M.; Opocher, G. Sodium Regulating Hormones at High Altitude: Basal and Post-Exercise Levels. J. Clin. Endocrinol. Metab. 1998, 82, 570–574. [Google Scholar] [CrossRef]
- Mettler, S.; Mannhart, C.; Colombani, P.C. Development and Validation of a Food Pyramid for Swiss Athletes. Int. J. Sport. Nutr. Exerc. Metab. 2009, 19, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Goetze, O.; Schmitt, J.; Spliethoff, K.; Theurl, I.; Weiss, G.; Swinkels, D.W.; Tjalsma, H.; Maggiorini, M.; Krayenbühl, P.; Rau, M.; et al. Adaptation of Iron Transport and Metabolism to Acute High-Altitude Hypoxia in Mountaineers. Hepatology 2013, 58, 2153–2162. [Google Scholar] [CrossRef]
- Stellingwerff, T.; Peeling, P.; Garvican-Lewis, L.A.; Hall, R.; Koivisto, A.E.; Heikura, I.A.; Burke, L.M. Nutrition and Altitude: Strategies to Enhance Adaptation, Improve Performance and Maintain Health: A Narrative Review. Sports Med. 2019, 49, 169–184. [Google Scholar] [CrossRef]
- Bergeron, M.F.; Bahr, R.; Bärtsch, P.; Bourdon, L.; Calbet, J.A.L.; Carlsen, K.; Castagna, O.; González-Alonso, J.; Lundby, C.; Maughan, R.J.; et al. International Olympic Committee Consensus Statement on Thermoregulatory and Altitude Challenges for High-Level Athletes. Br. J. Sports Med. 2012, 46, 770–779. [Google Scholar] [CrossRef]
- Garvican-Lewis, L.A.; Govus, A.D.; Peeling, P.; Abbiss, C.R.; Gore, C.J. Iron Supplementation and Altitude: Decision Making Using a Regression Tree. J. Sports Sci. Med. 2016, 15, 204. [Google Scholar]
- Garvican-Lewis, L.A.; Vuong, V.L.; Govus, A.D.; Peeling, P.; Jung, G.; Nemeth, E.; Hughes, D.; Lovell, G.; Eichner, D.; Gore, C.J. Intravenous Iron Does Not Augment the Hemoglobin Mass Response to Simulated Hypoxia. Med. Sci. Sports Exerc. 2018, 50, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.; Peeling, P.; Nemeth, E.; Bergland, D.; Mccluskey, W.T.P.; Stellingwerff, T. Single versus Split Dose of Iron Optimizes Hemoglobin Mass Gains at 2106 m Altitude. Med. Sci. Sports Exerc. 2019, 51, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.V.; Neddo, J.; Jagim, A.R.; Oliver, J.M.; Greenwood, M.; Jones, M.T. Availability of a Sports Dietitian May Lead to Improved Performance and Recovery of NCAA Division I Baseball Athletes. J. Int. Soc. Sports Nutr. 2017, 14, 29. [Google Scholar] [CrossRef] [PubMed]
Men (n = 28) | Men (n = 15) | |||
---|---|---|---|---|
SD | SD | |||
Age [years] | 33.12 | 5.96 | 29.6 | 5.25 |
Body height [cm] | 179.04 | 6.96 | 179.87 | 7.37 |
Body weight [kg] | 71.48 | 5.43 | 71.39 | 6.80 |
BMI [kg/m2] | 22.31 | 1.37 | 22.06 | 1.61 |
Dietary Energy Supply [kcal] | Energy Requirements [kcal] | |
---|---|---|
Arithmetic mean | 2776.84 | 4559.50 |
Standard error | 234.67 | 113.60 |
Standard deviation | 908.87 | 439.96 |
−95% CI (confidence interval) | 2273.53 | 4315.86 |
+95% CI | 3280.15 | 4803.14 |
Mean of differences | −1782.66 | |
Standard error | 262.4959 | |
Standard deviation | 1016.6423 | |
−95% CI | −2345.6578 | |
+95% CI | −1219.6623 | |
T statistic | −6.7912 | |
Degrees of freedom | 14 | |
Two-sided p-value | <0.0001 |
Nutritional Recommendations for Athletes | Diet of Climbers during the Expedition | ||
---|---|---|---|
SD | |||
Energy [kcal] | Daily energy expenditure | 2776.8 | 878 |
Protein [%] | 15–20 1 | 12.1 | 2.8 |
Protein [g] | - | 79.6 | 18.5 |
Protein [g/kg bw] | 1.2–2.2 1 | 1.1 | 0.3 |
Carbohydrates [%] | 45–65 2 | 52.7 | 8.1 |
Carbohydrates [g] | - | 374.0 | 164.5 |
Carbohydrates [g/kg bw] | 6–12 3 | 5.3 | 2.5 |
Simple carbohydrates [g] | - | 147.3 | 67.1 |
Fiber [g] | 38 2 | 24.8 | 8.2 |
Fats [%] | 20–35 2,3,4 | 36.8 | 7.2 |
Fats [g] | - | 110.7 | 31.7 |
Fats [g/kg bw] | 0.5–1.5 1 | 1.6 | 0.5 |
Saturated fatty acids [%] | ALAP 4 | 13.8 | 5.4 |
Saturated fatty acids [g] | ALAP 4 | 40.5 | 16.5 |
Sodium [mg] (AI) | 1500–>10,000 2 | 3177.0 | 855.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpęcka-Gałka, E.; Mazur-Kurach, P.; Szyguła, Z.; Frączek, B. Diet, Supplementation and Nutritional Habits of Climbers in High Mountain Conditions. Nutrients 2023, 15, 4219. https://doi.org/10.3390/nu15194219
Karpęcka-Gałka E, Mazur-Kurach P, Szyguła Z, Frączek B. Diet, Supplementation and Nutritional Habits of Climbers in High Mountain Conditions. Nutrients. 2023; 15(19):4219. https://doi.org/10.3390/nu15194219
Chicago/Turabian StyleKarpęcka-Gałka, Ewa, Paulina Mazur-Kurach, Zbigniew Szyguła, and Barbara Frączek. 2023. "Diet, Supplementation and Nutritional Habits of Climbers in High Mountain Conditions" Nutrients 15, no. 19: 4219. https://doi.org/10.3390/nu15194219
APA StyleKarpęcka-Gałka, E., Mazur-Kurach, P., Szyguła, Z., & Frączek, B. (2023). Diet, Supplementation and Nutritional Habits of Climbers in High Mountain Conditions. Nutrients, 15(19), 4219. https://doi.org/10.3390/nu15194219