Nutritional Risk of Candidates for Simultaneous Pancreatic–Kidney Transplantation—A Narrative Review
Abstract
:1. Introduction
2. Aim
3. Methods
4. Results
4.1. Pathophysiology of Malnutrition in Spktx-Transplant Recipients
4.2. Laboratory Markers of Malnutrition
4.3. Nutritional and Peri-Operative Risk Assessment
4.4. Nutritional Intervention
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.G.; et al. ESPEN practical guideline: Clinical nutrition in surgery. Clin. Nutr. 2021, 40, 4745–4761. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef] [PubMed]
- Barker, L.A.; Gout, B.S.; Crowe, T.C. Hospital Malnutrition: Prevalence, Identification and Impact on Patients and the Healthcare System. Int. J. Environ. Res. Public Health 2011, 8, 514–527. [Google Scholar] [CrossRef]
- Zhang, B.; Najarali, Z.; Ruo, L.; Alhusaini, A.; Solis, N.; Valencia, M.; Sanchez, M.I.P.; Serrano, P.E. Effect of Perioperative Nutritional Supplementation on Postoperative Complications-Systematic Review and Meta-Analysis. J. Gastrointest. Surg. 2019, 23, 1682–1693. [Google Scholar] [CrossRef]
- Pikul, J.; Sharpe, M.D.; Lowndes, R.; Ghent, C.N. Degree of preoperative malnutrition is predictive of postoperative morbidity and mortality in liver transplant recipients. Transplantation 1994, 57, 469–472. [Google Scholar] [CrossRef]
- Selberg, O.; Bottcher, J.; Tusch, G.; Pichlmayr, R.; Henkel, E.; Muller, M.J. Identification of high- and low-risk patients before liver transplantation: A prospective cohort study of nutritional and metabolic parameters in 150 patients. Hepatology 1997, 25, 652–657. [Google Scholar] [CrossRef]
- Schwebel, C.; Pin, I.; Barnoud, D.; Devouassoux, G.; Brichon, P.; Chaffanjon, P.; Chavanon, O.; Sessa, C.; Blin, D.; Guignier, M.; et al. Prevalence and consequences of nutritional depletion in lung transplant candidates. Eur. Respir. J. 2000, 16, 1050–1055. [Google Scholar] [CrossRef]
- Stephenson, G.R.; Moretti, E.W.; El-Moalem, H.; Clavien, P.A.; Tuttle-Newhall, J.E. Malnutrition in liver transplant patients: Preopera-tive subjective global assessment is predictive of outcome after liver transplantation. Transplantation 2001, 72, 666–670. [Google Scholar] [CrossRef]
- Sabbatini, M.; Ferreri, L.; Pisani, A.; Capuano, I.; Morgillo, M.; Memoli, A.; Riccio, E.; Guida, B. Nutritional management in renal transplant recipients: A transplant team opportunity to improve graft survival. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 319–324. [Google Scholar] [CrossRef]
- Boggi, U.; Vistoli, F.; Andres, A.; Arbogast, H.P.; Badet, L.; Baronti, W.; Bartlett, S.T.; Benedetti, E.; Branchereau, J.; Burke, G.W., 3rd; et al. First World Consensus Conference on pancreas transplantation: Part II—Recommendations. Am. J. Transplant. 2021, 21 (Suppl. S3), 17–59. [Google Scholar] [CrossRef]
- Samoylova, M.L.; Borle, D.; Ravindra, K.V. Pancreas Transplantation: Indications, Techniques, and Outcomes. Surg. Clin. N. Am. 2019, 99, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Durlik, M.; Baumgart-Gryn, K. Almost 200 Pancreas Transplantations: A Single-Center Experience. Transplant. Proc. 2018, 50, 2124–2127. [Google Scholar] [CrossRef] [PubMed]
- Mohan, P.; Safi, K.; Little, D.M.; Donohoe, J.; Conlon, P.; Walshe, J.J.; O’Kelly, P.; Thompson, C.J.; Hickey, D.P. Improved patient survival in recipients of simultaneous pancreas-kidney transplant compared with kidney transplant alone in patients with type 1 diabe-tes mellitus and end-stage renal disease. Br. J. Surg. 2003, 90, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Sung, R.S.; Zhang, M.; Schaubel, D.E.; Shu, X.; Magee, J.C. A Reassessment of the Survival Advantage of Simultaneous Kid-ney-Pancreas Versus Kidney-Alone Transplantation. Transplantation 2015, 99, 1900–1906. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, T.; Mazid, S.; Vucak-Dzumhur, M.; Sykes, T.M.; Elder, G.J. Health-related quality of life following kidney and simultaneous pancreas kidney transplantation. Nephrology 2019, 24, 975–982. [Google Scholar] [CrossRef]
- Humar, A.; Kandaswamy, R.; Granger, D.; Gruessner, R.W.; Gruessner, A.C.; Sutherland, D.E.R. Decreased Surgical Risks of Pancreas Transplantation in the Modern Era. Ann. Surg. 2000, 231, 269–275. [Google Scholar] [CrossRef]
- Troppmann, C.; Gruessner, A.C.; Dunn, D.L.; Sutherland, D.E.; Gruessner, R.W. Surgical complications requiring early relaparotomy after pancreas transplantation: A multivariate risk factor and economic impact analysis of the cyclosporine era. Ann. Surg. 1998, 227, 255–268. [Google Scholar] [CrossRef]
- Fellmer, P.T.; Pascher, A.; Kahl, A.; Ulrich, F.; Lanzenberger, K.; Schnell, K.; Jonas, S.; Tullius, S.G.; Neuhaus, P.; Pratschke, J. Influence of donor- and recipient-specific factors on the postoperative course after combined pancreas–kidney transplantation. Langenbeck’s Arch. Surg. 2010, 395, 19–25. [Google Scholar] [CrossRef]
- Lentine, K.L.; Alhamad, T.; Cheungpasitporn, W.; Tan, J.C.; Chang, S.-H.; Cooper, M.; Dadhania, D.M.; Axelrod, D.A.M.; Schnitzler, M.A.; Ouseph, R.; et al. Impact of Functional Status on Outcomes of Simultaneous Pancreas-kidney Transplantation: Risks and Opportunities for Patient Benefit. Transplant. Direct 2020, 6, e599. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- McCarthy, D.O.; Kluger, M.J.; Vander, A.J. Suppression of food intake during infection: Is interleukin-1 involved? Am. J. Clin. Nutr. 1985, 42, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Bally, M.; Stanga, Z.; Keller, U. Loss of appetite in acutely ill medical inpatients: Physiological response or therapeu-tic target? Swiss Med. Wkly. 2014, 144, w13957. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Thomas, D.R.; Wilson, M.-M.G. Cachexia: Pathophysiology and clinical relevance. Am. J. Clin. Nutr. 2006, 83, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Ellingsgaard, H.; Hauselmann, I.; Schuler, B.; Habib, A.M.; Baggio, L.L.; Meier, D.T.; Eppler, E.; Bouzakri, K.; Wueest, S.; Muller, Y.D.; et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 2011, 17, 1481–1489. [Google Scholar] [CrossRef]
- Preiser, J.-C.; Ichai, C.; Orban, J.-C.; Groeneveld, A.B.J. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014, 113, 945–954. [Google Scholar] [CrossRef]
- Zha, Y.; Qian, Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017, 9, 208. [Google Scholar] [CrossRef]
- Ondrussek-Sekac, M.; Navas-Carrillo, D.; Orenes-Piñero, E. Intestinal microbiota alterations in chronic kidney disease and the influence of dietary components. Crit. Rev. Food Sci. Nutr. 2021, 61, 1490–1502. [Google Scholar] [CrossRef]
- Bammens, B.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. Evidence for impaired assimilation of protein in chronic renal failure. Kidney Int. 2003, 64, 2196–2203. [Google Scholar] [CrossRef]
- Snaedal, S.; Qureshi, A.R.; Lund, S.H.; Germanis, G.; Hylander, B.; Heimbürger, O.; Carrero, J.J.; Stenvinkel, P.; Bárány, P. Dialysis modality and nutritional status are associated with variability of inflammatory markers. Nephrol. Dial. Transplant. 2016, 31, 1320–1327. [Google Scholar] [CrossRef]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: Reconciling low protein intake with nutritional therapy. Am. J. Clin. Nutr. 2013, 97, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Pickering, W.P.; Price, S.R.; Bircher, G.; Marinovic, A.C.; Mitch, W.E.; Walls, J. Nutrition in CAPD: Serum bicarbonate and the ubiq-uitin-proteasome system in muscle. Kidney Int. 2002, 61, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Pontón-Vázquez, C.; Vásquez-Garibay, E.M.; Hurtado-López, E.F.; Serrano, A.d.l.T.; García, G.P.; Romero-Velarde, E. Dietary Intake, Nutritional Status, and Body Composition in Children With End-Stage Kidney Disease on Hemodialysis or Peritoneal Dialysis. J. Ren. Nutr. 2017, 27, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Satirapoj, B.; Limwannata, P.; Kleebchaiyaphum, C.; Prapakorn, J.; Yatinan, U.; Chotsriluecha, S.; Supasyndh, O. Nutritional status among peritoneal dialysis patients after oral supplement with ONCE dialyze formula. Int. J. Nephrol. Renov. Dis. 2017, 10, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; Glorieux, G.; Lameire, N. The other side of the coin: Impact of toxin generation and nutrition on the uremic syn-drome. In Seminars in Dialysis; Blackwell Science Inc.: Malden, MA, USA, 2002; Volume 15, pp. 311–314. [Google Scholar]
- Kiebalo, T.; Holotka, J.; Habura, I.; Pawlaczyk, K. Nutritional Status in Peritoneal Dialysis: Nutritional Guidelines, Adequacy and the Management of Malnutrition. Nutrients 2020, 12, 1715. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. S1), S1–S107. [Google Scholar] [CrossRef]
- Bharucha, A.E.; Kudva, Y.C.; Prichard, D.O. Diabetic Gastroparesis. Endocr. Rev. 2019, 40, 1318–1352. [Google Scholar] [CrossRef]
- Camilleri, M.; Bharucha, A.E.; Farrugia, G. Epidemiology, Mechanisms, and Management of Diabetic Gastroparesis. Clin. Gastroenterol. Hepatol. 2011, 9, 5–12. [Google Scholar] [CrossRef]
- Parkman, H.P.; Yates, K.P.; Hasler, W.L.; Nguyan, L.; Pasricha, P.J.; Snape, W.J.; Farrugia, G.; Calles, J.; Koch, K.L.; Abell, T.L.; et al. Dietary Intake and Nutritional Deficiencies in Patients With Diabetic or Idiopathic Gastroparesis. Gastroenterology 2011, 141, 486–498.e7. [Google Scholar] [CrossRef]
- Sampaio, M.S.; Kuo, H.T.; Bunnapradist, S. Outcomes of simultaneous pancreas-kidney transplantation in type 2 diabetic recipi-ents. Clin. J. Am. Soc. Nephrol. 2011, 6, 1198–1206. [Google Scholar] [CrossRef]
- Bédat, B.; Niclauss, N.; Jannot, A.-S.; Andres, A.; Toso, C.; Morel, P.; Berney, T. Impact of Recipient Body Mass Index on Short-Term and Long-Term Survival of Pancreatic Grafts. Transplantation 2015, 99, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Drake, T.M.; Nepogodiev, D.; Chapman, S.J.; Glasbey, J.C.; Khatri, C.; Kong, C.Y.; Claireaux, H.A.; Bath, M.F.; Mohan, M.; McNamee, L.; et al. Multicentre prospective cohort study of body mass index and postoperative complications following gastrointestinal surgery. Br. J. Surg. 2016, 103, 1157–1172. [Google Scholar] [CrossRef]
- Mullen, J.T.; Moorman, D.W.; Davenport, D.L. The obesity paradox: Body mass index and outcomes in patients undergoing non-bariatric general surgery. Ann. Surg. 2009, 250, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Witasp, A.; Carrero, J.J.; Heimbürger, O.; Lindholm, B.; Hammarqvist, F.; Stenvinkel, P.; Nordfors, L. Increased expression of pro-inflammatory genes in abdominal subcutaneous fat in advanced chronic kidney disease patients. J. Intern. Med. 2011, 269, 410–419. [Google Scholar] [CrossRef]
- Axelsson, J.; Qureshi, A.R.; Suliman, M.E.; Honda, H.; Pecoits-Filho, R.; Heimbürger, O.; Lindholm, B.; Cederholm, T.; Stenvinkel, P. Truncal fat mass as a contributor to inflammation in end-stage renal disease. Am. J. Clin. Nutr. 2004, 80, 1222–1229. [Google Scholar] [CrossRef]
- Friedman, J.; Lussiez, A.; Sullivan, J.; Wang, S.; Englesbe, M. Implications of Sarcopenia in Major Surgery. Nutr. Clin. Pract. 2015, 30, 175–179. [Google Scholar] [CrossRef]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef]
- Isıklar, A.; Safer, U.; Safer, V.B.; Yiyit, N. Impact of sarcopenic obesity on outcomes in patients undergoing living donor liver transplantation. Clin. Nutr. 2019, 38, 964–965. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Müller, M.J. Identification of skeletal muscle mass depletion across age and BMI groups in health and dis-ease--there is need for a unified definition. Int. J. Obes. 2015, 39, 379–386. [Google Scholar] [CrossRef]
- Srikanthan, P.; Hevener, A.L.; Karlamangla, A.S. Sarcopenia Exacerbates Obesity-Associated Insulin Resistance and Dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS ONE 2010, 5, e10805. [Google Scholar] [CrossRef]
- Hojman, P.; Pedersen, M.; Nielsen, A.R.; Krogh-Madsen, R.; Yfanti, C.; Akerstrom, T.; Nielsen, S.; Pedersen, B.K. Fibroblast growth fac-tor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 2009, 58, 2797–2801. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.; Carter, S.; Solomon, T.P.J. Probing the Effect of Physiological Concentrations of IL-6 on Insulin Secretion by INS-1 832/3 Insulinoma Cells under Diabetic-Like Conditions. Int. J. Mol. Sci. 2018, 19, 1924. [Google Scholar] [CrossRef] [PubMed]
- Natalicchio, A.; Marrano, N.; Biondi, G.; Spagnuolo, R.; Labarbuta, R.; Porreca, I.; Cignarelli, A.; Bugliani, M.; Marchetti, P.; Perrini, S.; et al. The Myokine Irisin Is Released in Response to Saturated Fatty Acids and Promotes Pancreatic β-Cell Sur-vival and Insulin Secretion. Diabetes 2017, 66, 2849–2856. [Google Scholar] [CrossRef] [PubMed]
- Christensen, C.S.; Christensen, D.P.; Lundh, M.; Dahllöf, M.S.; Haase, T.N.; Velasquez, J.M.; Laye, M.J.; Mandrup-Poulsen, T.; Solomon, T.P.J. Skeletal Muscle to Pancreatic β-Cell Cross-talk: The Effect of Humoral Mediators Liberated by Muscle Contraction and Acute Exercise on β-Cell Apoptosis. J. Clin. Endocrinol. Metab. 2015, 100, E1289–E1298. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.P.H.; Noguchi, H.; Kelly, Y.M.; Sarwal, M.; Conti, G.; Ward, C.; Halleluyan, R.; Tavakol, M.; Stock, P.G.; Freise, C.E. Impact of Sarcope-nia on Simultaneous Pancreas and Kidney Transplantation Outcomes: A Retrospective Observational Cohort Study. Transplant. Direct 2020, 6, e610. [Google Scholar] [CrossRef]
- Fukuda, Y.; Asaoka, T.; Eguchi, H.; Sasaki, K.; Iwagami, Y.; Yamada, D.; Noda, T.; Kawamoto, K.; Gotoh, K.; Kobayashi, S.; et al. Clinical Impact of Preoperative Sarcopenia on the Postoperative Outcomes After Pancreas Transplantation. World J. Surg. 2018, 42, 3364–3371. [Google Scholar] [CrossRef]
- Noguchi, H.; Miyasaka, Y.; Kaku, K.; Kurihara, K.; Nakamura, U.; Okabe, Y.; Ohtsuka, T.; Ishigami, K.; Nakamura, M. Preoperative Muscle Vol-ume Predicts Graft Survival After Pancreas Transplantation: A Retrospective Observational Cohort Study. Transplant. Proc. 2018, 50, 1482–1488. [Google Scholar] [CrossRef]
- Calvani, R.; Marini, F.; Cesari, M.; Tosato, M.; Anker, S.D.; Von Haehling, S.; Miller, R.R.; Bernabei, R.; Landi, F.; Marzetti, E.; et al. Biomarkers for physical frailty and sarcopenia: State of the science and future developments. J. Cachexia Sarcopenia Muscle 2015, 6, 278–286. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Car-diovascular Health Study Collaborative Research Group. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Kao, J.; Reid, N.; Hubbard, R.E.; Homes, R.; Hanjani, L.S.; Pearson, E.; Logan, B.; King, S.; Fox, S.; Gordon, E.H. Frailty and solid-organ trans-plant candidates: A scoping review. BMC Geriatr. 2022, 22, 864. [Google Scholar] [CrossRef]
- Exterkate, L.; Slegtenhorst, B.R.; Kelm, M.; Seyda, M.; Schuitenmaker, J.M.; Quante, M.; Uehara, H.; El Khal, A.; Tullius, S.G. Frailty and Transplantation. Transplantation 2016, 100, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Harhay, M.N.; Rao, M.K.; Woodside, K.J.; Johansen, K.L.; Lentine, K.L.; Tullius, S.G.; Parsons, R.F.; Alhamad, T.; Berger, J.; Cheng, X.S.; et al. An overview of frailty in kidney transplantation: Measurement, management and future considerations. Nephrol. Dial. Transplant. 2020, 35, 1099–1112. [Google Scholar] [CrossRef] [PubMed]
- Haugen, C.E.; Gross, A.; Chu, N.M.; Norman, S.P.; Brennan, D.C.; Xue, Q.L.; Walston, J.; Segev, D.L.; McAdams-DeMarco, M. Development and Validation of an Inflammatory-Frailty Index for Kidney Transplantation. J. Gerontol. Ser. A 2021, 76, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Varughese, R.A.; Theou, O.; Li, Y.M.; Huang, X.R.-M.; Chowdhury, N.; Famure, O.M.; Selzner, N.; MacIver, J.R.-N.; Mathur, S.; Kim, S.J.; et al. Cumulative Deficits Frailty Index Predicts Outcomes for Solid Organ Transplant Candidates. Transplant. Direct 2021, 7, e677. [Google Scholar] [CrossRef]
- Pérez-Sáez, M.J.; Redondo-Pachón, D.; Arias-Cabrales, C.E.; Faura, A.; Bach, A.; Buxeda, A.; Burballa, C.; Junyent, E.; Crespo, M.; Marco, E.; et al. Outcomes of Frail Patients While Waiting for Kidney Transplantation: Differences between Physical Frailty Phenotype and FRAIL Scale. J. Clin. Med. 2022, 11, 672. [Google Scholar] [CrossRef]
- dos Santos Mantovani, M.; Coelho de Carvalho, N.; Archangelo, T.E.; Modelli de Andrade, L.G.; Pires Ferreira Filho, S.; de Souza Cavalcante, R.; Kawano, P.R.; Papini, S.J.; Costa, N.A.; Monteiro de Barros Almeida, R.A. Frailty predicts surgical complications after kidney transplantation. A propensity score matched study. PLoS ONE 2020, 15, e0229531. [Google Scholar] [CrossRef]
- Schaenman, J.; Castellon, L.; Liang, E.C.; Nanayakkara, D.; Abdalla, B.; Sarkisian, C.; Goldwater, D. The Frailty Risk Score predicts length of stay and need for rehospitalization after kidney transplantation in a retrospective cohort: A pilot study. Pilot Feasibility Stud. 2019, 5, 144. [Google Scholar] [CrossRef]
- Kobashigawa, J.; Dadhania, D.; Bhorade, S.; Adey, D.; Berger, J.; Bhat, G.; Budev, M.; Duarte-Rojo, A.; Dunn, M.; Hall, S.; et al. Report from the American Society of Transplantation on frailty in solid organ transplantation. Am. J. Transplant. 2019, 19, 984–994. [Google Scholar] [CrossRef]
- Parsons, R.F.; Tantisattamo, E.; Cheungpasitporn, W.; Basu, A.; Lu, Y.; Lentine, K.L.; Woodside, K.J.; Singh, N.; Scalea, J.; Alhamad, T.; et al. Comprehensive review: Frailty in pancreas transplant candidates and recip-ients. Clin. Transplant. 2023, 37, e14899. [Google Scholar] [CrossRef]
- Doweiko, J.P.; Nompleggi, D.J. The role of albumin in human physiology and pathophysiology, Part III: Albumin and disease states. JPEN J. Parenter. Enter. Nutr. 1991, 15, 476–483. [Google Scholar] [CrossRef]
- Lee, J.L.; Oh, E.S.; Lee, R.W.; Finucane, T.E. Serum Albumin and Prealbumin in Calorically Restricted, Nondiseased Individuals: A Systematic Review. Am. J. Med. 2015, 128, 1023.e1–1023.e22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of Blood Biomarkers Associated with Risk of Malnutrition in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef] [PubMed]
- Becker, B.N.; Becker, Y.T.; Heisey, D.M.; Leverson, G.E.; Collins, B.H.; Odorico, J.S.; D’Alessandro, A.M.; Knechtle, S.J.; Pirsch, J.D.; Sollinger, H.W. The impact of hypoalbuminemia in kidney-pancreas transplant recipients. Transplantation 1999, 68, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.; Trujillo, E.; Mogensen, K.; Rounds, J.; McManus, K.; Jacobs, D. Improving nutritional screening of hos-pitalized patients: The role of prealbumin. J. Parenter. Enter. Nutr. 2003, 27, 389–395. [Google Scholar] [CrossRef]
- Dellière, S.; Cynober, L. Is transthyretin a good marker of nutritional status? Clin. Nutr. 2017, 36, 364–370. [Google Scholar] [CrossRef]
- Dellière, S.; Neveux, N.; De Bandt, J.-P.; Cynober, L. Transthyretin for the routine assessment of malnutrition: A clinical dilemma highlighted by an international survey of experts in the field. Clin. Nutr. 2018, 37, 2226–2229. [Google Scholar] [CrossRef]
- Keller, U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef]
- González Madroño, A.; Mancha, A.; Rodríguez, F.J.; de Ulibarri, J.I.; Culebras, J. The use of biochemical and immunological parame-ters in nutritional screening and assessment. Nutr. Hosp. 2011, 26, 594–601. [Google Scholar]
- Contreras, G.; Hu, B.; Astor, B.C.; Greene, T.; Erlinger, T.; Kusek, J.W.; Lipkowitz, M.; Lewis, J.A.; Randall, O.S.; Hebert, L.; et al. Malnutrition-Inflammation Modifies the Relationship of Cholesterol with Cardiovascular Disease. J. Am. Soc. Nephrol. 2010, 21, 2131–2142. [Google Scholar] [CrossRef]
- Song, P.; Man, Q.; Li, Y.; Jia, S.; Yu, D.; Zhang, J.; Ding, G. Association between Dietary Patterns and Low HDL-C among Community-Dwelling Elders in North China. Nutrients 2021, 13, 3308. [Google Scholar] [CrossRef]
- Franz, C.; Görtz, M.; Wührl, M.; Kulu, Y.; Hoffmann, K.; Hackert, T.; Morath, C.; Zeier, M.; Büchler, M.W.; Mehrabi, A. The Role of Pre-Procurement Pancreas Suitability Score (P-PASS) and Pancreas Donor Risk Index (PDRI) in the Outcome of Simultaneous Pancreas and Kidney or Pancreas After Kidney Transplantation. Ann. Transplant. 2019, 24, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Śmigielska, K.; Skrzypek, P.; Czerwiński, J.; Michalak, G.; Durlik, M.; Grochowiecki, T.; Nazarewski, S.; Szmidt, J.; Ziaja, J.; Król, R.; et al. Usefulness of Pancreas Donor Risk Index and Pre-Procurement Pancreas Allocation Suitability Score: Results of the Polish National Study. Ann. Transplant. 2018, 23, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Khambalia, H.; Moinuddin, Z.; Summers, A.; Tavakoli, A.; Pararajasingam, R.; Campbell, T.; Dhanda, R.; Forgacs, B.; Augustine, T.; van Dellen, D. A prospective cohort study of risk prediction in simultaneous pancreas and kidney transplantation. Ind. Mark. Manag. 2015, 97, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Buzby, G.P.; Williford, W.O.; Peterson, O.L.; Crosby, L.O.; Page, C.P.; Reinhardt, G.F.; Mullen, J.L. A randomized clinical trial of total parenteral nutrition in malnourished surgical patients: The rationale and impact of previous clinical trials and pilot study on protocol design. Am. J. Clin. Nutr. 1988, 47, 357–365. [Google Scholar] [CrossRef]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar] [PubMed]
- Kim, C.Y.; Kim, S.Y.; Song, J.H.; Kim, Y.S.; Jeong, S.J.; Lee, J.G.; Paik, H.C.; Park, M.S. Usefulness of the preoperative prognostic nutritional index score as a predictor of the outcomes of lung transplantation: A single-institution experience. Clin. Nutr. 2019, 38, 2423–2429. [Google Scholar] [CrossRef]
- Drăgoescu, A.N.; Pădureanu, V.; Stănculescu, A.D.; Chiuțu, L.C.; Tomescu, P.; Geormăneanu, C.; Pădureanu, R.; Iovănescu, V.F.; Ungureanu, B.S.; Pănuș, A.; et al. Neutrophil to Lymphocyte Ratio (NLR)—A Useful Tool for the Prognosis of Sepsis in the ICU. Biomedicines 2021, 10, 75. [Google Scholar] [CrossRef]
- Hogendorf, P.; Suska, A.; Skulimowski, A.; Rut, J.; Grochowska, M.; Wencel, A.; Dziwisz, F.; Nowicki, M.; Szymański, D.; Poznańska, G.; et al. Neutrophil-lymphocyte ratio and creatinine reduction ratio predict good early graft function among adult cadaveric donor renal transplant recipients. Single institution series. Ann. Surg. 2018, 90, 28–33. [Google Scholar] [CrossRef]
- Baker, J.P.; Detsky, A.S.; Wesson, D.E.; Wolman, S.L.; Stewart, S.; Whitewell, J.; Langer, B.; Jeejeebhoy, K.N. A Comparison of Clinical Judgment and Objective Measurements. N. Engl. J. Med. 1982, 306, 969–972. [Google Scholar] [CrossRef]
- da Silva Fink, J.; Daniel de Mello, P.; Daniel de Mello, E. Subjective global assessment of nutritional status—A systematic review of the literature. Clin. Nutr. 2015, 34, 785–792. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Ginoya, S.; Tandon, P.; Gohel, T.D.; Guirguis, J.; Vallabh, H.; Jevenn, A.; Hanouneh, I. Malnutrition: Laboratory markers vs nutritional assessment. Gastroenterol. Rep. 2016, 4, gow013. [Google Scholar] [CrossRef] [PubMed]
- Kondrup, J.; Allison, S.P.; Elia, M.; Vellas, B.; Plauth, M. ESPEN guidelines for nutrition screening 2002. Clin. Nutr. 2003, 22, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Ljungqvist, O.; Carli, F. Prehabilitation, enhanced recovery after surgery, or both? A narrative review. Br. J. Anaesth. 2022, 128, 434–448. [Google Scholar] [CrossRef]
- Boggi, U.; Amorese, G.; Marchetti, P.; Mosca, F. Segmental live donor pancreas transplantation: Review and critique of rationale, outcomes, and current recommendations. Clin. Transplant. 2011, 25, 4–12. [Google Scholar] [CrossRef]
- Gustafsson, U.O.; Scott, M.J.; Hubner, M.; Nygren, J.; Demartines, N.; Francis, N.; Rockall, T.A.; Young-Fadok, T.M.; Hill, A.G.; Soop, M.; et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations: 2018. World J. Surg. 2019, 43, 659–695. [Google Scholar] [CrossRef]
- Melloul, E.; Lassen, K.; Roulin, D.; Grass, F.; Perinel, J.; Adham, M.; Wellge, E.B.; Kunzler, F.; Besselink, M.G.; Asbun, H.; et al. Guidelines for Perioperative Care for Pancreatoduodenectomy: Enhanced Recovery After Surgery (ERAS) Recommendations 2019. Mol. Med. 2020, 44, 2056–2084. [Google Scholar] [CrossRef]
- Low, D.E.; Allum, W.; De Manzoni, G.; Ferri, L.; Immanuel, A.; Kuppusamy, M.; Law, S.; Lindblad, M.; Maynard, N.; Neal, J.; et al. Guidelines for Perioperative Care in Esophagectomy: Enhanced Recovery After Surgery (ERAS®) Society Recommendations. Mol. Med. 2019, 43, 299–330. [Google Scholar] [CrossRef]
- Mortensen, K.; Nilsson, M.; Slim, K.; Schäfer, M.; Mariette, C.; Braga, M.; Carli, F.; Demartines, N.; Griffin, S.M.; Lassen, K.; et al. Consensus guidelines for enhanced recovery after gastrectomy: Enhanced Recovery Af-ter Surgery (ERAS®) Society recommendations. Br. J. Surg. 2014, 101, 1209–1229. [Google Scholar] [CrossRef]
- Tan, J.H.S.; Bhatia, K.; Sharma, V.; Swamy, M.; van Dellen, D.; Dhanda, R.; Khambalia, H. Enhanced recovery after surgery recommenda-tions for renal transplantation: Guidelines. Br. J. Surg. 2022, 110, 57–59. [Google Scholar] [CrossRef]
- Brustia, R.; Monsel, A.; Skurzak, S.; Schiffer, E.; Carrier, F.M.; Patrono, D.; Kaba, A.; Detry, O.; Malbouisson, L.; Andraus, W.; et al. Guidelines for Perioperative Care for Liver Transplantation: Enhanced Recovery After Surgery (ERAS) Recommendations. Transplantation 2022, 106, 552–561. [Google Scholar] [CrossRef]
- Elango, M.; Papalois, V. Working towards an ERAS Protocol for Pancreatic Transplantation: A Narrative Review. J. Clin. Med. 2021, 10, 1418. [Google Scholar] [CrossRef] [PubMed]
- Finlay, S.; Asderakis, A.; Ilham, A.; Elker, D.; Chapman, D.; Ablorsu, E. The role of nutritional assessment and early enteral nutrition for combined pancreas and kidney transplant candidates. Clin. Nutr. ESPEN 2017, 17, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.T.; Rayner, C.K.; Jones, K.L.; Talley, N.J.; Horowitz, M. Gastrointestinal Symptoms in Diabetes: Prevalence, Assessment, Pathogenesis, and Management. Diabetes Care 2018, 41, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Grogan, T.A.; Lever, J.; Warty, V.S.; Fung, J.; Venkataramanan, R. Comparison of tacrolimus absorption in transplant pa-tients receiving continuous versus interrupted enteral nutritional feeding. Ann. Pharmacother. 1998, 32, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Joh, J.W.; Kim, H.J.; Kim, S.H.; Rha, M.; Sinn, D.H.; Choi, G.S.; Kwon, C.H.; Cho, Y.Y.; Suh, J.M.; et al. Early Enteral Feeding After Living Donor Liver Transplantation Prevents Infectious Complications: A Prospective Pilot Study. Medicine 2015, 94, e1771. [Google Scholar] [CrossRef]
- Rayes, N.; Seehofer, D.; Hansen, S.; Boucsein, K.; Müller, A.R.; Serke, S.; Bengmark, S.; Neuhaus, P. Early enteral supply of lactobacillus and fiber versus selec-tive bowel decontamination: A controlled trial in liver transplant recipients. Transplantation 2002, 74, 123–127. [Google Scholar] [CrossRef]
- Plank, L.D.; McCall, J.L.; Gane, E.J.; Rafique, M.; Gillanders, L.K.; McIlroy, K.; Munn, S.R. Pre- and postoperative immunonutrition in patients undergoing liver transplantation: A pilot study of safety and efficacy. Clin. Nutr. 2005, 24, 288–296. [Google Scholar] [CrossRef]
- Lin, M.-T.; Kung, S.-P.; Yeh, S.-L.; Liaw, K.-Y.; Wang, M.-Y.; Kuo, M.-L.; Lee, P.-H.; Chen, W.-J. Glutamine-supplemented total parenteral nutrition attenuates plasma interleukin-6 in surgical patients with lower disease severity. World J. Gastroenterol. 2005, 11, 6197–6201. [Google Scholar] [CrossRef]
- Li, Y.-S.; Li, J.-S.; Jiang, J.-W.; Liu, F.-N.; Li, N.; Qin, W.-S.; Zhu, H. Glycyl-Glutamine-Enriched Long-Term Total Paren-teral Nutrition Attenuates Bacterial Translocation Following Small Bowel Transplantation in the Pig. J. Surg. Res. 1999, 82, 106–111. [Google Scholar] [CrossRef]
Mechanism | Effects | Reference |
---|---|---|
Inflammatory response | anorexia, reduced food intake, weight loss and muscle catabolism | [21,22,23,24] |
Acute disease- or injury-related one | high pro-inflammatory cytokine activity, increased corticosteroid and catecholamine release and insulin resistance | [25] |
Chronic kidney disease | excess NH4+ production resulting in complement activation | [26] |
metabolic acidosis | [32] | |
Alterations in gut microbiota | injury to intestinal mucosa translocation of toxic metabolites and bacterial endotoxins | [27,28] |
Jatrogenic–hemodialysis or peritoneal dialysis complications | inflammation | [29] |
additional protein loss and higher levels of uremic toxins | [33,34,35,36] | |
Co-morbidity (cardiovascular disease, poorly controlled diabetes, and hyperparathyroidism) | protein-energy wasting syndrome, loss of lean body mass | [30,31] |
Dietary limitations | decreased protein level | [37] |
Gastroparesis | early satiety, nausea and vomiting | [38,39,40] |
Prognostic Nutritional Index | Nutritional Risk Index | Subjective Global Assessment (SGA) | Nutritional Risk Screening (NRS) 2002 | ||
---|---|---|---|---|---|
Anthropometric parameters | weight loss | − | − | + | + |
BMI | − | − | − | + | |
present weight | − | + | − | − | |
usual body weight | − | + | − | − | |
History and symptoms | food intake/diet history | − | − | + | + |
gastrointestinal function/symptoms | − | − | + | − | |
stress level (severity of diagnosis) | − | − | + | + | |
primary diagnosis | − | − | + | − | |
physical symptoms | − | − | + | − | |
functional capacity | − | − | + | − | |
Biomarkers | albumin | + | + | − | − |
total lymphocyte count | + | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizerska, A.; Durlik, M.; Kędzierska-Kapuza, K. Nutritional Risk of Candidates for Simultaneous Pancreatic–Kidney Transplantation—A Narrative Review. Nutrients 2023, 15, 4179. https://doi.org/10.3390/nu15194179
Mizerska A, Durlik M, Kędzierska-Kapuza K. Nutritional Risk of Candidates for Simultaneous Pancreatic–Kidney Transplantation—A Narrative Review. Nutrients. 2023; 15(19):4179. https://doi.org/10.3390/nu15194179
Chicago/Turabian StyleMizerska, Agnieszka, Marek Durlik, and Karolina Kędzierska-Kapuza. 2023. "Nutritional Risk of Candidates for Simultaneous Pancreatic–Kidney Transplantation—A Narrative Review" Nutrients 15, no. 19: 4179. https://doi.org/10.3390/nu15194179
APA StyleMizerska, A., Durlik, M., & Kędzierska-Kapuza, K. (2023). Nutritional Risk of Candidates for Simultaneous Pancreatic–Kidney Transplantation—A Narrative Review. Nutrients, 15(19), 4179. https://doi.org/10.3390/nu15194179