High Nutritional Risk Is Associated with Poor Functional Status and Prognostic Biomarkers in Stroke Patients at Admission to a Rehabilitation Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Clinical and Functional Assessment
2.3. Biochemical Variables
2.4. Anthropometry
2.5. Nutritional Risk Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Sabbouh, T.; Torbey, M.T. Malnutrition in Stroke Patients: Risk Factors, Assessment, and Management. Neurocrit. Care 2018, 29, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, V.; Guida, S.; Holdoway, A.; Strilciuc, S.; Baijens, L.; Schols, J.M.G.A.; van Helvoort, A.; Lansink, M.; Muresanu, D.F. Impaired Nutritional Condition After Stroke from the Hyperacute to the Chronic Phase: A Systematic Review and Meta-Analysis. Front. Neurol. 2022, 12, 780080. [Google Scholar] [CrossRef] [PubMed]
- Scrutinio, D.; Lanzillo, B.; Guida, P.; Passantino, A.; Spaccavento, S.; Battista, P. Association Between Malnutrition and Outcomes in Patients with Severe Ischemic Stroke Undergoing Rehabilitation. Arch. Phys. Med. Rehabil. 2020, 101, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN Guidelines on Definitions and Terminology of Clinical Nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; Luisi, M.L.E.; Alicante, P.; Ballarin, G.; Biffi, B.; Gheri, C.F.; Scalfi, L. The Assessment of the Risk of Malnutrition (Undernutrition) in Stroke Patients. Nutrients 2023, 15, 683. [Google Scholar] [CrossRef]
- Di Vincenzo, O.; D’Elia, L.; Ballarin, G.; Pasanisi, F.; Scalfi, L. Controlling Nutritional Status (CONUT) Score and the Risk of Mortality or Impaired Physical Function in Stroke Patients: A Systematic Review and Meta-Analysis. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Burgos, R.; Bretón, I.; Cereda, E.; Desport, J.C.; Dziewas, R.; Genton, L.; Gomes, F.; Jésus, P.; Leischker, A.; Muscaritoli, M.; et al. ESPEN Guideline Clinical Nutrition in Neurology. Clin. Nutr. 2018, 37, 354–396. [Google Scholar] [CrossRef]
- Swan, W.I.; Pertel, D.G.; Hotson, B.; Lloyd, L.; Orrevall, Y.; Trostler, N.; Vivanti, A.; Howarter, K.B.; Papoutsakis, C. Nutrition Care Process (NCP) Update Part 2: Developing and Using the NCP Terminology to Demonstrate Efficacy of Nutrition Care and Related Outcomes. J. Acad. Nutr. Diet. 2019, 119, 840–855. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN Guideline on Clinical Nutrition and Hydration in Geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef]
- Serón-Arbeloa, C.; Labarta-Monzón, L.; Puzo-Foncillas, J.; Mallor-Bonet, T.; Lafita-López, A.; Bueno-Vidales, N.; Montoro-Huguet, M. Malnutrition Screening and Assessment. Nutrients 2022, 14, 2392. [Google Scholar] [CrossRef]
- Chen, L.; Wang, M.; Yang, C.; Wang, Y.; Hou, B. The Role of High-Sensitivity C-Reactive Protein Serum Levels in the Prognosis for Patients with Stroke: A Meta-Analysis. Front. Neurol. 2023, 14, 1199814. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, J.; Wu, X.; Zhao, K.; Guo, Y.; Yang, M.; Du, X. Clinical Significance of Plasma D-Dimer and Fibrinogen in Outcomes after Stroke: A Systematic Review and Meta-Analysis. Cerebrovasc. Dis. 2023, 52, 318–343. [Google Scholar] [CrossRef]
- Kunieda, K.; Ohno, T.; Fujishima, I.; Hojo, K.; Morita, T. Reliability and Validity of a Tool to Measure the Severity of Dysphagia: The Food Intake LEVEL Scale. J. Pain Symptom. Manag. 2013, 46, 201–206. [Google Scholar] [CrossRef]
- Kasner, S.E. Clinical Interpretation and Use of Stroke Scales. Lancet Neurol. 2006, 5, 603–612. [Google Scholar] [CrossRef]
- Banks, J.L.; Marotta, C.A. Outcomes Validity and Reliability of the Modified Rankin Scale: Implications for Stroke Clinical Trials: A Literature Review and Synthesis. Stroke 2007, 38, 1091–1096. [Google Scholar] [CrossRef]
- Parlak Demir, Y.; Yıldırım, S.A. Reliability and Validity of Trunk Control Test in Patients with Neuromuscular Diseases. Physiother. Theory Pract. 2015, 31, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Sandin, K.J.; Smith, B.S. The Measure of Balance in Sitting in Stroke Rehabilitation Prognosis. Stroke 1990, 21, 82–86. [Google Scholar] [CrossRef]
- Pfeiffer, E. A Short Portable Mental Status Questionnaire for the Assessment of Organic Brain Deficit in Elderly Patients. J. Am. Geriatr. Soc. 1975, 23, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Chicago, IL, USA, 1988. [Google Scholar]
- Yamada, K.; Furuya, R.; Takita, T.; Maruyama, Y.; Yamaguchi, Y.; Ohkawa, S.; Kumagai, H. Simplified Nutritional Screening Tools for Patients on Maintenance Hemodialysis. Am. J. Clin. Nutr. 2008, 87, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Speranza, E.; Santarpia, L.; Marra, M.; Di Vincenzo, O.; Naccarato, M.; De Caprio, C.; Morlino, D.; D’Onofrio, G.; Contaldo, F.; Pasanisi, F. Nutritional Screening and Anthropometry in Patients Admitted from the Emergency Department. Front. Nutr. 2022, 9, 816167. [Google Scholar] [CrossRef]
- Maruyama, K.; Nakagawa, N.; Koyama, S.; Maruyama, J.; Hasebe, N. Malnutrition Increases the Incidence of Death, Cardiovascular Events, and Infections in Patients with Stroke after Rehabilitation. J. Stroke Cerebrovasc. Dis. 2018, 27, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Siotto, M.; Germanotta, M.; Guerrini, A.; Pascali, S.; Cipollini, V.; Cortellini, L.; Ruco, E.; Khazrai, Y.M.; De Gara, L.; Aprile, I. Relationship between Nutritional Status, Food Consumption and Sarcopenia in Post-Stroke Rehabilitation: Preliminary Data. Nutrients 2022, 14, 4825. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, S.; Okamoto, T.; Takayama, M.; Urushihara, M.; Watanabe, M.; Kiriya, Y.; Shintani, K.; Nakagomi, H.; Kageyama, N. Malnutrition Risk Predicts Recovery of Full Oral Intake among Older Adult Stroke Patients Undergoing Enteral Nutrition: Secondary Analysis of a Multicentre Survey (the APPLE Study). Clin. Nutr. 2017, 36, 1089–1096. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Lan, M.; Wei, H.; Chen, Y. The Controlling Nutritional Status Score and Risk Factors Associated with Malnutrition in Patients with Acute Ischemic Stroke. Front. Neurol. 2023, 14, 1067706. [Google Scholar] [CrossRef]
- Bise, T.; Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Kido, Y.; Shimazu, S.; Shiraishi, A.; Matsumoto, A. Association between BIA-Derived Phase Angle and Sarcopenia and Improvement in Activities of Daily Living and Dysphagia in Patients Undergoing Post-Stroke Rehabilitation. J. Nutr. Health Aging 2022, 26, 590–597. [Google Scholar] [CrossRef]
- Matsumoto, A.; Yoshimura, Y.; Nagano, F.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Polypharmacy and Its Association with Dysphagia and Malnutrition among Stroke Patients with Sarcopenia. Nutrients 2022, 14, 4251. [Google Scholar] [CrossRef]
- Ikenouchi, H.; Nozue, K.; Yamaguchi, S.; Miyamoto, T.; Yamamoto, N.; Endo, K. Geriatric Nutrition Risk Index Predicts Prolonged Post-Stroke Dysphagia in Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2023, 32, 107207. [Google Scholar] [CrossRef]
- Doehner, W.; Scherbakov, N.; Schellenberg, T.; Jankowska, E.A.; Scheitz, J.F.; Haehling, S.; Joebges, M. Iron Deficiency Is Related to Low Functional Outcome in Patients at Early Rehabilitation after Acute Stroke. J. Cachexia Sarcopenia Muscle 2022, 13, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Nozoe, M.; Inoue, T.; Ishida, M.; Yamamoto, K.; Kanai, M. Malnutrition on Admission Is Associated with Trunk Function Recovery but Not with Lower Limb Muscle Strength Recovery in Patients with Acute Stroke: An Observational Cohort Study. Nutrition 2023, 109, 111971. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lim, J.-S.; Kim, Y.; Lee, J.H.; Kim, C.-H.; Lee, S.-H.; Jang, M.U.; Oh, M.S.; Lee, B.-C.; Yu, K.-H. Association between Geriatric Nutritional Risk Index and Post-Stroke Cognitive Outcomes. Nutrients 2021, 13, 1776. [Google Scholar] [CrossRef]
- Bardon, L.A.; Corish, C.A.; Lane, M.; Bizzaro, M.G.; Loayza Villarroel, K.; Clarke, M.; Power, L.C.; Gibney, E.R.; Dominguez Castro, P. Ageing Rate of Older Adults Affects the Factors Associated with, and the Determinants of Malnutrition in the Community: A Systematic Review and Narrative Synthesis. BMC Geriatr. 2021, 21, 676. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Wright, O.R.L.; Woo, J.; Hoogendijk, E.O. Malnutrition in Older Adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef] [PubMed]
- Augestad, I.L.; Pintana, H.; Larsson, M.; Krizhanovskii, C.; Nyström, T.; Klein, T.; Darsalia, V.; Patrone, C. Regulation of Glycemia in the Recovery Phase After Stroke Counteracts the Detrimental Effect of Obesity-Induced Type 2 Diabetes on Neurological Recovery. Diabetes 2020, 69, 1961–1973. [Google Scholar] [CrossRef] [PubMed]
Total | Men | Women | p | |
---|---|---|---|---|
n = 245 | n = 130 | n = 115 | ||
Age, years | 69.7±12.8 | 68.4±12.3 | 71.0±13.2 | 0.053 |
Weight, kg | 70.2±12.5 | 76.8±11.7 | 68.9±14.8 | <0.001 |
Stature, cm | 164.0±9.7 | 169.7±7.6 | 158.0±8.1 | <0.001 |
BMI, kg/m² | 26.9±4.2 | 26.3±3.0 | 27.5±5.1 | <0.001 |
Stroke risk factors | n(%) | n(%) | n(%) | |
Atrial fibrillation | 41(16.7) | 14(10.8) | 27(23.5) | <0.01 |
Hypertension | 192(78.4) | 97(74.6) | 95(82.6) | 0.162 |
Diabetes mellitus | 87(35.5) | 46(35.4) | 41(35.7) | 1.000 |
Coronary heart disease | 92(37.6) | 47(36.2) | 52(40.0) | 0.429 |
Hyperlipemia | 107(43.7) | 53(40.8) | 54(57.0) | 0.367 |
Previous stroke | 39(15.4) | 21(16.2) | 18(15.7) | 1.000 |
Dysphagia | 94(38.8) | 44(33.8) | 50(44.6) | 0.112 |
Functional assessment | ||||
BI | 5[5–15] | 5[5–15] | 5[0–10] | <0.01 |
mRS | 4[4–5] | 4[4–5] | 4[4–5] | 0.122 |
TCT | 24[0–48] | 36[12–48] | 12[0–36] | <0.01 |
SBS | 2[1–3] | 2[2–3] | 2[1–3] | <0.01 |
SPMSQ | 6[4–10] | 5[2–8] | 8[5–10] | <0.001 |
Laboratory parameters | ||||
Albumin, g/dL | 3.19±0.50 | 3.29±0.48 | 3.07±0.50 | <0.01 |
Cholesterol, mg/dL | 145.4±40.1 | 141.4±39.3 | 153.0±41.6 | <0.01 |
Lymphocyte count/mL | 1400[1000–1800] | 1300[1000–1800] | 1400[975–1900] | 0.266 |
Neutrophil count/mL | 5500[4300–7200] | 5600[4300–6950] | 5400[3950–7550] | 0.631 |
Hemoglobin, g/dL | 12.8±1.54 | 13.2±1.68 | 12.4±1.37 | <0.001 |
Platelet count/mL × 1000 | 245[197–309] | 235[180–307] | 252[212–309] | 0.229 |
C-reactive protein, mg/L | 16.2[4.6–46.2] | 15.1[4.4–47.7] | 16.3[4.8–52.8] | 0.481 |
Fibrinogen, mg/dL | 544±164 | 531±148 | 540±185 | 0.639 |
D-dimer, μg/mL | 1.13[0.55–2.44] | 1.13[0.49–2.20] | 1.13[0.59–3.04] | 0.771 |
Nutritional risk screening tools | ||||
GNRI | 89[84–94] | 90[85–95] | 88[83–92] | <0.001 |
PNI | 39[34–43] | 40[35–44] | 37[34–43] | 0.179 |
CONUT score | 5[3–7] | 4[3–7] | 5[3–7] | 0.286 |
GNRI | PNI | CONUT Score | |||||||
---|---|---|---|---|---|---|---|---|---|
High Risk, n = 151 | Low Risk, n = 94 | p | High Risk, n = 102 | Low Risk, n = 143 | p | High Risk, n = 118 | Low Risk, n = 127 | p | |
n (%) women | 81(53.6) | 34(36.2) | * | 56(54.9) | 59(41.3) | * | 58(49.2) | 57(44.9) | |
Age, years | 72.6±11.9 | 66.3±12.3 | # | 73.8±11.3 | 67.0±12.5 | # | 73.9±11.0 | 66.2±12.7 | # |
Weight, kg | 71.0±13.4 | 75.4±13.0 | § | 70.0±14.3 | 74.7±12.2 | § | 70.5±13.4 | 74.7±13.3 | * |
Stature, cm | 162.5±9.9 | 165.5±9.5 | § | 161.5±10.2 | 165.2±9.2 | § | 162.210.1 | 165.0±9.4 | § |
BMI, kg/m² | 26.6±3.9 | 27.0±3.5 | 26.6±4.1 | 26.7±3.6 | 26.6±3.8 | 27.0±3.8 | |||
Stroke risk factors | n(%) | n(%) | n(%) | n(%) | n(%) | n(%) | |||
Atrial fibrillation | 31(20.5) | 10(10.6) | * | 23(22.5) | 18(12.6) | * | 23(19.5) | 18(14.2) | |
Hypertension | 121(80.1) | 71(75.5) | 83(81.4) | 109(76.2) | 95(80.5) | 97(76.4) | |||
Diabetes mellitus | 56(37.1) | 31(33) | 41(40.2) | 46(32.2) | 47(39.8) | 40(31.5) | |||
Coronary heart disease | 62(41.1) | 30(31.9) | 42(41.2) | 50(35.0) | 51(43.2) | 41(32.3) | |||
Hyperlipemia | 71(47.0) | 36(38.3) | 47(46.1) | 60(42.0) | 47(39.8) | 60(47.2) | |||
Previous stroke | 28(18.5) | 11(11.7) | 20(19.6) | 19(13.3) | 21(17.8) | 18(14.2) | |||
Dysphagia | 71(47.7) | 23(24.7) | # | 52(51.0) | 42(30.0) | # | 60(50.8) | 34(24.7) | # |
Functional assessment | |||||||||
BI | 5[0–10] | 10[5–40] | # | 5[0–10] | 5[5–20] | # | 5[5–10] | 5[5–20] | # |
mRS | 5[4–5] | 4[4–5] | # | 4[4–5] | 4[4–5] | § | 5[4–5] | 4[4–5] | # |
TCT | 12[0–36] | 48[24–61] | # | 12[0–36] | 36[12–48] | # | 12[0–36] | 36[12–48] | # |
SBS | 2[1–3] | 3[2–3] | # | 2[1–2] | 2[2–3] | # | 2[1–3] | 2[2–3] | § |
SPMSQ | 7[5–10] | 4[1–10] | # | 7[5–10] | 5[2–10] | # | 7[5–10] | 5[2–10] | # |
Laboratory parameters | |||||||||
Albumin, g/dL | 2.88±0.37 | 3.70±0.26 | # | 2.76±0.39 | 3.51±0.35 | # | 2.85±0.46 | 3.5±0.34 | # |
Cholesterol, mg/dL | 150.7±40.6 | 147.7±44.4 | 143.8±38.9 | 154.0±43.9 | 137.0±37.3 | 161.5±42.9 | # | ||
Lymphocyte count/mL | 1300[900–1800] | 1700[1200–1900] | 1050[800–1300] | 1700[1400–2000] | # | 1100[800–1450] | 1700[1400–2000] | # | |
Neutrophil count/mL | 5600[4300–7525] | 4800[3950–6200] | * | 5650[4225–7275] | 5100[4100–6700] | 5600[4300–7550] | 5050[4075–6500] | * | |
Hemoglobin, g/dL | 12.6±1.5 | 13.3±1.7 | § | 12.3±1.5 | 13.4±1.5 | # | 12.4±1.6 | 13.3±1.5 | # |
Platelet count/mL × 1000 | 260[260–331] | 244[194–296] | 257[192–325] | 246[209–304] | 251[191–313] | 2450[213–307] | |||
C-reactive protein, mg/L | 23.6[9.7–57.1] | 5.80[2.65–15.6] | # | 29.5[9.8–81.7] | 8.9[3.6–21.5] | # | 22.5[8.9–67.0] | 9.0[3.4–22.6] | # |
Fibrinogen, mg/dL | 566±176 | 480±133 | # | 565±193 | 511±141 | § | 561±194 | 509±132 | § |
D-dimer, μg/mL | 1.40[0.81–2.91] | 0.55[0.28–1.43] | # | 1.77[0.92–3.26] | 0.68[0.36–1.46] | # | 1.50[0.81–3.09] | 0.68[0.37–1.78] | # |
GNRI | PNI | CONUT Score | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Age (years) | −0.270 | <0.001 | −0.328 | <0.001 | 0.327 | <0.001 |
BMI (kg/m2) | 0.099 | 0.124 | 0.087 | 0.175 | −0.079 | 0.221 |
BI | 0.370 | <0.001 | 0.319 | <0.001 | −0.271 | <0.001 |
mRS | −0.352 | <0.001 | −0.303 | <0.001 | 0.267 | <0.001 |
TCT | 0.452 | <0.001 | 0.389 | <0.001 | −0.335 | <0.001 |
SBS | 0.356 | <0.001 | 0.319 | <0.001 | −0.252 | <0.001 |
SPMSQ | −0.327 | <0.001 | −0.258 | <0.001 | 0.232 | <0.001 |
C-reactive protein, mg/L | −0.485 | <0.001 | −0.479 | <0.001 | 0.428 | <0.001 |
Fibrinogen, mg/dL | −0.226 | <0.001 | −0.208 | <0.001 | 0.220 | <0.001 |
D-dimer, μg/mL | −0.431 | <0.001 | −0.494 | <0.001 | 0.346 | <0.001 |
GNRI | PNI | CONUT | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Age (years) | −0.081 | 0.412 | −0.050 | 0.615 | 0.050 | 0.613 |
BMI (kg/m2) | 0.016 | 0.871 | 0.024 | 0.810 | −0.035 | 0.801 |
BI | 0.276 | <0.01 | 0.263 | <0.01 | −0.275 | <0.01 |
mRS | −0.255 | 0.013 | −0.212 | 0.041 | 0.179 | 0.084 |
TCT | 0.279 | <0.01 | 0.210 | 0.045 | −0.178 | 0.090 |
SBS | 0.233 | 0.029 | 0.192 | 0.073 | −0.187 | 0.081 |
SPMSQ | −0.189 | 0.085 | −0.097 | 0.379 | 0.108 | 0.327 |
C-reactive protein, mg/L | −0.564 | <0.001 | −0.527 | <0.001 | 0.513 | <0.001 |
Fibrinogen, mg/dL | −0.337 | <0.001 | −0.307 | <0.001 | 0.293 | <0.001 |
D-dimer, μg/mL | −0.363 | <0.001 | −0.383 | <0.001 | 0.296 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Vincenzo, O.; Pagano, E.; Cervone, M.; Natale, R.; Morena, A.; Esposito, A.; Pasanisi, F.; Scalfi, L. High Nutritional Risk Is Associated with Poor Functional Status and Prognostic Biomarkers in Stroke Patients at Admission to a Rehabilitation Unit. Nutrients 2023, 15, 4144. https://doi.org/10.3390/nu15194144
Di Vincenzo O, Pagano E, Cervone M, Natale R, Morena A, Esposito A, Pasanisi F, Scalfi L. High Nutritional Risk Is Associated with Poor Functional Status and Prognostic Biomarkers in Stroke Patients at Admission to a Rehabilitation Unit. Nutrients. 2023; 15(19):4144. https://doi.org/10.3390/nu15194144
Chicago/Turabian StyleDi Vincenzo, Olivia, Ermenegilda Pagano, Mariarosaria Cervone, Raffaele Natale, Annadora Morena, Alessandra Esposito, Fabrizio Pasanisi, and Luca Scalfi. 2023. "High Nutritional Risk Is Associated with Poor Functional Status and Prognostic Biomarkers in Stroke Patients at Admission to a Rehabilitation Unit" Nutrients 15, no. 19: 4144. https://doi.org/10.3390/nu15194144
APA StyleDi Vincenzo, O., Pagano, E., Cervone, M., Natale, R., Morena, A., Esposito, A., Pasanisi, F., & Scalfi, L. (2023). High Nutritional Risk Is Associated with Poor Functional Status and Prognostic Biomarkers in Stroke Patients at Admission to a Rehabilitation Unit. Nutrients, 15(19), 4144. https://doi.org/10.3390/nu15194144