Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design, Body Composition Measures, and Blood Sample Collection
2.3. Choline, Betaine, Trimethylamine N-Oxide, and L-Carnitine Quantification
2.4. Ceramide Quantification
2.5. Lysophosphatidylcholine Quantification
2.6. Statistical Analyses
3. Results
3.1. Study Diet
3.2. Baseline (Week 0) Characteristics of Study Participants
3.3. Week 12 Outcomes in Response to the Intervention
3.4. Changes in Plasma Choline, Choline Metabolites, Total Ceramide, and Triglycerides in Response to the Study Diet
3.5. Changes in LPC, Sphingomyelin, and Ceramide Species in Response to the Diet Intervention
3.6. Changes in Choline, Betaine, L-Carnitine, TMAO, Sphingomyelins, Ceramides, and LPCs in Correlation with Changes in Body Composition, Cardiometabolic, and Inflammatory Markers
4. Discussion
4.1. In Response to the Dietary Choline and Betaine Provided by the DASH Diet, Plasma Choline Decreased and in Males Plasma Betaine Increased
4.2. Plasma Dimethylglycine Decreased in Response to the DASH Diet, and Males Had Higher DMG Compared to Females
4.3. Plasma Phosphatidylcholine Decreased in Response to the Dietary Phosphatidylcholine Provided by the DASH Diet
4.4. In Response to the DASH Diet Total Lysophosphatidylcholine Increased
4.5. Trimethylamine N-Oxide Increased in Response to a Higher Beef Intake
4.6. Total Ceramide Decreased in Response to the DASH Diet
4.7. In Response to the DASH Diet Plasma Triglycerides Decreased and Males Had Higher Triglycerides Compared to Females
4.8. Lysophosphatidylcholine Species Increased in Association with Biomarkers of Inflammatory and Muscle Health
4.9. Sphingomyelin Species Respond Differentially in Association with Body Composition and Cardiometabolic Outcomes
4.10. In Response to the DASH Diet Ceramide Species Respond Differentially
4.11. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
BMI | Body Mass Index |
CVD | Cardiovascular Disease |
DASH | Dietary Approaches to Stop Hypertension |
DGA | Dietary Guidelines for Americans |
DMG | Dimethylglycine |
FFQ | Food Frequency Questionnaire |
GPC | Glycerophosphotidylcholine |
LDL-C | Low-Density Lipoprotein Cholesterol |
LPC | Lysophosphatidylcholine |
NHANES | National Health and Nutrition Examination Survey |
PC | Phosphatidylcholine |
SMM | Skeletal Muscle Mass |
TMAO | Trimethylamine N-Oxide |
T2DM | Type-2 Diabetes Mellitus |
US | United States |
USDA | United States Department of Agriculture |
References
- St-Onge, M.P.; Gallagher, D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 2010, 26, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Al-Sofiani, M.E.; Ganji, S.S.; Kalyani, R.R. Body composition changes in diabetes and aging. J. Diabetes Complicat. 2019, 33, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tan, Y.; Shi, Y.; Wang, X.; Liao, Z.; Wei, P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front. Endocrinol. 2020, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Shulkin, M.L.; Peñalvo, J.L.; Khatibzadeh, S.; Singh, G.M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS ONE 2017, 12, e0175149. [Google Scholar] [CrossRef]
- Anderson, A.L.; Harris, T.B.; Tylavsky, F.A.; Perry, S.E.; Houston, D.K.; Hue, T.F.; Strotmeyer, E.S.; Sahyoun, N.R. Dietary patterns and survival of older adults. J. Am. Diet. Assoc. 2011, 111, 84–91. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Prevention, C.f.D.C.a. Adult Obesity Facts. Available online: https://www.cdc.gov/obesity/data/adult.html (accessed on 17 June 2023).
- National Council on Aging. Get the Facts on Chronic Disease Self-Management. Available online: https://www.ncoa.org/article/get-the-facts-on-chronic-disease-self-management (accessed on 21 June 2023).
- United States Census Bureau. Older Population and Aging. Available online: https://www.census.gov/topics/population/older-aging.html (accessed on 17 June 2023).
- Jardim, T.V.; Mozaffarian, D.; Abrahams-Gessel, S.; Sy, S.; Lee, Y.; Liu, J.; Huang, Y.; Rehm, C.; Wilde, P.; Micha, R.; et al. Cardiometabolic disease costs associated with suboptimal diet in the United States: A cost analysis based on a microsimulation model. PLoS Med. 2019, 16, e1002981. [Google Scholar] [CrossRef]
- Zeisel, S.H. The fetal origins of memory: The role of dietary choline in optimal brain development. J. Pediatr. 2006, 149, S131–S136. [Google Scholar] [CrossRef]
- Zeisel, S.H. Choline: Critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 2006, 26, 229–250. [Google Scholar] [CrossRef]
- Leermakers, E.T.; Moreira, E.M.; Kiefte-de Jong, J.C.; Darweesh, S.K.; Visser, T.; Voortman, T.; Bautista, P.K.; Chowdhury, R.; Gorman, D.; Bramer, W.M.; et al. Effects of choline on health across the life course: A systematic review. Nutr. Rev. 2015, 73, 500–522. [Google Scholar] [CrossRef]
- Wiedeman, A.M.; Barr, S.I.; Green, T.J.; Xu, Z.; Innis, S.M.; Kitts, D.D. Dietary Choline Intake: Current State of Knowledge across the Life Cycle. Nutrients 2018, 10, 1513. [Google Scholar] [CrossRef] [PubMed]
- Cools, A.; Maes, D.; Buyse, J.; Kalmar, I.D.; Vandermeiren, J.A.; Janssens, G.P. Effect of N,N-dimethylglycine supplementation in parturition feed for sows on metabolism, nutrient digestibility and reproductive performance. Animal 2010, 4, 2004–2011. [Google Scholar] [CrossRef]
- Tonda, M.E.; Hart, L.L. N,N dimethylglycine and L-carnitine as performance enhancers in athletes. Ann. Pharmacother. 1992, 26, 935–937. [Google Scholar] [PubMed]
- Kharbanda, K.K. Methionine metabolic pathway in alcoholic liver injury. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.N.; Risis, S.; Yang, C.; Meikle, P.J.; Staples, M.; Febbraio, M.A.; Bruce, C.R. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE 2012, 7, e41456. [Google Scholar] [CrossRef]
- Pietiläinen, K.H.; Sysi-Aho, M.; Rissanen, A.; Seppänen-Laakso, T.; Yki-Järvinen, H.; Kaprio, J.; Oresic, M. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects—A monozygotic twin study. PLoS ONE 2007, 2, e218. [Google Scholar] [CrossRef] [PubMed]
- Rabini, R.A.; Galassi, R.; Fumelli, P.; Dousset, N.; Solera, M.L.; Valdiguie, P.; Curatola, G.; Ferretti, G.; Taus, M.; Mazzanti, L. Reduced Na(+)-K(+)-ATPase activity and plasma lysophosphatidylcholine concentrations in diabetic patients. Diabetes 1994, 43, 915–919. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, C.-T.; Song, J.-Y.; Song, Q.-Y.; Ma, J.; Wang, H.-J. Lipidomic Profile Revealed the Association of Plasma Lysophosphatidylcholines with Adolescent Obesity. BioMed Res. Int. 2019, 2019, 1382418. [Google Scholar] [CrossRef]
- Knuplez, E.; Marsche, G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int. J. Mol. Sci. 2020, 21, 4501. [Google Scholar] [CrossRef]
- Fretts, A.M.; Jensen, P.N.; Hoofnagle, A.N.; McKnight, B.; Sitlani, C.M.; Siscovick, D.S.; King, I.B.; Psaty, B.M.; Sotoodehnia, N.; Lemaitre, R.N. Circulating Ceramides and Sphingomyelins and Risk of Mortality: The Cardiovascular Health Study. Clin. Chem. 2021, 67, 1650–1659. [Google Scholar] [CrossRef]
- Lemaitre, R.N.; Jensen, P.N.; Hoofnagle, A.; McKnight, B.; Fretts, A.M.; King, I.B.; Siscovick, D.S.; Psaty, B.M.; Heckbert, S.R.; Mozaffarian, D.; et al. Plasma Ceramides and Sphingomyelins in Relation to Heart Failure Risk. Circ. Heart Fail. 2019, 12, e005708. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.N.; Fretts, A.M.; Hoofnagle, A.N.; Sitlani, C.M.; McKnight, B.; King, I.B.; Siscovick, D.S.; Psaty, B.M.; Heckbert, S.R.; Mozaffarian, D.; et al. Plasma Ceramides and Sphingomyelins in Relation to Atrial Fibrillation Risk: The Cardiovascular Health Study. J. Am. Heart Assoc. 2020, 9, e012853. [Google Scholar] [CrossRef] [PubMed]
- McFadden, J.W.; Rico, J.E. Invited review: Sphingolipid biology in the dairy cow: The emerging role of ceramide. J. Dairy Sci. 2019, 102, 7619–7639. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- Sokolowska, E.; Blachnio-Zabielska, A. The Role of Ceramides in Insulin Resistance. Front. Endocrinol. 2019, 10, 577. [Google Scholar] [CrossRef]
- Søgaard, D.; Baranowski, M.; Larsen, S.; Taulo Lund, M.; Munk Scheuer, C.; Vestergaard Abildskov, C.; Greve Dideriksen, S.; Dela, F.; Wulff Helge, J. Muscle-Saturated Bioactive Lipids Are Increased with Aging and Influenced by High-Intensity Interval Training. Int. J. Mol. Sci. 2019, 20, 1240. [Google Scholar] [CrossRef]
- Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; Defronzo, R.A.; Kirwan, J.P. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009, 58, 337–343. [Google Scholar] [CrossRef]
- Rivas, D.A.; Morris, E.P.; Haran, P.H.; Pasha, E.P.; Morais Mda, S.; Dolnikowski, G.G.; Phillips, E.M.; Fielding, R.A. Increased ceramide content and NFκB signaling may contribute to the attenuation of anabolic signaling after resistance exercise in aged males. J. Appl. Physiol. 2012, 113, 1727–1736. [Google Scholar] [CrossRef]
- Mathews, A.T.; Famodu, O.A.; Olfert, M.D.; Murray, P.J.; Cuff, C.F.; Downes, M.T.; Haughey, N.J.; Colby, S.E.; Chantler, P.D.; Olfert, I.M.; et al. Efficacy of nutritional interventions to lower circulating ceramides in young adults: FRUVEDomic pilot study. Physiol. Rep. 2017, 5, e13329. [Google Scholar] [CrossRef]
- Drehmer, M.; Odegaard, A.O.; Schmidt, M.I.; Duncan, B.B.; Cardoso, L.O.; Matos, S.M.A.; Molina, M.; Barreto, S.M.; Pereira, M.A. Brazilian dietary patterns and the dietary approaches to stop hypertension (DASH) diet-relationship with metabolic syndrome and newly diagnosed diabetes in the ELSA-Brasil study. Diabetol. Metab. Syndr. 2017, 9, 13. [Google Scholar] [CrossRef]
- Hekmatdoost, A.; Shamsipour, A.; Meibodi, M.; Gheibizadeh, N.; Eslamparast, T.; Poustchi, H. Adherence to the Dietary Approaches to Stop Hypertension (DASH) and risk of Nonalcoholic Fatty Liver Disease. Int. J. Food Sci. Nutr. 2016, 67, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Pistollato, F.; Iglesias, R.C.; Ruiz, R.; Aparicio, S.; Crespo, J.; Lopez, L.D.; Manna, P.P.; Giampieri, F.; Battino, M. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacol. Res. 2018, 131, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Custodero, C.; Lozupone, M.; Imbimbo, B.P.; Valiani, V.; Agosti, P.; Schilardi, A.; D’Introno, A.; La Montagna, M.; Calvani, M.; et al. Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. J. Alzheimers Dis. 2017, 59, 815–849. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, A.A.M.; Kang, J.H.; van de Rest, O.; Feskens, E.J.M.; de Groot, L.; Grodstein, F. The Dietary Approaches to Stop Hypertension Diet, Cognitive Function, and Cognitive Decline in American Older Women. J. Am. Med. Dir. Assoc. 2017, 18, 427–432. [Google Scholar] [CrossRef]
- Perry, C.A.; Van Guilder, G.P.; Kauffman, A.; Hossain, M. A Calorie-Restricted DASH Diet Reduces Body Fat and Maintains Muscle Strength in Obese Older Adults. Nutrients 2019, 12, 102. [Google Scholar] [CrossRef]
- Perry, C.A.; Van Guilder, G.P.; Hossain, M.; Kauffman, A. Cardiometabolic Changes in Response to a Calorie-Restricted DASH Diet in Obese Older Adults. Front. Nutr. 2021, 8, 647847. [Google Scholar] [CrossRef]
- Perry, C.A.; Van Guilder, G.P.; Butterick, T.A. Decreased myostatin in response to a controlled DASH diet is associated with improved body composition and cardiometabolic biomarkers in older adults: Results from a controlled-feeding diet intervention study. BMC Nutr. 2022, 8, 24. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Agriculture Research Service. Dietary Guidelines for Americans 2015–2020. Available online: https://health.gov/sites/default/files/2019-09/2015-2020_Dietary_Guidelines.pdf (accessed on 7 March 2017).
- National Heart, Lung, and Blood Institute. DASH Eating Plan. Available online: https://www.nhlbi.nih.gov/education/dash-eating-plan (accessed on 3 March 2017).
- Jackson, K.H.; Van Guilder, G.P.; Tintle, N.; Tate, B.; McFadden, J.; Perry, C.A. Plasma fatty acid responses to a calorie-restricted, DASH-style diet with lean beef. Prostaglandins Leukot. Essent. Fatty Acids 2022, 179, 102413. [Google Scholar] [CrossRef]
- Andraos, S.; Jones, B.; Lange, K.; Clifford, S.A.; Thorstensen, E.B.; Kerr, J.A.; Wake, M.; Saffery, R.; Burgner, D.P.; O’Sullivan, J.M. Trimethylamine N-oxide (TMAO) Is not Associated with Cardiometabolic Phenotypes and Inflammatory Markers in Children and Adults. Curr. Dev. Nutr. 2021, 5, nzaa179. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Agriculture Research Service. FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 10 March 2023).
- United States Department Agriculture, Agriculture Research Service. USDA Database for the Choline Content of Common Foods. Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/data/choline/choln02.pdf (accessed on 23 May 2023).
- National Institute of Health. Carnitine Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Carnitine-HealthProfessional/ (accessed on 9 May 2023).
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. The National Academies Collection: Reports funded by National Institutes of Health. In Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B(6), Folate, Vitamin B(12), Pantothenic Acid, Biotin, and Choline; National Academy of Sciences: Washington, DC, USA, 1998. Available online: https://www.ncbi.nlm.nih.gov/books/NBK114310/ (accessed on 9 May 2023).
- US Department of Agriculture, A.R.S. Nutrient Intakes from Food and Beverages: Mean Amounts Consumed per Individual, by Gender and Age, NHANES 2013-2014. What We Eat Am. 2016, 16–30, 2003. Available online: https://www.ars.usda.gov/arsuserfiles/80400530/pdf/1314/table_1_nin_gen_13.pdf (accessed on 9 May 2023).
- Gao, X.; Wang, Y.; Randell, E.; Pedram, P.; Yi, Y.; Gulliver, W.; Sun, G. Higher Dietary Choline and Betaine Intakes Are Associated with Better Body Composition in the Adult Population of Newfoundland, Canada. PLoS ONE 2016, 11, e0155403. [Google Scholar] [CrossRef] [PubMed]
- Golzarand, M.; Mirmiran, P.; Azizi, F. Association between dietary choline and betaine intake and 10.6-year cardiovascular disease in adults. Nutr. J. 2022, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Lemos, B.S.; Medina-Vera, I.; Malysheva, O.V.; Caudill, M.A.; Fernandez, M.L. Effects of Egg Consumption and Choline Supplementation on Plasma Choline and Trimethylamine-N-Oxide in a Young Population. J. Am. Coll. Nutr. 2018, 37, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.M.; daCosta, K.A.; Kwock, L.; Stewart, P.W.; Lu, T.S.; Stabler, S.P.; Allen, R.H.; Zeisel, S.H. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am. J. Clin. Nutr. 2007, 85, 1275–1285. [Google Scholar] [CrossRef]
- Veenema, K.; Solis, C.; Li, R.; Wang, W.; Maletz, C.V.; Abratte, C.M.; Caudill, M.A. Adequate Intake levels of choline are sufficient for preventing elevations in serum markers of liver dysfunction in Mexican American men but are not optimal for minimizing plasma total homocysteine increases after a methionine load. Am. J. Clin. Nutr. 2008, 88, 685–692. [Google Scholar] [CrossRef]
- Horita, D.A.; Hwang, S.; Stegall, J.M.; Friday, W.B.; Kirchner, D.R.; Zeisel, S.H. Two methods for assessment of choline status in a randomized crossover study with varying dietary choline intake in people: Isotope dilution MS of plasma and in vivo single-voxel magnetic resonance spectroscopy of liver. Am. J. Clin. Nutr. 2021, 113, 1670–1678. [Google Scholar] [CrossRef]
- Gao, X.; Randell, E.; Zhou, H.; Sun, G. Higher serum choline and betaine levels are associated with better body composition in male but not female population. PLoS ONE 2018, 13, e0193114. [Google Scholar] [CrossRef]
- Elsawy, G.; Abdelrahman, O.; Hamza, A. Effect of choline supplementation on rapid weight loss and biochemical variables among female taekwondo and judo athletes. J. Hum. Kinet. 2014, 40, 77–82. [Google Scholar] [CrossRef]
- Mlodzik-Czyzewska, M.A.; Malinowska, A.M.; Szwengiel, A.; Chmurzynska, A. Associations of plasma betaine, plasma choline, choline intake, and MTHFR polymorphism (rs1801133) with anthropometric parameters of healthy adults are sex-dependent. J. Hum. Nutr. Diet 2022, 35, 701–712. [Google Scholar] [CrossRef]
- Meyer, K.A.; Shea, J.W. Dietary Choline and Betaine and Risk of CVD: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2017, 9, 711. [Google Scholar] [CrossRef]
- Ueland, P.M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 2011, 34, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Yonemori, K.M.; Lim, U.; Koga, K.R.; Wilkens, L.R.; Au, D.; Boushey, C.J.; Le Marchand, L.; Kolonel, L.N.; Murphy, S.P. Dietary choline and betaine intakes vary in an adult multiethnic population. J. Nutr. 2013, 143, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, M.K.; Paal, M.C.; Donohue, T.M., Jr.; Ganesan, M.; Osna, N.A.; Kharbanda, K.K. Beneficial Effects of Betaine: A Comprehensive Review. Biology 2021, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, H.; Guo, X.-f.; Li, K.; Li, S.; Li, D. Effect of Betaine on Reducing Body Fat—A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 2480. [Google Scholar] [CrossRef]
- Huang, Q.C.; Xu, Z.R.; Han, X.Y.; Li, W.F. Effect of betaine on growth hormone pulsatile secretion and serum metabolites in finishing pigs. J. Anim. Physiol. Anim. Nutr. 2007, 91, 85–90. [Google Scholar] [CrossRef]
- Apicella, J.M.; Lee, E.C.; Bailey, B.L.; Saenz, C.; Anderson, J.M.; Craig, S.A.; Kraemer, W.J.; Volek, J.S.; Maresh, C.M. Betaine supplementation enhances anabolic endocrine and Akt signaling in response to acute bouts of exercise. Eur. J. Appl. Physiol. 2013, 113, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Najib, S.; Sánchez-Margalet, V. Homocysteine thiolactone inhibits insulin-stimulated DNA and protein synthesis: Possible role of mitogen-activated protein kinase (MAPK), glycogen synthase kinase-3 (GSK-3) and p70 S6K phosphorylation. J. Mol. Endocrinol. 2005, 34, 119–126. [Google Scholar] [CrossRef]
- Thomas, M.S.; DiBella, M.; Blesso, C.N.; Malysheva, O.; Caudill, M.; Sholola, M.; Cooperstone, J.L.; Fernandez, M.L. Comparison between Egg Intake versus Choline Supplementation on Gut Microbiota and Plasma Carotenoids in Subjects with Metabolic Syndrome. Nutrients 2022, 14, 1179. [Google Scholar] [CrossRef]
- Grizales, A.M.; Patti, M.-E.; Lin, A.P.; Beckman, J.A.; Sahni, V.A.; Cloutier, E.; Fowler, K.M.; Dreyfuss, J.M.; Pan, H.; Kozuka, C.; et al. Metabolic Effects of Betaine: A Randomized Clinical Trial of Betaine Supplementation in Prediabetes. J. Clin. Endocrinol. Metab. 2018, 103, 3038–3049. [Google Scholar] [CrossRef]
- Price, R.K.; Keaveney, E.M.; Hamill, L.L.; Wallace, J.M.; Ward, M.; Ueland, P.M.; McNulty, H.; Strain, J.J.; Parker, M.J.; Welch, R.W. Consumption of wheat aleurone-rich foods increases fasting plasma betaine and modestly decreases fasting homocysteine and LDL-cholesterol in adults. J. Nutr. 2010, 140, 2153–2157. [Google Scholar] [CrossRef]
- Allen, R.H.; Stabler, S.P.; Lindenbaum, J. Serum betaine, N,N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism 1993, 42, 1448–1460. [Google Scholar] [CrossRef] [PubMed]
- Schwab, U.; Alfthan, G.; Aro, A.; Uusitupa, M. Long-term effect of betaine on risk factors associated with the metabolic syndrome in healthy subjects. Eur. J. Clin. Nutr. 2011, 65, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Van Parys, A.; Brække, M.S.; Karlsson, T.; Vinknes, K.J.; Tell, G.S.; Haugsgjerd, T.R.; Ueland, P.M.; Øyen, J.; Dierkes, J.; Nygård, O.; et al. Assessment of Dietary Choline Intake, Contributing Food Items, and Associations with One-Carbon and Lipid Metabolites in Middle-Aged and Elderly Adults: The Hordaland Health Study. J. Nutr. 2022, 152, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Gillies, N.A.; Franzke, B.; Wessner, B.; Schober-Halper, B.; Hofmann, M.; Oesen, S.; Tosevska, A.; Strasser, E.-M.; Roy, N.C.; Milan, A.M.; et al. Nutritional supplementation alters associations between one-carbon metabolites and cardiometabolic risk profiles in older adults: A secondary analysis of the Vienna Active Ageing Study. Eur. J. Nutr. 2022, 61, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Nitter, M.; Norgård, B.; de Vogel, S.; Eussen, S.J.; Meyer, K.; Ulvik, A.; Ueland, P.M.; Nygård, O.; Vollset, S.E.; Bjørge, T.; et al. Plasma methionine, choline, betaine, and dimethylglycine in relation to colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann. Oncol. 2014, 25, 1609–1615. [Google Scholar] [CrossRef]
- Moaddel, R.; Fabbri, E.; Khadeer, M.A.; Carlson, O.D.; Gonzalez-Freire, M.; Zhang, P.; Semba, R.D.; Ferrucci, L. Plasma Biomarkers of Poor Muscle Quality in Older Men and Women from the Baltimore Longitudinal Study of Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1266–1272. [Google Scholar] [CrossRef]
- Maki, K.C.; Wilcox, M.L.; Dicklin, M.R.; Buggia, M.; Palacios, O.M.; Maki, C.E.; Kramer, M. Substituting Lean Beef for Carbohydrate in a Healthy Dietary Pattern Does Not Adversely Affect the Cardiometabolic Risk Factor Profile in Men and Women at Risk for Type 2 Diabetes. J. Nutr. 2020, 150, 1824–1833. [Google Scholar] [CrossRef]
- Sanders, L.M.; Wilcox, M.L.; Maki, K.C. Red meat consumption and risk factors for type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2023, 77, 156–165. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Rimm, E.B.; Hu, F.B.; Albert, C.M.; Rexrode, K.M.; Manson, J.E.; Qi, L. Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and men. Am. J. Clin. Nutr. 2016, 104, 173–180. [Google Scholar] [CrossRef]
- Geijsen, A.; Kok, D.E.; van Zutphen, M.; Keski-Rahkonen, P.; Achaintre, D.; Gicquiau, A.; Gsur, A.; Kruyt, F.M.; Ulrich, C.M.; Weijenberg, M.P.; et al. Diet quality indices and dietary patterns are associated with plasma metabolites in colorectal cancer patients. Eur. J. Nutr. 2021, 60, 3171–3184. [Google Scholar] [CrossRef]
- Nylén, C.; Lundell, L.S.; Massart, J.; Zierath, J.R.; Näslund, E. Short-term low-calorie diet remodels skeletal muscle lipid profile and metabolic gene expression in obese adults. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E178–E185. [Google Scholar] [CrossRef] [PubMed]
- Semba Semba, R.D.; Gonzalez-Freire, M.; Moaddel, R.; Sun, K.; Fabbri, E.; Zhang, P.; Carlson, O.D.; Khadeer, M.; Chia, C.W.; Salem, N., Jr.; et al. Altered Plasma Amino Acids and Lipids Associated with Abnormal Glucose Metabolism and Insulin Resistance in Older Adults. J. Clin. Endocrinol. Metab. 2018, 103, 3331–3339. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.M.; Johannsen, D.L.; Ravussin, E. Skeletal muscle mitochondria and aging: A review. J. Aging Res. 2012, 2012, 194821. [Google Scholar] [CrossRef] [PubMed]
- Law, S.H.; Chan, M.L.; Marathe, G.K.; Parveen, F.; Chen, C.H.; Ke, L.Y. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int. J. Mol. Sci. 2019, 20, 1149. [Google Scholar] [CrossRef] [PubMed]
- Packard, C.J.; O’Reilly, D.S.; Caslake, M.J.; McMahon, A.D.; Ford, I.; Cooney, J.; Macphee, C.H.; Suckling, K.E.; Krishna, M.; Wilkinson, F.E.; et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 2000, 343, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Gao, P.; Orfei, L.; Watson, S.; Di Angelantonio, E.; Kaptoge, S.; Ballantyne, C.; Cannon, C.P.; Criqui, M.; Cushman, M.; et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: Collaborative analysis of 32 prospective studies. Lancet 2010, 375, 1536–1544. [Google Scholar] [CrossRef]
- Chen, C.; Luo, F.; Wu, P.; Huang, Y.; Das, A.; Chen, S.; Chen, J.; Hu, X.; Li, F.; Fang, Z.; et al. Metabolomics reveals metabolite changes of patients with pulmonary arterial hypertension in China. J. Cell Mol. Med. 2020, 24, 2484–2496. [Google Scholar] [CrossRef]
- Semba, R.D.; Zhang, P.; Adelnia, F.; Sun, K.; Gonzalez-Freire, M.; Salem, N., Jr.; Brennan, N.; Spencer, R.G.; Fishbein, K.; Khadeer, M.; et al. Low plasma lysophosphatidylcholines are associated with impaired mitochondrial oxidative capacity in adults in the Baltimore Longitudinal Study of Aging. Aging Cell 2019, 18, e12915. [Google Scholar] [CrossRef]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Warrier, M. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease. Annu. Rev. Nutr. 2017, 37, 157–181. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Fan, Y.; Levison, B.; Hazen, J.E.; Donahue, L.M.; Wu, Y.; Hazen, S.L. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol. 2014, 64, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015, 116, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef]
- Dehghan, P.; Farhangi, M.A.; Nikniaz, L.; Nikniaz, Z.; Asghari-Jafarabadi, M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: An exploratory systematic review and dose-response meta- analysis. Obes. Rev. 2020, 21, e12993. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Sannino, A.; Toscano, E.; Giugliano, G.; Gargiulo, G.; Franzone, A.; Trimarco, B.; Esposito, G.; Perrino, C. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur. Heart J. 2017, 38, 2948–2956. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Gertz, E.R.; Adams, S.H.; Newman, J.W.; Pedersen, T.L.; Keim, N.L.; Bennett, B.J. Effects of a diet based on the Dietary Guidelines on vascular health and TMAO in women with cardiometabolic risk factors. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 210–219. [Google Scholar] [CrossRef]
- Costabile, G.; Vetrani, C.; Bozzetto, L.; Giacco, R.; Bresciani, L.; Del Rio, D.; Vitale, M.; Della Pepa, G.; Brighenti, F.; Riccardi, G.; et al. Plasma TMAO increase after healthy diets: Results from 2 randomized controlled trials with dietary fish, polyphenols, and whole-grain cereals. Am. J. Clin. Nutr. 2021, 114, 1342–1350. [Google Scholar] [CrossRef]
- Cho, C.E.; Aardema, N.D.J.; Bunnell, M.L.; Larson, D.P.; Aguilar, S.S.; Bergeson, J.R.; Malysheva, O.V.; Caudill, M.A.; Lefevre, M. Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-N-Oxide Response in Healthy Men. Nutrients 2020, 12, 2220. [Google Scholar] [CrossRef]
- Yang, J.J.; Lipworth, L.P.; Shu, X.O.; Blot, W.J.; Xiang, Y.B.; Steinwandel, M.D.; Li, H.; Gao, Y.T.; Zheng, W.; Yu, D. Associations of choline-related nutrients with cardiometabolic and all-cause mortality: Results from 3 prospective cohort studies of blacks, whites, and Chinese. Am. J. Clin. Nutr. 2020, 111, 644–656. [Google Scholar] [CrossRef]
- Fu, B.C.; Hullar, M.A.J.; Randolph, T.W.; Franke, A.A.; Monroe, K.R.; Cheng, I.; Wilkens, L.R.; Shepherd, J.A.; Madeleine, M.M.; Le Marchand, L.; et al. Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am. J. Clin. Nutr. 2020, 111, 1226–1234. [Google Scholar] [CrossRef]
- Yang, J.J.; Shu, X.O.; Herrington, D.M.; Moore, S.C.; Meyer, K.A.; Ose, J.; Menni, C.; Palmer, N.D.; Eliassen, H.; Harada, S.; et al. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: An international pooled analysis. Am. J. Clin. Nutr. 2021, 113, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- James, K.L.; Gertz, E.R.; Cervantes, E.; Bonnel, E.L.; Stephensen, C.B.; Kable, M.E.; Bennett, B.J. Diet, Fecal Microbiome, and Trimethylamine N-Oxide in a Cohort of Metabolically Healthy United States Adults. Nutrients 2022, 14, 1376. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Ivey, K.L.; Wang, D.D.; Wilkinson, J.E.; Franke, A.; Lee, K.H.; Chan, A.; Huttenhower, C.; Hu, F.B.; et al. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: Findings from a longitudinal cohort of US men. Gut 2022, 71, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Videja, M.; Sevostjanovs, E.; Upmale-Engela, S.; Liepinsh, E.; Konrade, I.; Dambrova, M. Fasting-Mimicking Diet Reduces Trimethylamine N-Oxide Levels and Improves Serum Biochemical Parameters in Healthy Volunteers. Nutrients 2022, 14, 1093. [Google Scholar] [CrossRef]
- Argyridou, S.; Davies, M.J.; Biddle, G.J.H.; Bernieh, D.; Suzuki, T.; Dawkins, N.P.; Rowlands, A.V.; Khunti, K.; Smith, A.C.; Yates, T. Evaluation of an 8-Week Vegan Diet on Plasma Trimethylamine-N-Oxide and Postchallenge Glucose in Adults with Dysglycemia or Obesity. J. Nutr. 2021, 151, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Genoni, A.; Christophersen, C.T.; Lo, J.; Coghlan, M.; Boyce, M.C.; Bird, A.R.; Lyons-Wall, P.; Devine, A. Long-term Paleolithic diet is associated with lower resistant starch intake, different gut microbiota composition and increased serum TMAO concentrations. Eur. J. Nutr. 2020, 59, 1845–1858. [Google Scholar] [CrossRef]
- Papandreou, C.; Moré, M.; Bellamine, A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020, 12, 1330. [Google Scholar] [CrossRef]
- Cho, C.E.; Caudill, M.A. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? Trends Endocrinol. Metab. 2017, 28, 121–130. [Google Scholar] [CrossRef]
- Raichur, S.; Brunner, B.; Bielohuby, M.; Hansen, G.; Pfenninger, A.; Wang, B.; Bruning, J.C.; Larsen, P.J.; Tennagels, N. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol. Metab. 2019, 21, 36–50. [Google Scholar] [CrossRef]
- Chaurasia, B.; Summers, S.A. Ceramides in Metabolism: Key Lipotoxic Players. Annu. Rev. Physiol. 2021, 83, 303–330. [Google Scholar] [CrossRef]
- Chiu, S.; Bergeron, N.; Williams, P.T.; Bray, G.A.; Sutherland, B.; Krauss, R.M. Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Konikowska, K.; Bombała, W.; Szuba, A.; Różańska, D.; Regulska-Ilow, B. A High-Quality Diet, as Measured by the DASH Score, Is Associated with a Lower Risk of Metabolic Syndrome and Visceral Obesity. Biomedicines 2023, 11, 317. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Blanco Mejia, S.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Kendall, C.W.; Sievenpiper, J.L. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Konstantinova, S.V.; Tell, G.S.; Vollset, S.E.; Nygård, O.; Bleie, Ø.; Ueland, P.M. Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J. Nutr. 2008, 138, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Noga, A.A.; Zhao, Y.; Vance, D.E. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J. Biol. Chem. 2002, 277, 42358–42365. [Google Scholar] [CrossRef] [PubMed]
- Hörl, G.; Wagner, A.; Cole, L.K.; Malli, R.; Reicher, H.; Kotzbeck, P.; Köfeler, H.; Höfler, G.; Frank, S.; Bogner-Strauss, J.G.; et al. Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J. Biol. Chem. 2011, 286, 17338–17350. [Google Scholar] [CrossRef]
- Vance, J.E.; Vance, D.E. The role of phosphatidylcholine biosynthesis in the secretion of lipoproteins from hepatocytes. Can. J. Biochem. Cell Biol. 1985, 63, 870–881. [Google Scholar] [CrossRef]
- Song, J.; da Costa, K.A.; Fischer, L.M.; Kohlmeier, M.; Kwock, L.; Wang, S.; Zeisel, S.H. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005, 19, 1266–1271. [Google Scholar] [CrossRef]
- Xing, J.; Kang, L.; Jiang, Y. Effect of dietary betaine supplementation on lipogenesis gene expression and CpG methylation of lipoprotein lipase gene in broilers. Mol. Biol. Rep. 2011, 38, 1975–1981. [Google Scholar] [CrossRef]
- Schwab, U.; Törrönen, A.; Toppinen, L.; Alfthan, G.; Saarinen, M.; Aro, A.; Uusitupa, M. Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am. J. Clin. Nutr. 2002, 76, 961–967. [Google Scholar] [CrossRef]
- Olthof, M.R.; van Vliet, T.; Verhoef, P.; Zock, P.L.; Katan, M.B. Effect of homocysteine-lowering nutrients on blood lipids: Results from four randomised, placebo-controlled studies in healthy humans. PLoS Med. 2005, 2, e135. [Google Scholar] [CrossRef] [PubMed]
- Luna-Castillo, K.P.; Olivares-Ochoa, X.C.; Hernández-Ruiz, R.G.; Llamas-Covarrubias, I.M.; Rodríguez-Reyes, S.C.; Betancourt-Núñez, A.; Vizmanos, B.; Martínez-López, E.; Muñoz-Valle, J.F.; Márquez-Sandoval, F.; et al. The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients 2022, 14, 1104. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, G. Effect of degree of weight loss on health benefits. Obes. Res. 1995, 3 (Suppl. S2), 211s–216s. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.D.; Lacher, D.A.; Sorlie, P.D.; Cleeman, J.I.; Gordon, D.J.; Wolz, M.; Grundy, S.M.; Johnson, C.L. Trends in serum lipids and lipoproteins of adults, 1960–2002. JAMA 2005, 294, 1773–1781. [Google Scholar] [CrossRef]
- United States Department of Health and Human Services. Appendix E-2.19 Low Density Lipoprotein Cholesterol (LDL-C) and Triglycerides, Adults Ages 20 Years and Older, NHANES 2009–2012. Available online: https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/previous-dietary-guidelines/2015/advisory-report/appendix-e-2/appendix-e-219 (accessed on 6 June 2023).
- Kus, V.; Flachs, P.; Kuda, O.; Bardova, K.; Janovska, P.; Svobodova, M.; Jilkova, Z.M.; Rossmeisl, M.; Wang-Sattler, R.; Yu, Z.; et al. Unmasking differential effects of rosiglitazone and pioglitazone in the combination treatment with n-3 fatty acids in mice fed a high-fat diet. PLoS ONE 2011, 6, e27126. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, M.; Jung, S.; Lee, S.H.; Lee, J.H. Altered plasma lysophosphatidylcholines and amides in non-obese and non-diabetic subjects with borderline-to-moderate hypertriglyceridemia: A case-control study. PLoS ONE 2015, 10, e0123306. [Google Scholar] [CrossRef]
- Lehmann, R.; Franken, H.; Dammeier, S.; Rosenbaum, L.; Kantartzis, K.; Peter, A.; Zell, A.; Adam, P.; Li, J.; Xu, G.; et al. Circulating lysophosphatidylcholines are markers of a metabolically benign nonalcoholic fatty liver. Diabetes Care 2013, 36, 2331–2338. [Google Scholar] [CrossRef]
- Gonzalez-Freire, M.; Moaddel, R.; Sun, K.; Fabbri, E.; Zhang, P.; Khadeer, M.; Salem, N., Jr.; Ferrucci, L.; Semba, R.D. Targeted Metabolomics Shows Low Plasma Lysophosphatidylcholine 18:2 Predicts Greater Decline of Gait Speed in Older Adults: The Baltimore Longitudinal Study of Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 62–67. [Google Scholar] [CrossRef]
- Klingler, C.; Zhao, X.; Adhikary, T.; Li, J.; Xu, G.; Häring, H.U.; Schleicher, E.; Lehmann, R.; Weigert, C. Lysophosphatidylcholines activate PPARδ and protect human skeletal muscle cells from lipotoxicity. Biochim. Biophys. Acta 2016, 1861, 1980–1992. [Google Scholar] [CrossRef]
- Laakso, M.; Kuusisto, J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat. Rev. Endocrinol. 2014, 10, 293–302. [Google Scholar] [CrossRef]
- Cabrera de León, A.; Oliva García, J.G.; Marcelino Rodríguez, I.; Almeida González, D.; Alemán Sánchez, J.J.; Brito Díaz, B.; Domínguez Coello, S.; Bertomeu Martínez, V.; Aguirre Jaime, A.; Rodríguez Pérez Mdel, C. C-peptide as a risk factor of coronary artery disease in the general population. Diab. Vasc. Dis. Res. 2015, 12, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Min, J.Y.; Min, K.B. Serum C-peptide levels and risk of death among adults without diabetes mellitus. CMAJ 2013, 185, E402–E408. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.A.; Arends, J.; Hodina, A.K.; Unger, C.; Massing, U. Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis. 2007, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.K.; Hartvigsen, K.; Ryu, J.; Kim, Y.; Han, K.H. The pro-atherogenic effects of macrophages are reduced upon formation of a complex between C-reactive protein and lysophosphatidylcholine. J. Inflamm. 2012, 9, 42. [Google Scholar] [CrossRef]
- Straczkowski, M.; Dzienis-Straczkowska, S.; Stêpieñ, A.; Kowalska, I.; Szelachowska, M.; Kinalska, I. Plasma interleukin-8 concentrations are increased in obese subjects and related to fat mass and tumor necrosis factor-alpha system. J. Clin. Endocrinol. Metab. 2002, 87, 4602–4606. [Google Scholar] [CrossRef]
- Haybar, H.; Shahrabi, S.; Deris Zayeri, Z.; Pezeshki, S. Strategies to increase cardioprotection through cardioprotective chemokines in chemotherapy-induced cardiotoxicity. Int. J. Cardiol. 2018, 269, 276–282. [Google Scholar] [CrossRef]
- Bi, X.; Song, J.; Gao, J.; Zhao, J.; Wang, M.; Scipione, C.A.; Koschinsky, M.L.; Wang, Z.V.; Xu, S.; Fu, G. Activation of liver X receptor attenuates lysophosphatidylcholine-induced IL-8 expression in endothelial cells via the NF-κB pathway and SUMOylation. J. Cell Mol. Med. 2016, 20, 2249–2258. [Google Scholar] [CrossRef]
- Riederer, M.; Lechleitner, M.; Hrzenjak, A.; Koefeler, H.; Desoye, G.; Heinemann, A.; Frank, S. Endothelial lipase (EL) and EL-generated lysophosphatidylcholines promote IL-8 expression in endothelial cells. Atherosclerosis 2011, 214, 338–344. [Google Scholar] [CrossRef]
- Chung, R.W.S.; Wang, Z.; Bursill, C.A.; Wu, B.J.; Barter, P.J.; Rye, K.A. Effect of long-term dietary sphingomyelin supplementation on atherosclerosis in mice. PLoS ONE 2017, 12, e0189523. [Google Scholar] [CrossRef]
- Millar, C.L.; Jiang, C.; Norris, G.H.; Garcia, C.; Seibel, S.; Anto, L.; Lee, J.Y.; Blesso, C.N. Cow’s milk polar lipids reduce atherogenic lipoprotein cholesterol, modulate gut microbiota and attenuate atherosclerosis development in LDL-receptor knockout mice fed a Western-type diet. J. Nutr. Biochem. 2020, 79, 108351. [Google Scholar] [CrossRef]
- Vors, C.; Joumard-Cubizolles, L.; Lecomte, M.; Combe, E.; Ouchchane, L.; Drai, J.; Raynal, K.; Joffre, F.; Meiller, L.; Le Barz, M.; et al. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: Towards a gut sphingomyelin-cholesterol interplay. Gut 2020, 69, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Millar, C.L.; Norris, G.H.; Vitols, A.; Garcia, C.; Seibel, S.; Anto, L.; Blesso, C.N. Dietary Egg Sphingomyelin Prevents Aortic Root Plaque Accumulation in Apolipoprotein-E Knockout Mice. Nutrients 2019, 11, 1124. [Google Scholar] [CrossRef]
- Walls, S.M., Jr.; Attle, S.J.; Brulte, G.B.; Walls, M.L.; Finley, K.D.; Chatfield, D.A.; Herr, D.R.; Harris, G.L. Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila. PLoS Genet. 2013, 9, e1003970. [Google Scholar] [CrossRef] [PubMed]
- Le Barz, M.; Boulet, M.M.; Calzada, C.; Cheillan, D.; Michalski, M.C. Alterations of endogenous sphingolipid metabolism in cardiometabolic diseases: Towards novel therapeutic approaches. Biochimie 2020, 169, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Ussher, J.R.; Koves, T.R.; Cadete, V.J.; Zhang, L.; Jaswal, J.S.; Swyrd, S.J.; Lopaschuk, D.G.; Proctor, S.D.; Keung, W.; Muoio, D.M.; et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 2010, 59, 2453–2464. [Google Scholar] [CrossRef]
- Jiang, X.C.; Paultre, F.; Pearson, T.A.; Reed, R.G.; Francis, C.K.; Lin, M.; Berglund, L.; Tall, A.R. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2614–2618. [Google Scholar] [CrossRef]
- Chung, R.W.; Kamili, A.; Tandy, S.; Weir, J.M.; Gaire, R.; Wong, G.; Meikle, P.J.; Cohn, J.S.; Rye, K.A. Dietary sphingomyelin lowers hepatic lipid levels and inhibits intestinal cholesterol absorption in high-fat-fed mice. PLoS ONE 2013, 8, e55949. [Google Scholar] [CrossRef]
- Yamauchi, I.; Uemura, M.; Hosokawa, M.; Iwashima-Suzuki, A.; Shiota, M.; Miyashita, K. The dietary effect of milk sphingomyelin on the lipid metabolism of obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. Food Funct. 2016, 7, 3854–3867. [Google Scholar] [CrossRef]
- Mielke, M.M.; Bandaru, V.V.; Han, D.; An, Y.; Resnick, S.M.; Ferrucci, L.; Haughey, N.J. Demographic and clinical variables affecting mid- to late-life trajectories of plasma ceramide and dihydroceramide species. Aging Cell. 2015, 14, 1014–1023. [Google Scholar] [CrossRef]
- Mielke, M.M.; Haughey, N.J.; Han, D.; An, Y.; Bandaru, V.V.R.; Lyketsos, C.G.; Ferrucci, L.; Resnick, S.M. The Association between Plasma Ceramides and Sphingomyelins and Risk of Alzheimer’s Disease Differs by Sex and APOE in the Baltimore Longitudinal Study of Aging. J. Alzheimers Dis. 2017, 60, 819–828. [Google Scholar] [CrossRef]
- Boon, J.; Hoy, A.J.; Stark, R.; Brown, R.D.; Meex, R.C.; Henstridge, D.C.; Schenk, S.; Meikle, P.J.; Horowitz, J.F.; Kingwell, B.A.; et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 2013, 62, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Wong, G.; Barlow, C.K.; Weir, J.M.; Greeve, M.A.; MacIntosh, G.L.; Almasy, L.; Comuzzie, A.G.; Mahaney, M.C.; Kowalczyk, A.; et al. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS ONE 2013, 8, e74341. [Google Scholar] [CrossRef] [PubMed]
Estimated Dietary Amount (mg/d) | |
---|---|
* Total Choline | |
Diet + 3 oz beef | 257 |
Diet + 6 oz beef | 336 |
* Betaine | |
Diet + 3 oz beef | 28 |
Diet + 6 oz beef | 35 |
+ Glycerophosphocholine | |
Diet + 3 oz beef | 50 |
Diet + 6 oz beef | 53 |
+ Phosphocholine | |
Diet + 3 oz beef | 13 |
Diet + 6 oz beef | 13 |
+ Phosphatidylcholine | |
Diet + 3 oz beef | 78 |
Diet + 6 oz beef | 85 |
+ Sphingomyelin | |
Diet + 3 oz beef | 14 |
Diet + 6 oz beef | 21 |
# L-Carnitine | |
3 oz beef only | 70 |
6 oz beef only | 140 |
^ Methionine | |
Diet + 3 oz beef | 1350 |
Diet + 6 oz beef | 1957 |
Baseline | Week 12 | |||||||
---|---|---|---|---|---|---|---|---|
Variables | 3 oz Beef Group (n = 15) | 6 oz Beef Group (n = 13) | * p-Value | 3 oz Beef Group (n = 15) | % Change from Baseline | 6 oz Beef Group (n = 15) | % Change from Baseline | ** p-Value |
Choline (nM/mL) | 11.9 (2.8) | 11.4 (2.4) | 0.643 | 11.6 (2.9) | −3.4 (19.6) | 11.5 (2.3) | −10.6 (22.1) | 0.388 |
Betaine (nM/mL) | 37.9 (12.2) | 35.1 (6.7) | 0.493 | 37.3 (11.9) | 3.4 (24.0) | 35.0 (6.5) | −1.7 (30.7) | 0.646 |
Methionine (μM/mL) | 34.85 (7.14) | 32.09 (5.10) | 0.268 | 32.69 (4.18) | −3.57 (22.75) | 32.67 (6.78) | 2.60 (18.36) | 0.973 |
DMG (μM/mL) | 2.81 (0.70) | 2.42 (0.73) | 0.504 | 2.52 (0.84) | −8.32 (17.83) | 2.15 (0.71) | −8.98 (21.44) | 0.223 |
Total PC (μg/mL) | 1448.7 (530.6) | 1315.0 (550.3) | 0.526 | 643.2 (145.1) | −55.6 (14.6) | 721.9 (156.0) | −45.1 (23.6) | 0.196 |
Total LPC (μg/mL) | 30.7 (3.4) | 27.9 (3.8) | 0.050 | 110.0 (7.6) | 258.3 (33.6) | 114.3 (7.6) | 309.7 (64.1) | 0.171 |
Sphingomeylin (μM/mL) | 132.7 (19.0) | 139.0 (23.4) | 0.503 | 140.4 (15.87 | 8.6 (16.4) | 142.9 (18.4) | 5.9 (21.4) | 0.743 |
TMAO (nM/mL) | 4.3 (1.6) | 4.5 (3.5) | 0.980 | 4.6 (2.1) | 12.0 (44.1) | 5.2 (3.4) | 61.7 (65.8) | 0.033 |
L-Carnitine (nM/mL) | 54.1 (48.5) | 49.2 (37.1) | 0.631 | 62.2 (26.5) | 25.3 (48.7) | 61.4 (29.9) | 18.1 (62.3) | 0.745 |
Total Ceramide (μM/mL) | 10.2 (1.0) | 10.2 (2.5) | 0.944 | 9.1 (1.8) | −8.6 (16.6) | 9.1 (2.7) | −8.4 (24.2) | 0.962 |
Triglycerides (mg/dL) | 224 (82) | 155 (70) | 0.023 | 149 (74) | −28.5 (35.5) | 167 (65) | 14.3 (32.8) | 0.003 |
Baseline | Week 12 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Total (n = 28) | Female (n = 17) | Male (n = 11) | * p-Value | Female (n = 17) | % Change from Baseline | Male (n = 11) | % Change from Baseline | ** p-Value |
Choline (nM/mL) | 11.5 (2.6) | 10.7 (2.6) | 12.7 (2.3) | 0.042 | 9.8 (2.2) | −5.6 (20.9) | 11.3 (1.9) | −8.9 (21.5) | 0.080 |
Betaine (nM/mL) | 36.1 (9.5) | 33.3 (7.4) | 40.0 (11.0) | 0.097 | 31.5 (8.5) | −2.2 (27.1) | 41.4 (12.8) | 5.0 (27.9) | 0.040 |
Methionine (μM/mL) | 33.47 (6.24) | 30.51 (4.33) | 37.51 (6.33) | 0.003 | 31.75 (5.85) | 4.6 (22.6) | 34.12 (4.60) | −7.5 (15.8) | 0.277 |
DMG (μM/mL) | 2.61 (0.73) | 2.23 (0.57) | 3.13 (0.60) | 0.001 | 1.95 (0.43) | −11.5 (17.1) | 2.96 (0.85) | −4.8 (22.3) | <0.001 |
Total PC (μg/mL) | 1384.3 (534.0) | 1449.4 (634.3) | 1289.7 (348.4) | 0.456 | 671.5 (175.8) | −51.5 (24.6) | 692.4 (113.2) | −46.3 (13.1) | 0.732 |
Total LPC (μg/mL) | 29.4 (3.8) | 28.9 (4.1) | 30.0 (3.4) | 0.471 | 110.6 (8.9) | 283.8 (61.5) | 114.0 (5.2) | 289.4 (45.9) | 0.231 |
Sphingomeylin (μM/mL) | 134.8 (21.0) | 141.5 (22.5) | 124.7 (12.9) | 0.050 | 143.1 (18.7 | 3.9 (18.3) | 139.3 (13.8) | 13.0 (19.1) | 0.743 |
TMAO (nM/mL) | 4.3 (2.6) | 4.3 (3.0) | 4.1 (1.7) | 0.610 | 6.6 (3.9) | 40.9 (63.2) | 5.5 (2.7) | 31.0 (58.8) | 0.381 |
L-Carnitine (nM/mL) | 52.3 (37.4) | 50.4 (44.9) | 54.1 (46.7) | 0.241 | 64.3 (28.2) | 19.5 (60.5) | 82.3 (35.9) | 26.5 (44.2) | 0.175 |
Total Ceramide (μM/mL) | 10.2 (1.9) | 10.1 (2.1) | 10.4 (1.6) | 0.700 | 8.5 (2.0) | −16.9 (20.9) | 10.1 (2.2) | −2.9 (9.7) | 0.082 |
Triglycerides (mg/dL) | 192 (83) | 185 (76) | 203.2 (95.2) | 0.576 | 148 (69) | −9.3 (45.2) | 170 (71) | −7.6 (32.5) | 0.003 |
Weeks of Intervention | ||||
---|---|---|---|---|
Variables | 0 | 6 | 12 | p-Value |
Choline (nM/mL) | 11.5 (2.6) | 10.6 (2.1) | 10.4 (2.2) * | 0.012 |
Betaine (nM/mL) | 32.9 (14.7) | 34.9 (9.4) | 33.3 (19.5) | 0.141 |
Methionine (μM/mL) | 32.1 (8.7) | 31.5 (6.1) | 31.5 (7.4) | 0.289 |
DMG (μM/mL) | 2.62 (1.24) | 2.26 (1.14) | 2.27 (1.02) * | 0.042 |
Total PC (μg/mL) | 1384.3 (534.0) | 1407.0 (189.3) | 679.5 (152.5) † | <0.001 |
Total LPC (μg/mL) | 29.4 (3.8) | 75.6 (14.5) † | 112.0 (7.7) † | <0.001 |
Sphingomyelin (μM/mL) | 134.8 (21.0) | 140.1 (13.6) | 142.3 (17.7) | 0.275 |
TMAO (nM/mL) | 4.9 (2.8) | 6.1 (2.9) | 6.2 (3.5) * | <0.001 |
L-Carnitine (nM/mL) | 52.5 (48.8) | 58.5 (42.7) | 68.4 (35.2) | 0.840 |
Total Ceramide (μM/mL) | 10.2 (1.9) | 8.1 (1.8) † | 9.3 (2.3) * | <0.001 |
Triglycerides (mg/dL) | 192.0 (83.1) | 162.6 (67.0) * | 157.0 (69.3) * | 0.021 |
Variable | Baseline | Week 12 | Weeks of Intervention | |||||||
---|---|---|---|---|---|---|---|---|---|---|
LPC (µg/mL) | 3 oz | 6 oz | p-Value | 3 oz | 6 oz | p-Value | Week 0 | Week 6 | Week 12 | p-Value |
14:0 | 0.07 (0.02) | 0.07 (0.02) | 0.971 | 0.17 (0.02) | 0.17 (0.02) | 0.086 | 0.07 (0.04) | 0.12 (0.09) † | 0.17 (0.03) † | <0.01 |
15:0 | 0.07 (0.01) | 0.08 (0.01) | 0.067 | 0.60 (0.08) | 0.61 (0.08) | 0.344 | 0.08 (0.05) | 0.33 (0.16) † | 0.59 (0.11) † | <0.01 |
16:0 | 7.41 (2.05) | 7.69 (2.03) | 0.725 | 54.98 (6.99) | 54.79 (7.20) | 0.175 | 7.77 (3.09) | 35.34 (15.65) † | 52.29 (7.57) † | <0.01 |
16:0e | 0.11 (0.01) | 0.09 (0.03) | 0.091 | 0.15 (0.03) | 0.17 (0.03) | 0.230 | 0.11 (0.02) | 0.24 (0.04) † | 0.16 (0.02) † | <0.01 |
16:1 | 0.37 (0.10) | 0.36 (0.09) | 0.695 | 1.03 (0.38) | 1.26 (0.38) | 0.140 | 0.35 (0.16) | 0.83 (0.04) † | 1.26 (0.64) † | <0.01 |
16:1e | 0.05 (0.01) | 0.04 (0.01) | 0.992 | 0.53 (0.37) | 0.51 (0.07) | 0.037 | 0.05 (0.01) | 0.34 (0.13) † | 0.50 (0.08) † | <0.01 |
17:0 | 0.48 (0.18) | 0.50 (0.15) | 0.759 | 1.43 (0.17) | 1.48 (0.14) | 0.610 | 0.49 (0.31) | 0.93 (0.42) † | 1.47 (0.22) † | <0.01 |
18:0 | 8.48 (1.35) | 7.22 (1.68) | 0.042 | 15.77 (2.23) | 16.93 (2.20) | 0.202 | 8.02 (2.47) | 12.54 (4.58) † | 16.64 (2.24) † | <0.01 |
18:1 | 4.40 (0.74) | 3.63 (0.88) | 0.024 | 9.15 (2.46) | 10.74 (2.56) | 0.606 | 4.16 (1.02) | 8.80 (4.64) † | 9.86 (3.70) † | <0.01 |
18:1e | 0.08 (0.01) | 0.08 (0.01) | 0.587 | 0.18 (0.05) | 0.18 (0.05) | 0.738 | 0.08 (0.01) | 0.19 (0.03) † | 0.17 (0.08) † | <0.01 |
18:2 | 6.26 (0.99) | 5.20 (1.30) | 0.027 | 16.24 (2.69) | 16.99 (2.18) | 0.111 | 5.97 (1.74) | 10.03 (6.38) † | 16.54 (2.41) † | <0.01 |
18:3 | 0.88 (0.17) | 0.78 (0.16) | 0.134 | 2.55 (0.39) | 2.79 (0.37) | 0.436 | 0.83 (0.21) | 1.34 (0.99) † | 2.77 (0.64) † | <0.01 |
20:0 | 0.04 (0.01) | 0.04 (0.01) | 0.070 | 0.09 (0.01) | 0.10 (0.01) | 0.202 | 0.04 (0.01) | 0.06 (0.04) † | 0.09 (0.02) † | <0.01 |
20:1 | 0.05 (0.01) | 0.04 (0.01) | 0.950 | 0.17 (0.03) | 0.19 (0.03) | 0.317 | 0.04 (0.02) | 0.14 (0.08) † | 0.18 (0.05) † | <0.01 |
20:3 | 0.52 (0.15) | 0.49 (0.15) | 0.711 | 1.64 (0.35) | 1.85 (0.36) | 0.146 | 0.49 (0.24) | 0.99 (0.60) † | 1.80 (0.53) † | <0.01 |
20:4 | 0.84 (0.12) | 0.92 (0.24) | 0.323 | 2.82 (0.60) | 3.08 (0.68) | 0.647 | 0.91 (0.31) | 4.93 (1.59) † | 2.79 (1.27) † | <0.01 |
20:5 | 0.18 (0.03) | 0.16 (0.03) | 0.205 | 1.38 (0.18) | 1.35 (0.19) | 0.094 | 0.17 (0.05) | 0.43 (0.29) † | 1.32 (0.27) † | <0.01 |
22:5 | 0.05 (0.01) | 0.05 (0.01) | 0.104 | 0.16 (0.03) | 0.18 (0.03) | 0.201 | 0.05 (0.02) | 0.18 (0.11) † | 0.17 (0.04) † | <0.01 |
22:6 | 0.34 (0.13) | 0.44 (0.12) | 0.070 | 0.85 (0.08) | 0.80 (0.05) | 0.654 | 0.39 (0.23) | 0.56 (0.23) † | 0.82 (0.06) † | <0.01 |
26:0 | 0.03 (0.01) | 0.04 (0.01) | 0.250 | 0.07 (0.01) | 0.08 (0.01) | 0.033 | 0.03 (0.01) | 0.04 (0.01) † | 0.08 (0.01) † | <0.01 |
Sphingomyelin (μM/mL) | ||||||||||
16:0 | 44.8 (9.3) | 46.1 (10.3) | 0.744 | 48.4 (7.9) | 51.7 (8.0) | 0.312 | 45.3 (9.6) | 49.4 (6.2) | 50.0 (8.0) * | <0.001 |
18:0 | 10.6 (3.5) | 11.7 (4.9) | 0.507 | 13.1 (4.6) | 14.3 (5.3) | 0.552 | 11.1 (4.4) | 12.9 (5.4) | 13.6 (4.9) * | <0.001 |
18:1 | 4.5 (1.2) | 5.3 (1.9) | 0.238 | 5.7 (1.4) | 6.5 (2.2) | 0.284 | 4.8 (4.6) | 6.1 (1.8) † | 6.0 (1.9) † | <0.001 |
24:0 | 33.9 (10.9) | 35.6 (8.0) | 0.652 | 32.1 (6.9) | 28.9 (5.6) | 0.209 | 34.1 (9.9) | 29.9 (5.7) † | 30.8 (5.8) † | <0.001 |
24:1 | 38.9 (5.6) | 39.8 (7.2) | 0.744 | 41.1 (6.2) | 41.5 (7.5) | 0.897 | 39.5 (6.1) | 41.3 (11.1) | 40.1 (6.9) | 0.384 |
Ceramide (µM/mL) | ||||||||||
C12:0 | 0.24 (0.11) | 0.34 (0.12) | 0.444 | 0.28 (0.08) | 0.29 (0.10) | 0.529 | 0.31 (0.11) | 0.28 (0.08) | 0.28 (0.10) | 0.180 |
C16:0 | 0.29 (0.23) | 0.58 (1.15) | 0.479 | 0.55 (0.33) | 0.65 (0.60) | 0.703 | 0.35 (0.51) | 0.39 (0.39) | 0.56 (0.41) | 0.368 |
C22:0 | 1.02 (0.78) | 1.31 (0.74) | 0.470 | 0.89 (0.61) | 0.89 (1.06) | 0.892 | 1.22 (0.73) | 0.60 (0.49) † | 0.90 (0.77) †* | < 0.001 |
C24:0 | 7.83 (1.02) | 7.60 (1.46) | 0.479 | 7.56 (1.87) | 6.71 (3.24) | 0.703 | 7.60 (1.30) | 6.16 (2.28) † | 6.75 (2.78) †* | 0.002 |
C24:1 | 0.48 (0.27) | 0.56 (0.30) | 0.270 | 0.54 (0.68) | 0.78 (0.45) | 0.320 | 0.56 (0.29) | 0.75 (0.55) | 0.77 (0.52) | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tate, B.N.; Van Guilder, G.P.; Aly, M.; Spence, L.A.; Diaz-Rubio, M.E.; Le, H.H.; Johnson, E.L.; McFadden, J.W.; Perry, C.A. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients 2023, 15, 3687. https://doi.org/10.3390/nu15173687
Tate BN, Van Guilder GP, Aly M, Spence LA, Diaz-Rubio ME, Le HH, Johnson EL, McFadden JW, Perry CA. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients. 2023; 15(17):3687. https://doi.org/10.3390/nu15173687
Chicago/Turabian StyleTate, Brianna N., Gary P. Van Guilder, Marwa Aly, Lisa A. Spence, M. Elena Diaz-Rubio, Henry H. Le, Elizabeth L. Johnson, Joseph W. McFadden, and Cydne A. Perry. 2023. "Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults" Nutrients 15, no. 17: 3687. https://doi.org/10.3390/nu15173687
APA StyleTate, B. N., Van Guilder, G. P., Aly, M., Spence, L. A., Diaz-Rubio, M. E., Le, H. H., Johnson, E. L., McFadden, J. W., & Perry, C. A. (2023). Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients, 15(17), 3687. https://doi.org/10.3390/nu15173687