Examining the Double Burden of Underweight, Overweight/Obesity and Iron Deficiency among Young Children in a Canadian Primary Care Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting and Population
2.3. Exposure Variable
2.4. Outcome Variable
2.5. Other Variables
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. The Double burden of Malnutrition. Policy Brief. World Health Organization: Geneva, Switzerland, 2017. Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-17.3 (accessed on 22 July 2023).
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Oaks, B.M.; Engle-Stone, R. The Double Burden of Malnutrition: A Systematic Review of Operational Definitions. Curr. Dev. Nutr. 2020, 4, nzaa127. [Google Scholar] [CrossRef] [PubMed]
- The Bright Futures/American Academy of Pediatrics (AAP) Recommendations for Preventive Pediatric Health Care, Periodicity Schedule. Updated April 2023. Available online: https://www.aap.org/periodicityschedule (accessed on 22 July 2023).
- Baker, R.D.; Greer, F.R.; Committee on Nutrition American Academy of Pediatrics. Diagnosis and Prevention of Iron Deficiency and Iron-Deficiency Anemia in Infants and Young Children (0–3 Years of Age). Pediatrics 2010, 126, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Canadian Paediatric Society. Promoting optimal monitoring of child growth in Canada: Using the new World Health Organization growth charts–Executive Summary. Paediatr. Child Health 2010, 15, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Unger, S.L.; Fenton, T.R.; Jetty, R.; Critch, J.N.; O’Connor, D.L.; Canadian Paediatric Society Nutrition and Gastroenterology Committee. Iron Requirements in the First 2 Years of Life. Updated 2 February 2021. Available online: https://cps.ca/en/documents/position/iron-requirements (accessed on 22 July 2023).
- Guivarch, C.; Sacri, A.-S.; Levy, C.; Bocquet, A.; Lapidus, N.; Hercberg, S.; Hebel, P.; Chevé, A.; Copin, C.; Zouari, M.; et al. Clinical Prediction of Iron Deficiency at Age 2 Years: A National Cross-sectional Study in France. J. Pediatr. 2021, 235, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Sypes, E.E.; Parkin, P.C.; Birken, C.S.; Carsley, S.; MacArthur, C.; Maguire, J.L.; Borkhoff, C.M.; Aglipay, M.; Anderson, L.N.; Dai, D.W.; et al. Higher Body Mass Index Is Associated with Iron Deficiency in Children 1 to 3 Years of Age. J. Pediatr. 2019, 207, 198–204.e1. [Google Scholar] [CrossRef]
- Brotanek, J.M.; Gosz, J.; Weitzman, M.; Flores, G. Iron Deficiency in Early Childhood in the United States: Risk Factors and Racial/Ethnic Disparities. Pediatrics 2007, 120, 568–575. [Google Scholar] [CrossRef]
- The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Ob-servational Studies. Updated 6 March 2023. Available online: https://www.equator-network.org/reporting-guidelines/strobe/ (accessed on 22 July 2023).
- Carsley, S.; Borkhoff, C.M.; Maguire, J.L.; Birken, C.S.; Khovratovich, M.; McCrindle, B.; Macarthur, C.; Parkin, P.C.; TARGet Kids! Col-laboration. Cohort Profile: The Applied Research Group for Kids (TARGet Kids!). Leuk. Res. 2014, 44, 776–788. [Google Scholar] [CrossRef]
- Namaste, S.M.; Rohner, F.; Huang, J.; Bhushan, N.L.; Flores-Ayala, R.; Kupka, R.; Mei, Z.; Rawat, R.; Williams, A.M.; Raiten, D.J.; et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 359S–371S. [Google Scholar] [CrossRef]
- WHO Multicentre Growth Reference Standard Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. 2006, 450, 76–85. [Google Scholar]
- De Onis, M.; Lobstein, T. Defining obesity risk status in the general childhood population: Which cut-offs should we use? Int. J. Pediatr. Obes. 2010, 5, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Engle-Stone, R.; Guo, J.; Ismaily, S.; Addo, O.Y.; Ahmed, T.; Oaks, B.; Suchdev, P.S.; Flores-Ayala, R.; Williams, A.M. Intraindividual double burden of overweight and micronutrient deficiencies or anemia among preschool children. Am. J. Clin. Nutr. 2019, 112, 478S–487S. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.M.; Cole, T.J.; Fewtrell, M.; E Williams, J.; Eaton, S.; Wells, J.C. Body composition data show that high BMI centiles overdiagnose obesity in children aged under 6 years. Am. J. Clin. Nutr. 2022, 116, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Furlong, K.R.; Anderson, L.N.; Kang, H.; Lebovic, G.; Parkin, P.C.; Maguire, J.L.; O’connor, D.L.; Birken, C.S.; on behalf of the TARGet Kids! Collaboration. BMI-for-Age and Weight-for-Length in Children 0 to 2 Years. Pediatrics 2016, 138, e20153809. [Google Scholar] [CrossRef]
- Aris, I.M.; Rifas-Shiman, S.L.; Li, L.-J.; Yang, S.; Belfort, M.B.; Thompson, J.; Hivert, M.-F.; Patel, R.; Martin, R.M.; Kramer, M.S.; et al. Association of Weight for Length vs Body Mass Index During the First 2 Years of Life with Cardiometabolic Risk in Early Adolescence. JAMA Netw. Open 2018, 1, e182460. [Google Scholar] [CrossRef]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity Vitamin and Mineral Nutrition Information System. Geneva, World Health Organization, 2011 (WHO/NMH/NHD/MNM/11.1). Available online: https://apps.who.int/iris/bitstream/handle/10665/85839/WHO_NMH_NHD_MNM_11.1_eng.pdf (accessed on 22 July 2023).
- Harrell, F.E. Regression Modeling Strategies with Applications to Linear Models, Logistic Regression, and Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Oatley, H.; Borkhoff, C.M.; Chen, S.; Macarthur, C.; Persaud, N.; Birken, C.S.; Maguire, J.L.; Parkin, P.C.; on behalf of the TARGet Kids! Collaboration. Screening for Iron Deficiency in Early Childhood Using Serum Ferritin in the Primary Care Setting. Pediatrics 2018, 142, e20182095. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Little, R.J.; Rubin, D.B. Statistical Analysis with Missing Data, 4th ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Hayes-Larson, E.; Kezios, K.L.; Mooney, S.J.; Lovasi, G. Who is in this study, anyway? Guidelines for a useful Table 1. J. Clin. Epidemiology 2019, 114, 125–132. [Google Scholar] [CrossRef]
- Varghese, J.S.; Stein, A.D. Malnutrition among women and children in India: Limited evidence of clustering of underweight, anemia, overweight, and stunting within individuals and households at both state and district levels. Am. J. Clin. Nutr. 2019, 109, 1207–1215. [Google Scholar] [CrossRef]
- Castillo, A.N.; Suarez-Ortegón, M.F. Dual burden of individual malnutrition in children 1–4 years: Findings from the Colombian nutritional health survey ENSIN 2015. Pediatr. Obes. 2023, 18, e13020. [Google Scholar] [CrossRef]
- Kamruzzaman. Is BMI associated with anemia and hemoglobin level of women and children in Bangladesh: A study with multiple statistical approaches. PLoS ONE 2021, 16, e0259116. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, T.L.; Khambalia, A.; Westergard, S.; Jacobson, S.; Peer, M.; Parkin, P.C. Iron Depletion Is Associated with Daytime Bottle-feeding in the Second and Third Years of Life. Arch. Pediatr. Adolesc. Med. 2006, 160, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.R.; Harris, J.K.; Rodriguez-Galindo, C.; Johnson, K.J.; Maguire, J.L.; Salehi, L.; Birken, C.S.; Carsley, S.; Mamdani, M.; Thorpe, K.E.; et al. Association Between Total Duration of Breastfeeding and Iron Deficiency. Pediatrics 2013, 131, e1530–e1537. [Google Scholar] [CrossRef]
- Parkin, P.C.; DeGroot, J.; Maguire, J.L.; Birken, C.S.; Zlotkin, S. Severe iron-deficiency anaemia and feeding practices in young children. Public Health Nutr. 2016, 19, 716–722. [Google Scholar] [CrossRef]
- Cox, K.A.; Parkin, P.C.; Anderson, L.N.; Chen, Y.; Birken, C.S.; Maguire, J.L.; Macarthur, C.; Borkhoff, C.M.; Abdullah, K.; Bayoumi, I.; et al. Association Between Meat and Meat-Alternative Consumption and Iron Stores in Early Childhood. Acad. Pediatr. 2016, 16, 783–791. [Google Scholar] [CrossRef]
- Bayoumi, I.; Parkin, P.C.; Birken, C.S.; Maguire, J.L.; Borkhoff, C.M.; for the TARGet Kids! Collaboration. Association of Family Income and Risk of Food Insecurity with Iron Status in Young Children. JAMA Netw. Open 2020, 3, e208603. [Google Scholar] [CrossRef]
- D’Angelo, G. Role of hepcidin in the pathophysiology and diagnosis of anemia. BLOOD Res. 2013, 48, 10–15. [Google Scholar] [CrossRef]
- Uijterschout, L.; Swinkels, D.W.; Domellöf, M.; Lagerqvist, C.; Hudig, C.; Tjalsma, H.; Vos, R.; van Goudoever, J.B.; Brus, F. Serum hepcidin measured by immunochemical and mass-spectrometric methods and their correlation with iron status indicators in healthy children aged 0.5–3 y. Pediatr. Res. 2014, 76, 409–414. [Google Scholar] [CrossRef]
- Del Giudice, E.M.; Santoro, N.; Amato, A.; Brienza, C.; Calabroò, P.; Wiegerinck, E.T.; Cirillo, G.; Tartaglione, N.; Grandone, A.; Swinkels, D.W.; et al. Hepcidin in Obese Children as a Potential Mediator of the Association between Obesity and Iron Deficiency. J. Clin. Endocrinol. Metab. 2009, 94, 5102–5107. [Google Scholar] [CrossRef]
Characteristics | No. |
---|---|
Healthy children between ages 12 and 29 months with a blood sample enrolled in TARGet Kids! cohort | 2575 |
Exclusion criteria | |
Gestational age < 32 weeks | 83 |
Receiving iron supplementation | 187 |
Missing zBMI value | 208 |
Serum ferritin value > 200 μg/L | 1 |
CRP > 5 mg/L and SF ≥ 12 μg/L | 134 |
CRP missing and SF ≥ 12 μg/L | 9 |
Final cohort | 1953 |
Characteristics | Response Sample | Imputed Sample | |
---|---|---|---|
n | Mean (SD) or N (%) | Mean (SD) or N (%) 1 | |
Patient-level characteristics | |||
Child age, months | 1953 | 18.3 (5.0) | 18.3 (5.0) |
Child sex, female | 1953 | 945 (48.4) | 945 (48.4) |
zBMI | 1953 | 0.13 (1.1) | 0.13 (1.1) |
Weight category | 1953 | ||
Underweight (zBMI < −2) | 51 (2.6) | 51 (2.6) | |
Normal weight (−2 ≤ zBMI ≤ 1) | 1495 (76.6) | 1495 (76.6) | |
At-risk-of-overweight (1 < zBMI ≤ 2) | 312 (16.0) | 312 (16.0) | |
Overweight/obese (zBMI > 2) | 95 (4.9) | 95 (4.9) | |
Birthweight, kg | 1835 | 3.3 (0.6) | 3.3 (0.6) |
Maternal ethnicity 3 | 1725 | ||
European | 1112 (64.5) | 1255 (64.3) | |
Non-European | 613 (35.5) | 698 (35.7) | |
Maternal education | 1763 | ||
High school or less | 141 (8.0) | 154 (7.9) | |
College/university | 1622 (92.0) | 1799 (92.1) | |
Family income (CAD) | 1604 | ||
Less than 40,000 CAD | 161 (10.0) | 200 (10.2) | |
40,000–79,999 CAD | 227 (14.2) | 270 (13.8) | |
80,000–149,999 CAD | 546 (34.0) | 644 (33.0) | |
150,000+ CAD | 670 (41.8) | 839 (43.0) | |
Gestational age | 1687 | ||
32–36 weeks | 187 (11.1) | 210 (10.8) | |
≥37 weeks | 1500 (88.9) | 1743 (89.3) | |
Infant feeding practices | |||
Infant feeding in first year of life | 1720 | ||
Mostly breastfed | 1086 (63.1) | 1229 (62.9) | |
Breast milk and formula equally | 327 (19.0) | 371 (19.0) | |
Mostly formula-fed | 307 (17.9) | 353 (18.1) | |
Breastfeeding duration ≥ 12 months | 1640 | 869 (53.0) | 1015 (52.0) |
Bottle use > 15 months | 1612 | 480 (29.8) | 624 (32.0) |
Daily cow’s milk intake > 2 cups (500 mL) | 1620 | 422 (26.1) | 512 (26.2) |
Meat consumption in last 3 days | 1816 | 1754 (96.6) | 1883 (96.4) |
Laboratory characteristics | |||
Serum ferritin (µg/L) | 1953 | 27.4 (18.7) | 27.4 (18.7) |
Hemoglobin (g/L) 2 | 1711 | 118.1 (8.7) | 118.1 (8.7) |
Iron deficiency | 1953 | 269 (13.8) | 269 (13.8) |
Iron-deficiency anemia 2 | 1711 | 92 (5.4) | 92 (5.4) |
CRP (mg/L) | 1953 | 0.6 (1.0) | 0.6 (1.0) |
≤1.0 | 1648 (84.4) | 1648 (84.4) | |
>1.0 to ≤5.0 | 305 (15.6) | 305 (15.6) |
Total | Underweight | Normal Weight | At-Risk-of- Overweight | Overweight /Obese | |
---|---|---|---|---|---|
zBMI < −2 | −2 ≤ zBMI ≤ 1 | 1 < zBMI ≤ 2 | zBMI > 2 | ||
N | 1953 | 51 (2.6) | 1495 (76.6) | 312 (16.0) | 95 (4.9) |
Patient-level characteristics | |||||
Child age, months | 18.3 (5.0) | 15.5 (4.4) | 18.0 (5.0) | 19.9 (4.7) | 20.6 (4.5) |
Child sex, female | 945 (48.4) | 24 (47.1) | 735 (49.2) | 142 (45.5) | 44 (46.3) |
zBMI | 0.13 (1.1) | −2.44 (0.3) | −0.20 (0.7) | 1.41 (0.3) | 2.54 (0.5) |
Birthweight, kg | 3.3 (0.6) | 3.1 (0.6) | 3.3 (0.6) | 3.4 (0.6) | 3.5 (0.6) |
Maternal ethnicity 3 | |||||
European | 1255 (64.3) | 27 (52.9) | 950 (63.6) | 214 (68.6) | 64 (67.4) |
Non-European | 698 (35.7) | 24 (47.1) | 545 (36.5) | 98 (31.4) | 31 (32.6) |
Maternal education | |||||
High school or less | 154 (7.9) | 2 (3.9) | 109 (7.3) | 29 (9.3) | 14 (14.7) |
College/university | 1799 (92.1) | 49 (96.1) | 1386 (92.7) | 283 (90.7) | 81 (85.3) |
Family income (CAD) | |||||
Less than 40,000 CAD | 200 (10.2) | 8 (15.7) | 149 (10.0) | 31 (9.9) | 12 (12.6) |
40,000–79,999 CAD | 270 (13.8) | 9 (17.7) | 209 (14.0) | 41 (13.1) | 11 (11.6) |
80,000–149,999 CAD | 644 (33.0) | 18 (35.3) | 493 (33.0) | 98 (31.4) | 35 (36.8) |
150,000+ CAD | 839 (43.0) | 16 (31.4) | 644 (43.1) | 142 (45.5) | 37 (39.0) |
Gestational age | |||||
32–36 weeks | 210 (10.8) | 5 (9.8) | 167 (11.2) | 27 (8.7) | 11 (11.6) |
≥37 weeks | 1743 (89.3) | 46 (90.2) | 1328 (88.8) | 285 (91.4) | 84 (88.4) |
Infant feeding practices | |||||
Infant feeding in first year of life | |||||
Mostly breastfed | 1229 (62.9) | 37 (72.6) | 968 (64.8) | 173 (55.5) | 51 (53.7) |
Breast milk and formula equally | 371 (19.0) | 5 (9.8) | 255 (17.1) | 82 (26.3) | 29 (30.5) |
Mostly formula-fed | 353 (18.1) | 9 (17.7) | 272 (18.2) | 57 (18.3) | 15 (15.8) |
Breastfeeding duration ≥ 12 months | 1015 (52.0) | 33 (64.7) | 806 (53.9) | 137 (43.9) | 39 (41.1) |
Bottle use > 15 months | 624 (32.0) | 11 (21.6) | 447 (29.9) | 124 (39.7) | 42 (44.2) |
Daily cow’s milk intake > 2 cups | 512 (26.2) | 11 (21.6) | 376 (25.2) | 98 (31.4) | 27 (28.4) |
Meat consumption in last 3 days | 1883 (96.4) | 49 (96.1) | 1439 (96.3) | 302 (96.8) | 93 (97.9) |
Laboratory characteristics | |||||
Serum ferritin (µg/L) | 27.4 (18.7) | 29.5 (19.7) | 28.1 (19.6) | 24.8 (13.8) | 22.8 (16.0) |
Hemoglobin (g/L) 2 | 118.1 (8.7) | 113.5 (7.7) | 118.0 (8.8) | 119.4 (8.4) | 118.9 (7.4) |
Iron deficiency | 269 (13.8) | 8 (15.7) | 197 (13.2) | 44 (14.1) | 20 (21.1) |
Iron-deficiency anemia 2 | 92 (5.4) | 2 (4.7) | 70 (5.4) | 15 (5.4) | 5 (6.1) |
CRP (mg/L) | 0.6 (1.0) | 0.6 (0.9) | 0.6 (1.0) | 0.6 (0.8) | 0.6 (0.9) |
≤1.0 | 1648 (84.4) | 45 (88.2) | 1257 (84.1) | 265 (84.9) | 81 (85.3) |
>1.0 to ≤5.0 | 305 (15.6) | 6 (11.8) | 238 (15.9) | 47 (15.1) | 14 (14.7) |
Variable | Change in Median Serum Ferritin | |||||
---|---|---|---|---|---|---|
β (log) | 95% CI | Change in Serum Ferritin, % | µg/L | 95% CI | p-Value | |
BMI as a continuous variable | ||||||
zBMI | −0.05 | −0.08, −0.03 | −5.25 | −1.31 | −1.93, −0.68 | <0.001 † |
BMI categorized into weight categories | ||||||
Weight category | ||||||
Underweight (zBMI < −2) | 0.08 | −0.10, 0.25 | 7.82 | 1.95 | −2.28, 6.97 | 0.39 |
Normal weight (−2 ≤ zBMI ≤ 1) | – | – | – | – | – | – |
At-risk-of-overweight (1 < zBMI ≤ 2) | −0.06 | −0.13, 0.02 | −5.64 | −1.41 | −3.14, 0.46 | 0.14 |
Overweight/obese (zBMI > 2) | −0.21 | −0.34, −0.08 | −19.26 | −4.81 | −7.27, −2.02 | 0.001 † |
Variable | Iron Deficiency | ||
---|---|---|---|
β (95% CI) | OR (95% CI) | p-Value | |
BMI as a continuous variable | |||
zBMI | 0.13 (0.004, 0.26) | 1.14 (1.00, 1.30) | 0.04 † |
BMI categorized into weight categories | |||
Weight category | |||
Underweight (zBMI < −2) | −0.01 (−0.83, 0.80) | 0.98 (0.44, 2.23) | 0.97 |
Normal weight (−2 ≤ zBMI ≤ 1) | – | 1.00 | – |
At-risk-of-overweight (1 < zBMI ≤ 2) | 0.15 (−0.23, 0.53) | 1.16 (0.80, 1.70) | 0.44 |
Overweight/obese (zBMI > 2) | 0.76 (0.20, 1.33) | 2.15 (1.22, 3.78) | 0.008 † |
Variable | Change in Median Serum Ferritin | |||||
---|---|---|---|---|---|---|
β (log) | 95% CI | Change in Serum Ferritin, % | µg/L | 95% CI | p-Value | |
Weight category | ||||||
Underweight (zBMI < −2) | 0.08 | −0.10, 0.25 | 7.82 | 1.95 | −2.28, 6.97 | 0.39 |
Normal weight (−2 ≤ zBMI ≤ 1) | – | – | – | – | – | – |
At-risk-of-overweight (1 < zBMI ≤ 2) | −0.06 | −0.13, 0.02 | −5.64 | −1.41 | −3.14, 0.46 | 0.14 |
Overweight/obese (zBMI > 2) | −0.21 | −0.34, −0.08 | −19.26 | −4.81 | −7.27, −2.02 | 0.001 † |
Child sex, female | 0.09 | 0.04, 0.15 | 9.85 | 2.46 | 1.01, 4.00 | <0.001 † |
Child age, months 2 | ||||||
12–15 months | −0.06 | −0.10, −0.03 | −6.23 | −1.56 | −2.30, −0.79 | <0.001 † |
15–18 months | 0.001 | −0.03, 0.04 | 0.14 | 0.04 | −0.82, 0.92 | 0.94 |
18–24 months | −0.0005 | −0.01, 0.01 | −0.04 | −0.01 | −0.35, 0.33 | 0.95 |
24–29 months | 0.04 | −0.002, 0.07 | 3.61 | 0.90 | −0.04, 1.88 | 0.06 |
Birthweight, kg | 0.08 | 0.03, 0.13 | 8.36 | 2.09 | 0.82, 3.42 | 0.001 † |
CRP level | 0.07 | 0.05, 0.10 | 7.55 | 1.89 | 1.15, 2.64 | <0.001 † |
Family income (CAD) | ||||||
Less than 40,000 CAD | −0.16 | −0.27, −0.05 | −14.64 | −3.66 | −5.91, −1.15 | 0.005 † |
40,000–79,999 CAD | 0.08 | −0.005, 0.17 | 8.83 | 2.21 | −0.11, 4.74 | 0.06 |
80,000–149,999 CAD | −0.01 | −0.08, 0.06 | −1.39 | −0.35 | −1.99, 1.42 | 0.69 |
150,000+ CAD | – | – | – | – | – | – |
Infant feeding in first year of life | ||||||
Mostly breastfed | – | – | – | – | – | – |
Breast milk and formula equally | 0.20 | 0.12, 0.29 | 22.67 | 5.67 | 3.15, 8.41 | <0.001 † |
Mostly formula-fed | 0.29 | 0.20, 0.39 | 34.31 | 8.58 | 5.52, 11.95 | <0.001 † |
Breastfeeding duration ≥ 12 months | −0.17 | −0.25, −0.09 | −15.96 | −3.99 | −5.59, −2.26 | <0.001 † |
Bottle use > 15 months | −0.07 | −0.15, 0.01 | −6.49 | −1.62 | −3.38, 0.27 | 0.09 |
Cow’s milk intake > 2 cups/d | −0.17 | −0.24, −0.10 | −15.53 | −3.88 | −5.36, −2.29 | <0.001 † |
Variable | Iron Deficiency | ||
---|---|---|---|
β (95% CI) | OR (95% CI) | p-Value | |
Weight category | |||
Underweight (zBMI < −2) | −0.01 (−0.83, 0.80) | 0.98 (0.44, 2.23) | 0.97 |
Normal weight (−2 ≤ zBMI ≤ 1) | – | 1.00 | – |
At-risk-of-overweight (1 < zBMI ≤ 2) | 0.15 (−0.23, 0.53) | 1.16 (0.80, 1.70) | 0.44 |
Overweight/obese (zBMI > 2) | 0.76 (0.20, 1.33) | 2.15 (1.22, 3.78) | 0.008 † |
Child sex, female | −0.15 (−0.42, 0.12) | 0.86 (0.65, 1.13) | 0.28 |
Child age, months 2 | |||
12–15 | 0.18 (0.01, 0.35) | 1.20 (1.01, 1.41) | 0.03† |
15–18 | −0.02 (−0.19, 0.14) | 0.98 (0.83, 1.15) | 0.78 |
18–24 | −0.02 (−0.09, 0.04) | 0.98 (0.92, 1.05) | 0.54 |
24–29 | −0.14 (−0.35, 0.08) | 0.87 (0.70, 1.08) | 0.21 |
Birthweight, kg | −0.47 (−0.71, −0.23) | 0.63 (0.49, 0.80) | <0.001 † |
CRP level | −0.14 (−0.31, 0.03) | 0.87 (0.73, 1.03) | 0.10 |
Family income (CAD) | |||
Less than 40,000 CAD | 1.05 (0.59, 1.51) | 2.85 (1.80, 4.52) | <0.001 † |
40,000–79,999 CAD | −0.45 (−0.98, 0.08) | 0.64 (0.38, 1.09) | 0.10 |
80,000–149,999 CAD | 0.20 (−0.16, 0.56) | 1.22 (0.86, 1.75) | 0.27 |
150,000+ CAD | – | 1.00 | – |
Infant feeding first year of life | |||
Mostly breastfed | – | 1.00 | – |
Breast milk and formula equally | −0.81 (−1.28, −0.34) | 0.44 (0.28, 0.71) | <0.001 † |
Mostly formula-fed | −0.97 (−1.53, −0.40) | 0.38 (0.22, 0.67) | <0.001 † |
Breastfeeding duration ≥ 12 months | 0.63 (0.22, 1.03) | 1.87 (1.25, 2.81) | 0.003 † |
Bottle use > 15 months | 0.16 (−0.22, 0.53) | 1.17 (0.81, 1.70) | 0.41 |
Cow’s milk intake > 2 cups/d | 0.61 (0.28, 0.93) | 1.84 (1.33, 2.54) | <0.001 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkhoff, S.A.; Parkin, P.C.; Birken, C.S.; Maguire, J.L.; Macarthur, C.; Borkhoff, C.M. Examining the Double Burden of Underweight, Overweight/Obesity and Iron Deficiency among Young Children in a Canadian Primary Care Setting. Nutrients 2023, 15, 3635. https://doi.org/10.3390/nu15163635
Borkhoff SA, Parkin PC, Birken CS, Maguire JL, Macarthur C, Borkhoff CM. Examining the Double Burden of Underweight, Overweight/Obesity and Iron Deficiency among Young Children in a Canadian Primary Care Setting. Nutrients. 2023; 15(16):3635. https://doi.org/10.3390/nu15163635
Chicago/Turabian StyleBorkhoff, Sean A., Patricia C. Parkin, Catherine S. Birken, Jonathon L. Maguire, Colin Macarthur, and Cornelia M. Borkhoff. 2023. "Examining the Double Burden of Underweight, Overweight/Obesity and Iron Deficiency among Young Children in a Canadian Primary Care Setting" Nutrients 15, no. 16: 3635. https://doi.org/10.3390/nu15163635
APA StyleBorkhoff, S. A., Parkin, P. C., Birken, C. S., Maguire, J. L., Macarthur, C., & Borkhoff, C. M. (2023). Examining the Double Burden of Underweight, Overweight/Obesity and Iron Deficiency among Young Children in a Canadian Primary Care Setting. Nutrients, 15(16), 3635. https://doi.org/10.3390/nu15163635