Relevance of Dietary Supplement Use in Gastrointestinal-Cancer-Associated Cachexia
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Inclusion and Exclusion Criteria
3. Results
3.1. Fish Oil
3.2. Melatonin
3.3. Probiotics
3.4. Green Tea
Authors [Ref] | Cancer(s) and Treatment | Study Design (Intervention Implementation) | Sample Size | Supplement(s) with Doses | Outcome(s) |
---|---|---|---|---|---|
Moskovitz et al. [29] | GI | RCT, conventional (no supplementation), preoperative (supplementation prior to surgery), and perioperative (supplementation prior to and following surgery) | 305 (102, 102, 101) | Oral Impact® Immunonutrition (arginine, fish oil, and nucleotides) | Lower risk of infections and shorter hospital stay for both preoperative and perioperative supplementation |
Shirai et al. [32] | GI and chemotherapy | RCT, no fish oil supplementation vs. fish oil supplementation (during chemotherapy) | 128 (91, 37) | Fish-oil enriched supplementation containing 1.1 g EPA, 0.5 g DHA, 16 g protein (Prosure®) | 26/37 fish oil patients and 53/91 non-fish oil patients completed chemotherapy, with increased skeletal and lean muscle mass in fish oil patients |
Werner et al. [33] | Pancreatic and chemotherapy, radiation therapy, or supportive care | RCT, fish oil fatty acids vs. marine phospholipids (in any stage of the treatment) | 33 (18, 15) | Fish oil (7% EPA, 13% DHA), marine phospholipids (8% EPA, 12% DHA) | Reduction in C-reactive protein in both groups, lower thrombocyte and LDL/HDL ratio in fish oil group, higher HDL in fish oil group, and quality of life correlates with increase in blood EPA levels |
Mocellin et al. [34] | Lower GI and chemotherapy | RCT, olive oil control vs. fish oil capsules (started on the first day of chemotherapy and for the next 9 weeks) | 45 (23, 22) | Olive oil (no EPA, DHA, or PUFAs) vs. fish oil (28% EPA, 14% DHA, 42% PUFAs) | Non-significant increases in body weight, fat free mass, and body water in the fish oil group |
Mantovani et al. [35] | All cancers and advanced stage | RCT, medroxyprogesterone/megestrol vs. EPA vs. L-carnitine vs. Thalidomide vs. all combined (during antineoplastic chemotherapy or hormone therapy) | 125 (21, 25, 24, 20, 20) | Medroxyprogesterone (500 mg)/megestrol (320 mg), EPA (2 g, with DHA), L-carnitine (4 g), thalidomide (200 mg) | Combination treatment of all interventions increased body weight, appetite, resting energy expenditure, and fatigue symptoms vs. each treatment alone; EPA alone was not effective |
Mantovani et al. [72] | All cancers | RCT, medroxyprogesterone/megestrol vs. EPA vs. L-carnitine vs. thalidomide vs. all combined (during antineoplastic chemotherapy or hormone therapy with palliative intent or supportive care) | 332 (44, 25, 88, 87, 88) | Medroxyprogesterone (500 mg)/megestrol (320 mg), EPA (2 g, with DHA), L-carnitine (4 g), thalidomide (200 mg) | Combination treatment of all interventions increased body weight, appetite, resting energy expenditure, and fatigue symptoms vs. each treatment alone; EPA alone was not effective, but sample size analysis did not meet goal of enrollment |
Persson et al. [37] | Advanced GI | Non-blinded randomized study, fish oil vs. melatonin for 4 weeks followed by combination for 4 weeks (ongoing chemotherapy at least 2 courses) | 24 (11, 13, 24) | Fish oil (4.9 g EPA, 3.2 g DHA), melatonin (18 mg) | Combination of fish oil and melatonin were superior to increase weight and improve QoL |
Lissoni et al. [41] | Solid tumors and supportive care | RCT, standard treatment vs. standard treatment plus melatonin | 86 (41, 45) | Standard treatment (opioids and steroids), melatonin (20 mg/d for 3 months) | Melatonin in addition to standard treatment did result in weight stabilization and reduction in TNF-α blood concentrations |
Johnston et al. [45] | Solid tumors and chemotherapy | Phase 1 dose-escalation study in pediatric patients, melatonin for 8 weeks | 9 (3 + 3 study design) | Melatonin in doses of 5, 7.5, and 10 mg | Average weight gain of 3.4% with melatonin use independent of dose while undergoing active chemotherapy cycles |
Del Fabbro et al. [47] | Advanced lung or GI cancer (regardless of receiving treatment) | RCT, control vs. melatonin | 48 (25, 23) | Melatonin (20 mg) vs. matched placebo for 4 weeks | Melatonin did not improve body weight, appetite, or QoL compared to placebo |
Huang et al. [56] | Colorectal and chemotherapy | RCT, control vs. probiotic (6 weeks including 2 weeks of chemotherapy: from the third postoperative day to the last day of the first chemotherapy course) | 100 (50, 50) | Probiotic (B. infants, L. acidophilus, E. faecalis, and B. cereus) vs. matched placebo for 6 weeks | Reduced chemotherapy-induced GI symptoms in probiotic group, restoration of disturbed gut microbiome |
Zaharuddin et al. [59] | Colorectal and 4 weeks post-surgery | RCT, control vs. probiotic (starting twice daily for six months 4 weeks after colorectal resection) | 55 (25, 30) | Probiotic (L. acidophilus, L. lactis, L. casei, B. longum, B. bifidum, and B. infantis) vs. matched placebo for 6 months | Significant reduction in pro-inflammatory cytokines in the probiotic group post-intervention without changes in interferon-γ |
Österlund et al. [61] | Colorectal and post-surgery with no metastases receiving adjuvant chemotherapy or radiation therapy) | RCT, fiber vs. probiotic (during the 24 weeks of adjuvant cancer therapy) | 150 (52, 98) | Probiotic (L. rhamnosus) vs. fiber (guar gum) during chemotherapy regimen | The probiotic group presented with significant less diarrhea but otherwise did not differ from fiber in chemotherapy-related GI symptoms |
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J Clin 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.L.; Kim, J.A.; Kelly, D.L.; Lyon, D.; George, T.J. Predicting Unintentional Weight Loss in Patients with Gastrointestinal Cancer. J. Cachexia Sarcopenia Muscle 2019, 10, 526–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and Classification of Cancer Cachexia: An International Consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Gannavarapu, B.S.; Lau, S.K.M.; Carter, K.; Cannon, N.A.; Gao, A.; Ahn, C.; Meyer, J.J.; Sher, D.J.; Jatoi, A.; Infante, R.; et al. Prevalence and Survival Impact of Pretreatment Cancer-Associated Weight Loss: A Tool for Guiding Early Palliative Care. J. Oncol. Pr. 2018, 14, e238–e250. [Google Scholar] [CrossRef]
- Anker, M.S.; Holcomb, R.; Muscaritoli, M.; von Haehling, S.; Haverkamp, W.; Jatoi, A.; Morley, J.E.; Strasser, F.; Landmesser, U.; Coats, A.J.S.; et al. Orphan Disease Status of Cancer Cachexia in the USA and in the European Union: A Systematic Review. J. Cachexia Sarcopenia Muscle 2019, 10, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Quan, X.Q.; Yu, S. An Epidemiological Survey of Cachexia in Advanced Cancer Patients and Analysis on Its Diagnostic and Treatment Status. Nutr. Cancer 2015, 67, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.R.; Laird, B.J.A.; Wigmore, S.J.; Skipworth, R.J.E. Understanding Cancer Cachexia and Its Implications in Upper Gastrointestinal Cancers. Curr. Treat. Options Oncol. 2022, 23, 1732–1747. [Google Scholar] [CrossRef]
- Molfino, A.; Imbimbo, G.; Laviano, A. Current Screening Methods for the Risk or Presence of Malnutrition in Cancer Patients. Cancer Manag. Res. 2022, 14, 561–567. [Google Scholar] [CrossRef]
- Levin, B.; Lieberman, D.A.; McFarland, B.; Andrews, K.S.; Brooks, D.; Bond, J.; Dash, C.; Giardiello, F.M.; Glick, S.; Johnson, D.; et al. Screening and Surveillance for the Early Detection of Colorectal Cancer and Adenomatous Polyps, 2008: A Joint Guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology 2008, 134, 1570–1595. [Google Scholar] [CrossRef] [Green Version]
- Mahon, S.M. Prevention and Screening of Gastrointestinal Cancers. Semin. Oncol. Nurs. 2009, 25, 15–31. [Google Scholar] [CrossRef]
- Jardim, S.R.; de Souza, L.M.P.; de Souza, H.S.P. The Rise of Gastrointestinal Cancers as a Global Phenomenon: Unhealthy Behavior or Progress? Int. J. Env. Res. Public. Health 2023, 20, 3640. [Google Scholar] [CrossRef]
- Xie, H.; Ruan, G.; Wei, L.; Zhang, H.; Ge, Y.; Zhang, Q.; Lin, S.; Song, M.; Zhang, X.; Liu, X.; et al. Comprehensive Comparison of the Prognostic Value of Systemic Inflammation Biomarkers for Cancer Cachexia: A Multicenter Prospective Study. Inflamm. Res. 2022, 71, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Vigneron, C.; Laousy, O.; Chassagnon, G.; Vakalopoulou, M.; Charpentier, J.; Alexandre, J.; Jamme, M.; Pène, F. Assessment of Functional and Nutritional Status and Skeletal Muscle Mass for the Prognosis of Critically Ill Solid Cancer Patients. Cancers (Basel) 2022, 14, 5870. [Google Scholar] [CrossRef] [PubMed]
- Grinstead, C.; George, T.; Han, B.; Yoon, S.L. Associations of Overall Survival with Geriatric Nutritional Risk Index in Patients with Advanced Pancreatic Cancer. Nutrients 2022, 14, 3800. [Google Scholar] [CrossRef]
- Chovsepian, A.; Prokopchuk, O.; Petrova, G.; Gjini, T.; Kuzi, H.; Heisz, S.; Janssen, K.-P.; Martignoni, M.E.; Friess, H.; Hauner, H. Diabetes Increases Mortality in Patients with Pancreatic and Colorectal Cancer by Promoting Cachexia and Its Associated Inflammatory Status. Mol. Metab. 2023, 73, 101729. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Ruan, G.; Wei, L.; Zhang, Q.; Ge, Y.; Song, M.; Zhang, X.; Lin, S.; Liu, X.; Zhang, X. The Prognostic Value of the Combination of Body Composition and Systemic Inflammation in Patients with Cancer Cachexia. J. Cachexia Sarcopenia Muscle 2023, 14, 879–890. [Google Scholar] [CrossRef]
- Ye, J.; Hu, Y.; Chen, X.; Chang, C.; Li, K. Comparative Effects of Different Nutritional Supplements on Inflammation, Nutritional Status, and Clinical Outcomes in Colorectal Cancer Patients: A Systematic Review and Network Meta-Analysis. Nutrients 2023, 15, 2772. [Google Scholar] [CrossRef] [PubMed]
- Cerantola, Y.; Hübner, M.; Grass, F.; Demartines, N.; Schäfer, M. Immunonutrition in Gastrointestinal Surgery. J. Br. Surg. 2011, 98, 37–48. [Google Scholar] [CrossRef]
- Mauskopf, J.A.; Candrilli, S.D.; Chevrou-Séverac, H.; Ochoa, J.B. Immunonutrition for Patients Undergoing Elective Surgery for Gastrointestinal Cancer: Impact on Hospital Costs. World J. Surg. Oncol. 2012, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Law, M.L. Cancer Cachexia: Pathophysiology and Association with Cancer-Related Pain. Front. Pain Res. (Lausanne Switz.) 2022, 3, 971295. [Google Scholar] [CrossRef]
- Vendrell, I.; Macedo, D.; Alho, I.; Dionísio, M.R.; Costa, L. Treatment of Cancer Pain by Targeting Cytokines. Mediat. Inflamm. 2015, 2015, 984570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, H.; Oshima, T. The Latest Treatments for Cancer Cachexia: An Overview. Anticancer. Res. 2023, 43, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.E.; Tooze, J.A.; Gahche, J.J.; Eicher-Miller, H.A.; Guenther, P.M.; Dwyer, J.T.; Potischman, N.; Bhadra, A.; Carroll, R.J.; Bailey, R.L. Trends in Overall and Micronutrient-Containing Dietary Supplement Use in US Adults and Children, NHANES 2007-2018. J Nutr 2023, 152, 2789–2801. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Laviano, A.; Gillis, C.; Sung, A.D.; Gardner, M.; Yalcin, S.; Dixon, S.; Newman, S.M.; Bastasch, M.D.; Sauer, A.C. Examining Guidelines and New Evidence in Oncology Nutrition: A Position Paper on Gaps and Opportunities in Multimodal Approaches to Improve Patient Care. Kompass Nutr. Diet. 2023, 3, 3–9. [Google Scholar] [CrossRef]
- Saldanha, L.G.; Dwyer, J.T.; Bailen, R.A.; Andrews, K.W.; Betz, J.W.; Chang, H.F.; Costello, R.B.; Ershow, A.G.; Goshorn, J.; Hardy, C.J. Characteristics and Challenges of Dietary Supplement Databases Derived from Label Information. J. Nutr. 2018, 148, 1422S–1427S. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.J.; Horne, C.H. Herbal Products and Conventional Medicines Used by Community-Residing Older Women. J. Adv. Nurs. 2001, 33, 51–59. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 105906. [Google Scholar] [CrossRef]
- Coniglio, S.; Shumskaya, M.; Vassiliou, E. Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology (Basel) 2023, 12, 279. [Google Scholar] [CrossRef]
- Moskovitz, D.N.; Kim, Y.-I. Does Perioperative Immunonutrition Reduce Postoperative Complications in Patients with Gastrointestinal Cancer Undergoing Operations? Nutr. Rev. 2004, 62, 443–447. [Google Scholar] [CrossRef]
- de Castro, G.S.; Andrade, M.F.; Pinto, F.C.S.; Faiad, J.Z.; Seelaender, M. Omega-3 Fatty Acid Supplementation and Its Impact on Systemic Inflammation and Body Weight in Patients With Cancer Cachexia-A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 8, 797513. [Google Scholar] [CrossRef]
- Paixão, E.M.D.S.; Oliveira, A.C.D.M.; Pizato, N.; Muniz-Junqueira, M.I.; Magalhães, K.G.; Nakano, E.Y.; Ito, M.K. The Effects of EPA and DHA Enriched Fish Oil on Nutritional and Immunological Markers of Treatment Naïve Breast Cancer Patients: A Randomized Double-Blind Controlled Trial. Nutr. J. 2017, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Shirai, Y.; Okugawa, Y.; Hishida, A.; Ogawa, A.; Okamoto, K.; Shintani, M.; Morimoto, Y.; Nishikawa, R.; Yokoe, T.; Tanaka, K.; et al. Fish Oil-Enriched Nutrition Combined with Systemic Chemotherapy for Gastrointestinal Cancer Patients with Cancer Cachexia. Sci. Rep. 2017, 7, 4826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, K.; Küllenberg de Gaudry, D.; Taylor, L.A.; Keck, T.; Unger, C.; Hopt, U.T.; Massing, U. Dietary Supplementation with N-3-Fatty Acids in Patients with Pancreatic Cancer and Cachexia: Marine Phospholipids versus Fish Oil-a Randomized Controlled Double-Blind Trial. Lipids Health Dis. 2017, 16, 104. [Google Scholar] [CrossRef] [Green Version]
- Mocellin, M.C.; de Quadros Camargo, C.; de Souza Fabre, M.E.; de Moraes Trindade, E.B.S. Fish Oil Effects on Quality of Life, Body Weight and Free Fat Mass Change in Gastrointestinal Cancer Patients Undergoing Chemotherapy: A Triple Blind, Randomized Clinical Trial. J. Funct. Foods 2017, 31, 113–122. [Google Scholar] [CrossRef]
- Mantovani, G.; Macciò, A.; Madeddu, C.; Gramignano, G.; Serpe, R.; Massa, E.; Dessì, M.; Tanca, F.M.; Sanna, E.; Deiana, L.; et al. Randomized Phase III Clinical Trial of Five Different Arms of Treatment for Patients with Cancer Cachexia: Interim Results. Nutrition 2008, 24, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.; Mills, M.; Cantwell, M.; Cardwell, C.R.; Murray, L.J.; Donnelly, M. Thalidomide for Managing Cancer Cachexia. Cochrane Database Syst. Rev. 2012, 1–31. [Google Scholar] [CrossRef]
- Persson, C.; Glimelius, B.; Rönnelid, J.; Nygren, P. Impact of Fish Oil and Melatonin on Cachexia in Patients with Advanced Gastrointestinal Cancer: A Randomized Pilot Study. Nutrition 2005, 21, 170–178. [Google Scholar] [CrossRef]
- Ries, A.; Trottenberg, P.; Elsner, F.; Stiel, S.; Haugen, D.; Kaasa, S.; Radbruch, L. A Systematic Review on the Role of Fish Oil for the Treatment of Cachexia in Advanced Cancer: An EPCRC Cachexia Guidelines Project. Palliat. Med. 2012, 26, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Lavriv, D.S.; Neves, P.M.; Ravasco, P. Should Omega-3 Fatty Acids Be Used for Adjuvant Treatment of Cancer Cachexia? Clin. Nutr. ESPEN 2018, 25, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Claustrat, B.; Leston, J. Melatonin: Physiological Effects in Humans. Neurochirurgie 2015, 61, 77–84. [Google Scholar] [CrossRef]
- Lissoni, P.; Paolorossi, F.; Tancini, G.; Barni, S.; Ardizzoia, A.; Brivio, F.; Zubelewicz, B.; Chatikhine, V. Is There a Role for Melatonin in the Treatment of Neoplastic Cachexia? Eur. J. Cancer 1996, 32A, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- Vazan, R.; Ravingerova, T. Protective Effect of Melatonin against Myocardial Injury Induced by Epinephrine. J. Physiol. Biochem. 2015, 71, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Ramesh, K.; Hyder, I.; Uniyal, S.; Yadav, V.P.; Panda, R.P.; Maurya, V.P.; Singh, G.; Kumar, P.; Mitra, A. Effect of Melatonin Administration on Thyroid Hormones, Cortisol and Expression Profile of Heat Shock Proteins in Goats (Capra Hircus) Exposed to Heat Stress. Small Rumin. Res. 2013, 112, 216–223. [Google Scholar] [CrossRef]
- Martins, T.; Vitorino, R.; Moreira-Gonçalves, D.; Amado, F.; Duarte, J.A.; Ferreira, R. Recent Insights on the Molecular Mechanisms and Therapeutic Approaches for Cardiac Cachexia. Clin. Biochem. 2014, 47, 8–15. [Google Scholar] [CrossRef]
- Johnston, D.L.; Zupanec, S.; Nicksy, D.; Morgenstern, D.; Narendran, A.; Deyell, R.J.; Samson, Y.; Wu, B.; Baruchel, S. Phase I Dose-Finding Study for Melatonin in Pediatric Oncology Patients with Relapsed Solid Tumors. Pediatr. Blood Cancer 2019, 66, e27676. [Google Scholar] [CrossRef]
- Iravani, S.; Eslami, P.; Dooghaie Moghadam, A.; Moazzami, B.; Mehrvar, A.; Hashemi, M.R.; Mansour-Ghanaei, F.; Mansour-Ghanaei, A.; Majidzadeh-A, K. The Role of Melatonin in Colorectal Cancer. J. Gastrointest. Cancer 2020, 51, 748–753. [Google Scholar] [CrossRef]
- Del Fabbro, E.; Dev, R.; Hui, D.; Palmer, L.; Bruera, E. Effects of Melatonin on Appetite and Other Symptoms in Patients with Advanced Cancer and Cachexia: A Double-Blind Placebo-Controlled Trial. J. Clin. Oncol. 2013, 31, 1271–1276. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Tan, D.; Sainz, R.M.; Mayo, J.C.; Lopez-Burillo, S. Melatonin: Reducing the Toxicity and Increasing the Efficacy of Drugs. J. Pharm. Pharmacol. 2002, 54, 1299–1321. [Google Scholar] [CrossRef] [Green Version]
- Rijkers, G.T.; Bengmark, S.; Enck, P.; Haller, D.; Herz, U.; Kalliomaki, M.; Kudo, S.; Lenoir-Wijnkoop, I.; Mercenier, A.; Myllyluoma, E.; et al. Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Current Status and Recommendations for Future Research. J. Nutr. 2010, 140, 671S–676S. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Sawyer, M.B.; Wischmeyer, P.E.; Baracos, V.E. Nutrition Modulation of Gastrointestinal Toxicity Related to Cancer Chemotherapy: From Preclinical Findings to Clinical Strategy. JPEN J. Parenter. Enteral Nutr. 2011, 35, 74–90. [Google Scholar] [CrossRef]
- Lobo, D.N.; Gianotti, L.; Adiamah, A.; Barazzoni, R.; Deutz, N.E.P.; Dhatariya, K.; Greenhaff, P.L.; Hiesmayr, M.; Hjort Jakobsen, D.; Klek, S.; et al. Perioperative Nutrition: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2020, 39, 3211–3227. [Google Scholar] [CrossRef]
- Panebianco, C.; Villani, A.; Potenza, A.; Favaro, E.; Finocchiaro, C.; Perri, F.; Pazienza, V. Targeting Gut Microbiota in Cancer Cachexia: Towards New Treatment Options. Int. J. Mol. Sci. 2023, 24, 1849. [Google Scholar] [CrossRef] [PubMed]
- Bindels, L.B.; Neyrinck, A.M.; Claus, S.P.; Le Roy, C.I.; Grangette, C.; Pot, B.; Martinez, I.; Walter, J.; Cani, P.D.; Delzenne, N.M. Synbiotic Approach Restores Intestinal Homeostasis and Prolongs Survival in Leukaemic Mice with Cachexia. ISME J. 2016, 10, 1456–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindels, L.B.; Beck, R.; Schakman, O.; Martin, J.C.; de Backer, F.; Sohet, F.M.; Dewulf, E.M.; Pachikian, B.D.; Neyrinck, A.M.; Thissen, J.P.; et al. Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model. PLoS ONE 2012, 7, e37971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimpour, M.; Ashabi, G.; Rahimi, A.M.; Halimi, S.; Panahi, M.; Alemrajabi, M.; Nabavizadeh, F. Lactobacillus Rhamnosus R0011 Treatment Enhanced Efficacy of Capecitabine against Colon Cancer in Male Balb/c Mice. Nutr. Cancer 2022, 74, 2622–2631. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Li, S.; Chen, W.; Han, Y.; Yao, Y.; Yang, L.; Li, Q.; Xiao, Q.; Wei, J.; Liu, Z.; et al. Postoperative Probiotics Administration Attenuates Gastrointestinal Complications and Gut Microbiota Dysbiosis Caused by Chemotherapy in Colorectal Cancer Patients. Nutrients 2023, 15, 356. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.; Voigt, W.; Jordan, K. Chemotherapy-Induced Diarrhea: Pathophysiology, Frequency and Guideline-Based Management. Ther. Adv. Med. Oncol. 2010, 2, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Chen, C.; Wen, T.; Zhao, Q. Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Adults: A Meta-Analysis of Randomized Placebo-Controlled Trials. J. Clin. Gastroenterol. 2021, 55, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Zaharuddin, L.; Mokhtar, N.M.; Muhammad Nawawi, K.N.; Raja Ali, R.A. A Randomized Double-Blind Placebo-Controlled Trial of Probiotics in Post-Surgical Colorectal Cancer. BMC Gastroenterol. 2019, 19, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbulut, G. New Perspective for Nutritional Support of Cancer Patients: Enteral/Parenteral Nutrition. Exp. Ther. Med. 2011, 2, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Österlund, P.; Ruotsalainen, T.; Korpela, R.; Saxelin, M.; Ollus, A.; Valta, P.; Kouri, M.; Elomaa, I.; Joensuu, H. Lactobacillus Supplementation for Diarrhoea Related to Chemotherapy of Colorectal Cancer: A Randomised Study. Br. J. Cancer 2007, 97, 1028–1034. [Google Scholar] [CrossRef] [Green Version]
- Bowen, J.M.; Stringer, A.M.; Gibson, R.J.; Yeoh, A.S.J.; Hannam, S.; Keefe, D.M.K. VSL#3 Probiotic Treatment Reduces Chemotherapy-Induced Diarrhea and Weight Loss. Cancer Biol. Ther. 2007, 6, 1449–1454. [Google Scholar] [CrossRef] [PubMed]
- Herremans, K.M.; Riner, A.N.; Cameron, M.E.; Trevino, J.G. The Microbiota and Cancer Cachexia. Int. J. Mol. Sci. 2019, 20, 6267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Lai, Y.J.; Chan, Y.L.; Li, T.L.; Wu, C.J. Epigallocatechin-3-Gallate Effectively Attenuates Skeletal Muscle Atrophy Caused by Cancer Cachexia. Cancer Lett. 2011, 305, 40–49. [Google Scholar] [CrossRef]
- McCarty, M.F.; Iloki-Assanga, S.; Lujany, L.M.L. Nutraceutical Targeting of TLR4 Signaling Has Potential for Prevention of Cancer Cachexia. Med. Hypotheses 2019, 132, 109326. [Google Scholar] [CrossRef]
- Filippini, T.; Malavolti, M.; Borrelli, F.; Izzo, A.A.; Fairweather-Tait, S.J.; Horneber, M.; Vinceti, M. Green Tea (Camellia Sinensis) for the Prevention of Cancer. Cochrane Database Syst. Rev. 2020, 3, 1–278. [Google Scholar] [CrossRef] [Green Version]
- Das, T.; Dvoretskiy, S.; Chen, C.; Luo, M.; Pereira, S.L. Fish Oil, Plant Polyphenols, and Their Combinations Have No Tumor Growth Promoting Effects on Human Lung and Colon Carcinoma Xenograft Mice. J. Diet. Suppl. 2023, 20, 459–474. [Google Scholar] [CrossRef]
- Sukari, A.; Muqbil, I.; Mohammad, R.M.; Philip, P.A. Azmi, AS F-BOX Proteins in Cancer Cachexia and Muscle Wasting: Emerging Regulators and Therapeutic Opportunities. Semin. Cancer Biol. 2016, 36, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodine, S.C.; Furlow, J.D. Glucocorticoids and Skeletal Muscle. In Glucocorticoid Signaling. Advances in Experimental Medicine and Biology; Wang, J.C., Harris, C., Eds.; Springer: New York, NY, USA, 2015; Volume 872, pp. 145–176. [Google Scholar] [CrossRef]
- Hemdan, D.I.I.; Hirasaka, K.; Nakao, R.; Kohno, S.; Kagawa, S.; Abe, T.; Harada-Sukeno, A.; Okumura, Y.; Nakaya, Y.; Terao, J. Polyphenols Prevent Clinorotation-Induced Expression of Atrogenes in Mouse C2C12 Skeletal Myotubes. J. Med. Investig. 2009, 56, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.M. Cancer Prevention by Green Tea: Evidence from Epidemiologic Studies. Am. J. Clin. Nutr. 2013, 98, 1676S–1681S. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, G.; Maccio, A.; Madeddu, C.; Serpe, R.; Massa, E.; Dessi, M.; Panzone, F.; Contu, P. Randomized Phase III Clinical Trial of Five Different Arms of Treatment in 332 Patients with Cancer Cachexia. Oncologist 2010, 15, 200–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundmann, O.; Yoon, S.L.; Williams, J.J.; Gordan, L.; George, T.J. Augmentation of Cancer Cachexia Components With Targeted Acupuncture in Patients With Gastrointestinal Cancers: A Randomized Controlled Pilot Study. Integr. Cancer Ther. 2019, 18, 1534735418823269. [Google Scholar] [CrossRef]
- Hsu, M.Y.; Porporato, P.E.; Wyart, E. Assessing Metabolic Dysregulation in Muscle During Cachexia. Methods Mol. Biol. 2019, 1928, 337–352. [Google Scholar] [CrossRef]
- Daas, S.I.; Rizeq, B.R.; Nasrallah, G.K. Adipose Tissue Dysfunction in Cancer Cachexia. J. Cell Physiol. 2018, 234, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Xu, J.; Wang, J.; Zhang, Z.; Li, S.; Yan, M.; Tang, M.; Liu, H.; Zhuang, Q.; Xi, Q.; et al. Development and Validation of a Cancer Cachexia Risk Score for Digestive Tract Cancer Patients before Abdominal Surgery. J. Cachexia Sarcopenia Muscle 2023, 14, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A New Index for Evaluating at-Risk Elderly Medical Patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMillan, D.C.; Crozier, J.E.M.; Canna, K.; Angerson, W.J.; McArdle, C.S. Evaluation of an Inflammation-Based Prognostic Score (GPS) in Patients Undergoing Resection for Colon and Rectal Cancer. Int. J. Colorectal Dis. 2007, 22, 881–886. [Google Scholar] [CrossRef]
- Ng, S.K.; Chung, D.J.; Chang, L.C.; Luo, C.K.; Jwo, S.H.; Lee, Y.H.; Lin, J.S.; Wang, C.H.; Wei, T.T. The Protective Effect of Cannabinoids against Colorectal Cancer Cachexia through Modulation of Inflammation and Immune Responses. Biomed. Pharmacother. 2023, 161, 114467. [Google Scholar] [CrossRef]
- Alderman, B.; Hui, D.; Mukhopadhyay, S.; Bouleuc, C.; Case, A.A.; Amano, K.; Crawford, G.B.; de Feo, G.; Sbrana, A.; Tanco, K.; et al. Multinational Association of Supportive Care in Cancer (MASCC) Expert Opinion/Consensus Guidance on the Use of Cannabinoids for Gastrointestinal Symptoms in Patients with Cancer. Support. Care Cancer 2022, 31, 39. [Google Scholar] [CrossRef] [PubMed]
Search Term | PubMed | Google Scholar | CINAHL |
---|---|---|---|
“gastrointestinal cancer” AND “cachexia” AND | |||
“fish oil” | 34 | 1090 | 1 |
“melatonin” | 6 | 443 | 3 |
“probiotics” | 10 | 313 | 2 |
“green tea” | 2 | 181 | 0 |
“supplements” | 61 | 2320 | 10 |
“digestive cancer” AND “cachexia” AND | |||
“fish oil” | 6 | 22 | 1 |
“melatonin” | 1 | 8 | 1 |
“probiotics” | 0 | 10 | 0 |
“green tea” | 0 | 6 | 0 |
“supplements” | 10 | 79 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.L.; Grundmann, O. Relevance of Dietary Supplement Use in Gastrointestinal-Cancer-Associated Cachexia. Nutrients 2023, 15, 3391. https://doi.org/10.3390/nu15153391
Yoon SL, Grundmann O. Relevance of Dietary Supplement Use in Gastrointestinal-Cancer-Associated Cachexia. Nutrients. 2023; 15(15):3391. https://doi.org/10.3390/nu15153391
Chicago/Turabian StyleYoon, Saunjoo L., and Oliver Grundmann. 2023. "Relevance of Dietary Supplement Use in Gastrointestinal-Cancer-Associated Cachexia" Nutrients 15, no. 15: 3391. https://doi.org/10.3390/nu15153391
APA StyleYoon, S. L., & Grundmann, O. (2023). Relevance of Dietary Supplement Use in Gastrointestinal-Cancer-Associated Cachexia. Nutrients, 15(15), 3391. https://doi.org/10.3390/nu15153391