Longer-Term Effects of the Glycaemic Index on Substrate Metabolism and Performance in Endurance Athletes
Abstract
:1. Introduction
1.1. Mechanism of Substrate Oxidation during Endurance Exercise and Influencing Factors
1.2. GI and Its Relevance in Sport Nutrition
2. Methods
3. Discussion
Study Design | GI of Diets | Duration | Subjects | Results | ||
---|---|---|---|---|---|---|
Performance | Substrate Metabolism | |||||
Chen et al., 2008 [91] | crossover | high GI: 80 low GI: 36 | 3 days | 9 male runners (VO2max: 61.9 ± 2.9 mL·min−1·kg−1) | no difference in 10 km TT (high GI: 51.3 ± 5.3 vs. Low GI: 48.6 ± 1.3 min) | no difference in CHO or fat oxidation before, during or after trials |
Hamzah et al., 2009 [92] | crossover | high GI: 71 ± 1 low GI: 36 ± 0 | 5 days | 9 males (VO2max: 59.8 ± 4.3 mL·min−1·kg−1) | no difference in TTE (high GI: 107 ± 18 vs. low GI: 107 ± 18 min) and distance covered (high GI: 18 ± 5 vs. low GI: 19 ± 5 km) | no differences in CHO or fat oxidation in fasted state, during exercise or at exhaustion |
Cocate et al., 2011 [6] | crossover | high GI: 79 low GI: 28 | 5 days | 15 male cyclists (VO2max: 70.0 ± 5.3 mL·min−1·kg−1) | higher postprandial fat oxidation in high GI compared to low GI higher postprandial CHO oxidation in low GI compared to high GI | |
Durkalec-Michalski et al., 2018 [97] | crossover | moderate GI low GI | 21 days | 10 male and 7 female runners (VO2max: 50.5 ± 7.4 mL·min−1·kg−1) | longer TTE in moderate GI (12:58 ± 3:31) vs. low GI (12:32 ± 3:44) | no differences in CHO of fat oxidation |
Durkalec-Michalski et al., 2018 [98] | crossover | moderate GI: 61 ± 1 low GI: 39 ± 1 | 21 days | 13 males and 7 female runners (VO2max: 51.6 ± 9.4 mL·min−1·kg−1) | no differences in 12 min running test or TTE in ICT | |
Zdzieblik et al., 2022 [100] | parallel groups | high GI: 74 ± 3 low GI: 39 ± 4 LCHF | 28 days | 28 males | no differences in TTE or lactate concentration at ICT in CHO groups | |
Zdzieblik et al., 2022 [99] | parallel groups | high GI: 74 ± 3 low GI: 39 ± 4 LCHF | 28 days | 28 males | higher fat oxidation in LCHF due to lower lactate concentration compared to baseline in low GI an improved fat oxidation was assumed |
4. Research Gaps
- Duration of diet: How long should a low-GI diet be maintained to sustainably change substrate metabolism?
- Mechanistic effects: What are the underlying mechanisms through which a low-GI diet affects muscular energy stores and metabolism?
- Comparisons to an LCHF diet: Can a long-term low-GI diet achieve similar adaptations in fat metabolism to an LCHF diet without compromising performance at higher intensities and impairing carbohydrate metabolism?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, D.; Burke, L.; Erdman, K. Nutrition and Athletic Performance. Med. Sci. 2016, 48, 543–568. [Google Scholar] [CrossRef]
- Podlogar, T.; Wallis, G.A. New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sport. Med. 2022, 52, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolever, T.M.; Jenkins, D.J.; Jenkins, A.L.; Josse, R.G. The glycemic index: Methodology and clinical implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [CrossRef]
- Carneiro, L.; Leloup, C. Mens sana in corpore sano: Does the Glycemic Index Have a Role to Play? Nutrients 2020, 12, 2989. [Google Scholar] [CrossRef]
- Cocate, P.G.; Pereira, L.G.; Marins, J.C.; Cecon, P.R.; Bressan, J.; Alfenas, R.C. Metabolic responses to high glycemic index and low glycemic index meals: A controlled crossover clinical trial. Nutr. J. 2011, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- König, D.; Zdzieblik, D.; Holz, A.; Theis, S.; Gollhofer, A. Substrate Utilization and Cycling Performance Following Palatinose™ Ingestion: A Randomized, Double-Blind, Controlled Trial. Nutrients 2016, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Oosthuyse, T.; Carstens, M.; Millen, A.M. Ingesting Isomaltulose Versus Fructose-Maltodextrin During Prolonged Moderate-Heavy Exercise Increases Fat Oxidation but Impairs Gastrointestinal Comfort and Cycling Performance. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M. Ketogenic low-CHO, high-fat diet: The future of elite endurance sport? J. Physiol. 2021, 599, 819–843. [Google Scholar] [CrossRef]
- Burke, L.M. Re-Examining High-Fat Diets for Sports Performance: Did We Call the ‘Nail in the Coffin’ Too Soon? Sport. Med. 2015, 45, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Howard, E.E.; Margolis, L.M. Intramuscular Mechanisms Mediating Adaptation to Low-Carbohydrate, High-Fat Diets during Exercise Training. Nutrients 2020, 12, 2496. [Google Scholar] [CrossRef]
- Alghannam, A.F.; Ghaith, M.M.; Alhussain, M.H. Regulation of Energy Substrate Metabolism in Endurance Exercise. Int. J. Environ. Res. Public Health 2021, 18, 4963. [Google Scholar] [CrossRef]
- Spriet, L.L. New Insights into the Interaction of Carbohydrate and Fat Metabolism During Exercise. Sport. Med. 2014, 44, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, M.; Spriet, L.L. Exercise Metabolism: Fuels for the Fire. Cold Spring Harb. Perspect. Med. 2018, 8, a029744. [Google Scholar] [CrossRef]
- Romijn, J.A.; Coyle, E.F.; Sidossis, L.S.; Gastaldelli, A.; Horowitz, J.F.; Endert, E.; Wolfe, R.R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 1993, 265, E380–E391. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-K.; Borer, K.; Lin, P.-J. Low-Carbohydrate-High-Fat Diet: Can it Help Exercise Performance? J. Hum. Kinet. 2017, 56, 81–92. [Google Scholar] [CrossRef]
- Venables, M.C.; Achten, J.; Jeukendrup, A.E. Determinants of fat oxidation during exercise in healthy men and women: A cross-sectional study. J. Appl. Physiol. 2005, 98, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Ormsbee, M.; Bach, C.; Baur, D. Pre-Exercise Nutrition: The Role of Macronutrients, Modified Starches and Supplements on Metabolism and Endurance Performance. Nutrients 2014, 6, 1782–1808. [Google Scholar] [CrossRef] [Green Version]
- Bailey, C.P.; Hennessy, E. A review of the ketogenic diet for endurance athletes: Performance enhancer or placebo effect? J. Int. Soc. Sport. Nutr. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Jeukendrup, A.; Saris, W.; Wagenmakers, A. Fat Metabolism During Exercise: A Review—Part II: Regulation of Metabolism and the Effects of Training. Int. J. Sport. Med. 1998, 19, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.; Saris, W.; Wagenmakers, A. Fat Metabolism During Exercise: A Review. Part I: Fatty Acid Mobilization and Muscle Metabolism. Int. J. Sport. Med. 1998, 19, 231–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonen, A.; Dohm, G.L.; van Loon, L.J. Lipid metabolism, exercise and insulin action. Essays Biochem. 2006, 42, 47–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, C.; Jia, Q.; Ding, G.; Wu, X.; Yang, M. Low-Glycemic Index Diets as an Intervention in Metabolic Diseases: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.H.; Hansen, O. II. Hypoglykämie, Arbeitsfähigkeit und Ermüdung. Skand. Arch. Für Physiol. 1939, 81, 172–179. [Google Scholar] [CrossRef]
- Christensen, E.H.; Hansen, O. III. Arbeitsfähigkeit und Ernährung. Skand. Arch. Für Physiol. 1939, 81, 160–171. [Google Scholar] [CrossRef]
- Krogh, A.; Lindhard, J. The Relative Value of Fat and Carbohydrate as Sources of Muscular Energy: With Appendices on the Correlation between Standard Metabolism and the Respiratory Quotient during Rest and Work. Biochem. J. 1920, 14, 290–363. [Google Scholar] [CrossRef]
- Dill, D.B.; Edwards, H.T.; Talbott, J.H. Studies in muscular activity: VII. Factors limiting the capacity for work. J. Physiol. 1932, 77, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Gordon, B.; Kohn, L.A.; Levine, S.A.; Matton, M.; Scriver, W.M.; Whiting, W.B. Sugar content of the blood in runners following a marathon race: With special reference to the prevention of hypoglycemia: Further observations. J. Am. Med. Assoc. 1925, 85, 508–509. [Google Scholar] [CrossRef]
- Levine, S.A.; Grodon, B.; Derick, C.L. Some changes in the chemical constituents of the blood following a marathon race: With special reference to the development of hypoglycemia. J. Am. Med. Assoc. 1924, 82, 1778–1779. [Google Scholar] [CrossRef]
- McConell, G.; Snow, R.J.; Proietto, J.; Hargreaves, M. Muscle metabolism during prolonged exercise in humans: Influence of carbohydrate availability. J. Appl. Physiol. 1999, 87, 1083–1086. [Google Scholar] [CrossRef]
- Febbraio, M.A.; Chiu, A.; Angus, D.J.; Arkinstall, M.J.; Hawley, J.A. Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. J. Appl. Physiol. 2000, 89, 2220–2226. [Google Scholar] [CrossRef] [Green Version]
- Wallis, G.A.; Yeo, S.E.; Blannin, A.K.; Jeukendrup, A.E. Dose-response effects of ingested carbohydrate on exercise metabolism in women. Med. Sci. Sport. Exerc. 2007, 39, 131–138. [Google Scholar] [CrossRef]
- Carter, J.M.; Jeukendrup, A.E.; Mann, C.H.; Jones, D.A. The Effect of Glucose Infusion on Glucose Kinetics during a 1-h Time Trial. Med. Sci. Sport. Exerc. 2004, 36, 1543–1550. [Google Scholar] [CrossRef]
- Wilber, R.L.; Moffatt, R.J. Influence of carbohydrate ingestion on blood glucose and performance in runners. Int. J. Sport Nutr. 1992, 2, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E. Carbohydrate and exercise performance: The role of multiple transportable carbohydrates. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 452–457. [Google Scholar] [CrossRef]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [Green Version]
- Akram, M. Citric Acid Cycle and Role of its Intermediates in Metabolism. Cell Biochem. Biophys. 2014, 68, 475–478. [Google Scholar] [CrossRef]
- Bowtell, J.L.; Marwood, S.; Bruce, M.; Constantin-Teodosiu, D.; Greenhaff, P.L. Tricarboxylic Acid Cycle Intermediate Pool Size. Sport. Med. 2007, 37, 1071–1088. [Google Scholar] [CrossRef]
- Masoro, E.J.; Felts, J.M. Role of carbohydrate metabolism in promoting fatty acid oxidation. J. Biol. Chem. 1958, 231, 347–356. [Google Scholar] [CrossRef]
- Abdel-aleem, S.; Nada, M.A.; Sayed-Ahmed, M.; Hendrickson, S.C.; St Louis, J.; Walthall, H.P.; Lowe, J.E. Regulation of fatty acid oxidation by acetyl-CoA generated from glucose utilization in isolated myocytes. J. Mol. Cell. Cardiol. 1996, 28, 825–833. [Google Scholar] [CrossRef]
- Coyle, E.F.; Jeukendrup, A.E.; Wagenmakers, A.J.; Saris, W.H. Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am. J. Physiol. 1997, 273, E268–E275. [Google Scholar] [CrossRef] [PubMed]
- Randle, P.J. Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998, 14, 263–283. [Google Scholar] [CrossRef]
- Dimitriadis, G.; Mitrou, P.; Lambadiari, V.; Maratou, E.; Raptis, S.A. Insulin effects in muscle and adipose tissue. Diabetes Res. Clin. Pr. 2011, 93 (Suppl. S1), S52–S59. [Google Scholar] [CrossRef] [PubMed]
- Odland, L.M.; Heigenhauser, G.J.; Lopaschuk, G.D.; Spriet, L.L. Human skeletal muscle malonyl-CoA at rest and during prolonged submaximal exercise. Am. J. Physiol. 1996, 270, E541–E544. [Google Scholar] [CrossRef]
- McGarry, J.D.; Mannaerts, G.P.; Foster, D.W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J. Clin. Investig. 1977, 60, 265–270. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A.; Ferrannini, E.; Hendler, R.; Felig, P.; Wahren, J. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes 1983, 32, 35–45. [Google Scholar] [CrossRef]
- Costill, D.L.; Coyle, E.; Dalsky, G.; Evans, W.; Fink, W.; Hoopes, D. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 695–699. [Google Scholar] [CrossRef]
- Campbell, P.J.; Carlson, M.G.; Hill, J.O.; Nurjhan, N. Regulation of free fatty acid metabolism by insulin in humans: Role of lipolysis and reesterification. Am. J. Physiol. 1992, 263, E1063–E1069. [Google Scholar] [CrossRef] [Green Version]
- Ahlborg, G.; Felig, P. Influence of glucose ingestion on fuel-hormone response during prolonged exercise. J. Appl. Physiol. 1976, 41, 683–688. [Google Scholar] [CrossRef]
- Horowitz, J.F.; Mora-Rodriguez, R.; Byerley, L.O.; Coyle, E.F. Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am. J. Physiol. 1997, 273, E768–E775. [Google Scholar] [CrossRef]
- Vukovich, M.D.; Costill, D.L.; Hickey, M.S.; Trappe, S.W.; Cole, K.J.; Fink, W.J. Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J. Appl. Physiol. (1985) 1993, 75, 1513–1518. [Google Scholar] [CrossRef]
- Paoli, A.; Bosco, G.; Camporesi, E.M.; Mangar, D. Ketosis, ketogenic diet and food intake control: A complex relationship. Front. Psychol. 2015, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Phinney, S.D.; Bistrian, B.R.; Evans, W.J.; Gervino, E.; Blackburn, G.L. The human metabolic response to chronic ketosis without caloric restriction: Preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 1983, 32, 769–776. [Google Scholar] [CrossRef]
- Devrim-Lanpir, A.; Hill, L.; Knechtle, B. Efficacy of Popular Diets Applied by Endurance Athletes on Sports Performance: Beneficial or Detrimental? A Narrative Review. Nutrients 2021, 13, 491. [Google Scholar] [CrossRef]
- Volek, J.S.; Freidenreich, D.J.; Saenz, C.; Kunces, L.J.; Creighton, B.C.; Bartley, J.M.; Davitt, P.M.; Munoz, C.X.; Anderson, J.M.; Maresh, C.M.; et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism 2016, 65, 100–110. [Google Scholar] [CrossRef] [Green Version]
- McSwiney, F.T.; Fusco, B.; McCabe, L.; Lombard, A.; Crowley, P.; Walsh, J.; Hone, M.; Egan, B. Changes in body composition and substrate utilization after a short-term ketogenic diet in endurance-trained males. Biol. Sport 2021, 38, 145–152. [Google Scholar] [CrossRef]
- Kang, J.; Ratamess, N.A.; Faigenbaum, A.D.; Bush, J.A. Ergogenic Properties of Ketogenic Diets in Normal-Weight Individuals: A Systematic Review. J. Am. Coll. Nutr. 2020, 39, 665–675. [Google Scholar] [CrossRef]
- Carr, A.; Sharma, A.; Ross, M.; Welvaert, M.; Slater, G.; Burke, L. Chronic Ketogenic Low Carbohydrate High Fat Diet Has Minimal Effects on Acid–Base Status in Elite Athletes. Nutrients 2018, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M.; Ross, M.L.; Garvican-Lewis, L.A.; Welvaert, M.; Heikura, I.A.; Forbes, S.G.; Mirtschin, J.G.; Cato, L.E.; Strobel, N.; Sharma, A.P.; et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 2017, 595, 2785–2807. [Google Scholar] [CrossRef] [Green Version]
- McSwiney, F.T.; Wardrop, B.; Hyde, P.N.; Lafountain, R.A.; Volek, J.S.; Doyle, L. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism 2018, 81, 25–34. [Google Scholar] [CrossRef]
- Shaw, D.M.; Merien, F.; Braakhuis, A.; Maunder, E.D.; Dulson, D.K. Effect of a Ketogenic Diet on Submaximal Exercise Capacity and Efficiency in Runners. Med. Sci. Sport. Exerc. 2019, 51, 2135–2146. [Google Scholar] [CrossRef] [PubMed]
- Heatherly, A.J.; Killen, L.G.; Smith, A.F.; Waldman, H.S.; Seltmann, C.L.; Hollingsworth, A.; O’neal, E.K. Effects of Ad libitum Low-Carbohydrate High-Fat Dieting in Middle-Age Male Runners. Med. Sci. Sport. Exerc. 2018, 50, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Helge, J.W. Long-term fat diet adaptation effects on performance, training capacity, and fat utilization. Med. Sci. Sport. Exerc. 2002, 34, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Langfort, J.; Pilis, W.; Zarzeczny, R.; Nazar, K.; Kaciuba-Uściłko, H. Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men. J. Physiol. Pharmacol. 1996, 47, 361–371. [Google Scholar] [PubMed]
- Zajac, A.; Poprzecki, S.; Maszczyk, A.; Czuba, M.; Michalczyk, M.; Zydek, G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients 2014, 6, 2493–2508. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Murphy, N.E.; Carrigan, C.T.; Margolis, L.M. High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Adv. Nutr. 2021, 12, 223–233. [Google Scholar] [CrossRef]
- Donaldson, C.M.; Perry, T.L.; Rose, M.C. Glycemic Index and Endurance Performance. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.A.; Wolever, T.M.S.; Jenkins, A.L.; Thorne, M.J.; Lee, R.; Kalmusky, J.; Reichert, R.; Wong, G.S. The glycaemic index of foods tested in diabetic patients: A new basis for carbohydrate exchange favouring the use of legumes. Diabetologia 1983, 24, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef]
- Flavel, M.; Jois, M.; Kitchen, B. Potential contributions of the methodology to the variability of glycaemic index of foods. World J. Diabetes 2021, 12, 108–123. [Google Scholar] [CrossRef]
- Thomas, D.E.; Brotherhood, J.R.; Brand, J.C. Carbohydrate feeding before exercise: Effect of glycemic index. Int. J. Sport. Med. 1991, 12, 180–186. [Google Scholar] [CrossRef]
- Achten, J.; Jentjens, R.L.; Brouns, F.; Jeukendrup, A.E. Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men. J. Nutr. 2007, 137, 1143–1148. [Google Scholar] [CrossRef] [Green Version]
- König, D.; Theis, S.; Kozianowski, G.; Berg, A. Postprandial substrate use in overweight subjects with the metabolic syndrome after isomaltulose (Palatinose™) ingestion. Nutrition 2012, 28, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Maresch, C.C.; Petry, S.F.; Theis, S.; Bosy-Westphal, A.; Linn, T. Low Glycemic Index Prototype Isomaltulose-Update of Clinical Trials. Nutrients 2017, 9, 381. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.L.; Williams, C. A low glycemic index meal before exercise improves endurance running capacity in men. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 510–527. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, M.; Hamada, Y.; Fujihira, K.; Namura, S.; Sakazaki, M.; Miyasaka, K.; Nagai, Y. The effects of isomaltulose ingestion on gastric parameters and cycling performance in young men. J. Exerc. Sci. Fit. 2019, 17, 101–107. [Google Scholar] [CrossRef]
- Sun, F.-H.; O’Reilly, J.; Li, L.; Wong, S.H.-S. Effect of the glycemic index of pre-exercise snack bars on substrate utilization during subsequent exercise. Int. J. Food Sci. Nutr. 2013, 64, 1001–1006. [Google Scholar] [CrossRef]
- Kirwan, J.P.; Cyr-Campbell, D.; Campbell, W.W.; Scheiber, J.; Evans, W.J. Effects of moderate and high glycemic index meals on metabolism and exercise performance. Metabolism 2001, 50, 849–855. [Google Scholar] [CrossRef]
- Sparks, M.J.; Selig, S.S.; Febbraio, M.A. Pre-exercise carbohydrate ingestion: Effect of the glycemic index on endurance exercise performance. Med. Sci. Sport. Exerc. 1998, 30, 844–849. [Google Scholar] [CrossRef]
- Wee, S.L.; Williams, C.; Gray, S.; Horabin, J. Influence of high and low glycemic index meals on endurance running capacity. Med. Sci. Sport. Exerc. 1999, 31, 393–399. [Google Scholar] [CrossRef]
- Stevenson, E.; Williams, C.; Nute, M. The influence of the glycaemic index of breakfast and lunch on substrate utilisation during the postprandial periods and subsequent exercise. Br. J. Nutr. 2005, 93, 885–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, L.J.; Midgley, A.W.; Thurlow, S.; Thomas, G.; Mc Naughton, L.R. Effect of the glycaemic index of a pre-exercise meal on metabolism and cycling time trial performance. J. Sci. Med. Sport 2010, 13, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, E.J.; Williams, C.; Mash, L.E.; Phillips, B.; Nute, M.L. Influence of high-carbohydrate mixed meals with different glycemic indexes on substrate utilization during subsequent exercise in women. Am. J. Clin. Nutr. 2006, 84, 354–360. [Google Scholar] [CrossRef]
- Backhouse, S.H.; Williams, C.; Stevenson, E.; Nute, M. Effects of the glycemic index of breakfast on metabolic responses to brisk walking in females. Eur. J. Clin. Nutr. 2007, 61, 590–596. [Google Scholar] [CrossRef] [Green Version]
- Bennard, P.; Doucet, É. Acute effects of exercise timing and breakfast meal glycemic index on exercise-induced fat oxidation. Appl. Physiol. Nutr. Metab. 2006, 31, 502–511. [Google Scholar] [CrossRef]
- Burdon, C.A.; Spronk, I.; Cheng, H.L.; O’Connor, H.T. Effect of Glycemic Index of a Pre-exercise Meal on Endurance Exercise Performance: A Systematic Review and Meta-analysis. Sport. Med. 2017, 47, 1087–1101. [Google Scholar] [CrossRef]
- Heung-Sang Wong, S.; Sun, F.H.; Chen, Y.J.; Li, C.; Zhang, Y.J.; Ya-Jun Huang, W. Effect of pre-exercise carbohydrate diets with high vs low glycemic index on exercise performance: A meta-analysis. Nutr. Rev. 2017, 75, 327–338. [Google Scholar] [CrossRef]
- Stannard, S.R.; Constantini, N.W.; Miller, J.C. The effect of glycemic index on plasma glucose and lactate levels during incremental exercise. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 51–61. [Google Scholar] [CrossRef]
- Chen, Y.; Wong, S.; Xu, X.; Hao, X.; Wong, C.; Lam, C. Effect of CHO Loading Patterns on Running Performance. Int. J. Sport. Med. 2008, 29, 598–606. [Google Scholar] [CrossRef]
- Hamzah, S.; Higgins, S.; Abraham, T.; Taylor, P.; Vizbaraite, D.; Malkova, D. The effect of glycaemic index of high carbohydrate diets consumed over 5 days on exercise energy metabolism and running capacity in males. J. Sport. Sci. 2009, 27, 1545–1554. [Google Scholar] [CrossRef]
- Tittelbach, T.J.; Mattes, R.D.; Gretebeck, R.J. Post-Exercise Substrate Utilization after a High Glucose vs. High Fructose Meal During Negative Energy Balance in the Obese. Obes. Res. 2000, 8, 496–505. [Google Scholar] [CrossRef]
- Frayn, K.N. Fat as a fuel: Emerging understanding of the adipose tissue-skeletal muscle axis. Acta Physiol. 2010, 199, 509–518. [Google Scholar] [CrossRef]
- Van Loon, L.J.L.; Greenhaff, P.L.; Constantin-Teodosiu, D.; Saris, W.H.M.; Wagenmakers, A.J.M. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 2001, 536, 295–304. [Google Scholar] [CrossRef]
- Gonzalez, J.T.; Stevenson, E.J. New perspectives on nutritional interventions to augment lipid utilisation during exercise. Br. J. Nutr. 2012, 107, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Durkalec-Michalski, K.; Zawieja, E.E.; Zawieja, B.E.; Podgórski, T.; Jurkowska, D.; Jeszka, J. Influence of low versus moderate glycemic index of diet on substrate oxidation and energy expenditure during incremental exercise in endurance athletes: A randomized counterbalanced cross-over trial. Int. J. Food Sci. Nutr. 2018, 69, 741–752. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Zawieja, E.; Zawieja, B.; Jurkowska, D.; Buchowski, M.; Jeszka, J. Effects of Low Versus Moderate Glycemic Index Diets on Aerobic Capacity in Endurance Runners: Three-Week Randomized Controlled Crossover Trial. Nutrients 2018, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Zdzieblik, D.; Friesenborg, H.; Gollhofer, A.; König, D. Effect of a High Fat Diet vs. High Carbohydrate Diets With Different Glycemic Indices on Metabolic Parameters in Male Endurance Athletes: A Pilot Trial. Front. Nutr. 2022, 9, 802374. [Google Scholar] [CrossRef]
- Zdzieblik, D.; Friesenborg, H.; Gollhofer, A.; König, D. A high carbohydrate diet with a low glycaemic index improves training effects in male endurance athletes. Int. J. Food Sci. Nutr. 2022, 73, 965–972. [Google Scholar] [CrossRef]
- Schranner, D.; Kastenmüller, G.; Schönfelder, M.; Römisch-Margl, W.; Wackerhage, H. Metabolite Concentration Changes in Humans After a Bout of Exercise: A Systematic Review of Exercise Metabolomics Studies. Sport. Med. Open 2020, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moitzi, A.M.; König, D. Longer-Term Effects of the Glycaemic Index on Substrate Metabolism and Performance in Endurance Athletes. Nutrients 2023, 15, 3028. https://doi.org/10.3390/nu15133028
Moitzi AM, König D. Longer-Term Effects of the Glycaemic Index on Substrate Metabolism and Performance in Endurance Athletes. Nutrients. 2023; 15(13):3028. https://doi.org/10.3390/nu15133028
Chicago/Turabian StyleMoitzi, Anna Maria, and Daniel König. 2023. "Longer-Term Effects of the Glycaemic Index on Substrate Metabolism and Performance in Endurance Athletes" Nutrients 15, no. 13: 3028. https://doi.org/10.3390/nu15133028
APA StyleMoitzi, A. M., & König, D. (2023). Longer-Term Effects of the Glycaemic Index on Substrate Metabolism and Performance in Endurance Athletes. Nutrients, 15(13), 3028. https://doi.org/10.3390/nu15133028