Performance of Body Fat Percentage, Fat Mass Index and Body Mass Index for Detecting Cardiometabolic Outcomes in Brazilian Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethical Aspects
2.3. Anthropometric and Body Composition Measures
2.4. Cardiometabolic Risk Factors
2.5. Data Analysis
3. Results
3.1. Subjects
3.2. Diagnostic Performance of BF%, FMI and BMI to Detect Cardiometabolic Risk Factors
3.3. Comparison of the AUC Values of BF%, FMI and BMI to Detect Cardiometabolic Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. WHO Tech. Rep. Ser. 2000, 894, 252. [Google Scholar]
- Silva, L.E.S.; Oliveira, M.M.; Stopa, S.R.; Gouvea, E.C.D.P.; Ferreira, K.R.D.; Santos, R.O.; Neto, P.F.V.; Macário, E.M.; Sardinha, L.M.V. Temporal trend of overweight and obesity prevalence among Brazilian adults, according to sociodemographic characteristics, 2006–2019. Epidemiol. Serv. Saude 2021, 30, e2020294. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease A Scientific Statement From the American Heart Association. Circulation 2021, 143, E984–E1010. [Google Scholar] [CrossRef]
- Lopez-Jimenez, F.; Almahmeed, W.; Bays, H.; Cuevas, A.; Di Angelantonio, E.; le Roux, C.W.; Sattar, N.; Sun, M.C.; Wittert, G.; Pinto, F.J.; et al. Obesity and cardiovascular disease: Mechanistic insights and management strategies. A joint position paper by the World Heart Federation and World Obesity Federation. Eur. J. Prev. Cardiol. 2022, 29, 2218–2237. [Google Scholar] [CrossRef]
- Perone, F.; Pingitore, A.; Conte, E.; Halasz, G.; Ambrosetti, M.; Peruzzi, M.; Cavarretta, E. Obesity and Cardiovascular Risk: Systematic Intervention Is the Key for Prevention. Healthcare 2023, 11, 902. [Google Scholar] [CrossRef]
- Pasdar, Y.; Hamzeh, B.; Najafi, F.; Darbandi, M. Optimal cutoff values of fat mass index, body fat percentage and visceral fat area for identifying metabolic syndrome in the Kurdish population: Results from an Iranian RaNCD cohort study. Med. J. Nutr. Metab. 2019, 12, 397–409. [Google Scholar] [CrossRef]
- Ortega, F.B.; Sui, X.; Lavie, C.J.; Blair, S.N. Body Mass Index, the Most Widely Used but Also Widely Criticized Index Would a Criterion Standard Measure of Total Body Fat Be a Better Predictor of Cardiovascular Disease Mortality? Mayo Clin. Proc. 2016, 91, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Maffetone, P.B.; Laursen, P.B. Revisiting the Global Overfat Pandemic. Front. Public Health 2020, 8, 51. [Google Scholar] [CrossRef]
- Macek, P.; Biskup, M.; Terek-Derszniak, M.; Stachura, M.; Krol, H.; Gozdz, S.; Zak, M. Optimal body fat percentage cut-off values in predicting the obesity-related cardiovascular risk factors: A cross-sectional cohort study. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 1587–1597. [Google Scholar] [CrossRef]
- VanItallie, T.; Yang, M.-Y.; Heymsfield, S.; Funk, R.; Boileau, R. Height-normalized mass: Potentially. Am. J. Clin. Nutr. 1990, 52, 953–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho-Pham, L.T.; Campbell, L.V.; Nguyen, T.V. More on body fat cutoff points. Mayo Clin. Proc. 2011, 86, 584. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Ma, F.; Lou, H.; Liu, Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health 2013, 13, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.C.K.; Cole, T.J. Adjustment of fat-free mass and fat mass for height in children aged 8 y. Int. J. Obes. 2002, 26, 947–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, T.J.; Fewtrell, M.S.; Prentice, A. Letters to the editor. Am. J. Clin. 2008, 87, 1959. [Google Scholar] [CrossRef] [Green Version]
- Horta, B.L.; Gigante, D.P.; Gonçalves, H.; Dos Santos Motta, J.V.; Loret De Mola, C.; Oliveira, I.O.; Barros, F.C.; Victora, C.G. Cohort Profile Update: The 1982 Pelotas (Brazil) Birth Cohort Study. Int. J. Epidemiol. 2015, 44, 441e. [Google Scholar] [CrossRef] [Green Version]
- Confortin, S.C.; Ribeiro, M.R.C.; Barros, A.J.D.; Menezes, A.M.B.; Horta, B.L.; Victora, C.G.; Barros, F.C.; Conçalves, H.; Bettiol, H.; Santos, I.S.; et al. RPS (Ribeirão Preto, Pelotas and São Luís) Consortium of Brazilian Birth Cohorts: History, Objectives and Methods. Cad. Saude Publica 2021, 37, e00093320. [Google Scholar] [CrossRef]
- Jelliffe, D. The Assessment of the Nutritional Status of the Community; WHO Monograph Series No. 53; World Health Organization: Geneva, Switzerland, 1966. [Google Scholar]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. 1961. Nutrition 1993, 9, 480. [Google Scholar]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Faludi, A.; Izar, M.; Saraiva, J.; Chacra, A.; Bianco, H.; Afiune Neto, A.; Bertolami, A.; Pereira, A.; Lottenberg, A.; Sposito, A.; et al. Atualização Da Diretriz Brasileira De Dislipidemias E Prevenção Da Aterosclerose—2017. Arq. Bras. Cardiol. 2017, 109, 1–76. [Google Scholar] [CrossRef]
- Sociedade Brasileira de Diabetes. Diretrizes Sociedade Brasileira de Diabetes 2019–2020; Clannad: Sao Paulo, Brazil, 2019. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000; pp. 160–164. [Google Scholar]
- Heymsfield, S.B.; Lohman, T.; Wang, Z.; Going, S.B. Human Body Composition; Human Kine: Champaign, UK, 2005. [Google Scholar]
- Reas, D.L.; Nygård, J.F.; Svensson, E.; Sørensen, T.; Sandanger, I. Changes in body mass index by age, gender, and socio-economic status among a cohort of Norwegian men and women (1990–2001). BMC Public Health 2007, 7, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; Sanders-Tordecilla, A.; Ojeda-Pardo, M.L.; Cobo-Mejía, E.A.; Castellanos-Vega, R.d.P.; García-Hermoso, A.; González-Jiménez, E.; Schmidt-Riovalle, J.; González-Ruíz, K. Percentage of body fat and fat mass index as a screening tool for metabolic syndrome prediction in Colombian university students. Nutrients 2017, 9, 1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macias, N.; Barquera, S.; Flores, M.; Quezada, A.D.; Denova-Gutiérrez, E.; Gallegos-Carrillo, K.; Valencia, M.E.; Salmerón, J.; Quiterio-Trenado, M. Accuracy of body fat percent and adiposity indicators cut off values to detect metabolic risk factors in a sample of Mexican adults. BMC Public Health 2014, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Wang, K.; Wang, W.; Dong, F.; Qian, Y.; Gong, H.; Xu, G.; Li, G.; Pan, L.; et al. Optimal body fat percentage cut-off values for identifying cardiovascular risk factors in Mongolian and Han adults: A population-based cross-sectional study in Inner Mongolia, China. BMJ Open 2017, 7, e014675. [Google Scholar] [CrossRef] [Green Version]
- Suliga, E.; Ciesla, E.; Głuszek-Osuch, M.; Rogula, T.; Głuszek, S.; Kozieł, D. The usefulness of anthropometric indices to identify the risk of metabolic syndrome. Nutrients 2019, 11, 2598. [Google Scholar] [CrossRef] [Green Version]
- Głuszek, S.; Ciesla, E.; Głuszek-Osuch, M.; Kozieł, D.; Kiebzak, W.; Wypchło, Ł.; Suliga, E. Anthropometric indices and cut-off points in the diagnosis of metabolic disorders. PLoS ONE 2020, 15, e0235121. [Google Scholar] [CrossRef]
- Corbel, M.J.; Tolari, F.; Yadava, V.K. Appropriate body-mass index for Asian populations and its implications. Lancet 2004, 363, 157–163. [Google Scholar]
- Kidy, F.F.; Dhalwani, N.; Harrington, D.M.; Gray, L.J.; Bodicoat, D.H.; Webb, D.; Davies, M.J.; Khunti, K. Associations Between Anthropometric Measurements and Cardiometabolic Risk Factors in White European and South Asian Adults in the United Kingdom. Mayo Clin. Proc. 2017, 92, 925–933. [Google Scholar] [CrossRef]
- Kurniawan, L.; Bahrun, U.; Hatta, M.; Arif, M. Body Mass, Total Body Fat Percentage, and Visceral Fat Level Predict Insulin Resistance Better Than Waist Circumference and Body Mass Index in Healthy Young Male Adults in Indonesia. J. Clin. Med. 2018, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Macek, P.; Biskup, M.; Terek-Derszniak, M.; Krol, H.; Smok-Kalwat, J.; Gozdz, S.; Zak, M. Optimal cut-off values for anthropometric measures of obesity in screening for cardiometabolic disorders in adults. Sci. Rep. 2020, 10, 11253. [Google Scholar] [CrossRef]
- De Oliveira, C.M.; Ulbrich, A.Z.; Neves, F.S.; Dias, F.A.L.; Horimoto, A.R.V.R.; Krieger, J.E.; Alvim, R.d.O.; Pereira, A.D.C. Association between anthropometric indicators of adiposity and hypertension in a Brazilian population: Baependi Heart Study. PLoS ONE 2017, 12, e0185225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, A.; Zhao, T.; Gong, X.; Pang, T.; Zhou, Y.; Xiao, Y.; Yan, Y.; Fan, C.; Teng, W.; et al. Comparison of anthropometric indices for predicting the risk of metabolic syndrome and its components in Chinese adults: A prospective, longitudinal study. BMJ Open 2017, 7, e016062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gu, Y.; Wang, N.; Zhao, Q.; Ng, N.; Wang, R.; Zhou, X.; Jiang, Y.; Wang, W.; Zhao, G. Association between anthropometric indicators of obesity and cardiovascular risk factors among adults in Shanghai, China. BMC Public Health 2019, 19, 1035. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Talaei, M.; Gharipour, M.; Oveisgharan, S.; Nezafati, P.; Dianatkhah, M.; Sarrafzadegan, N. Anthropometric indices predicting incident hypertension in an Iranian population: The Isfahan cohort study. Anatol. J. Cardiol. 2019, 22, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Ofer, K.; Ronit, L.; Ophir, A.; Amir, K. Normal body mass index (BMI) can rule out metabolic syndrome: An Israeli cohort study. Medicine 2019, 98, e14712. [Google Scholar]
- Gomez-Marcos, M.A.; Gomez-Sanchez, L.; Patino-Alonso, M.C.; Recio-Rodriguez, J.I.; Gomez-Sanchez, M.; Rigo, F.; Marti, R.; Agudo-Conde, C.; Maderuelo-Fernandez, J.A.; Ramos, R.; et al. Capacity adiposity indices to identify metabolic syndrome in subjects with intermediate cardiovascular risk (MARK study). PLoS ONE 2019, 14, e0209992. [Google Scholar] [CrossRef] [Green Version]
- Raposo, L.; Severo, M.; Santos, A.C. Adiposity cut-off points for cardiovascular disease and diabetes risk in the Portuguese population: The PORMETS study. PLoS ONE 2018, 13, e0191641. [Google Scholar] [CrossRef] [Green Version]
- Khader, Y.; Batieha, A.; Jaddou, H.; El-Khateeb, M.; Ajlouni, K. The performance of anthropometric measures to predict diabetes mellitus and hypertension among adults in Jordan. BMC Public Health 2019, 19, 1416. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, C.L.; Yan, E.; Chen, S.; Hong, K.; Arechiga, A.; Kim, W.S.; Deng, M.; Li, Z.; Heber, D. Body Fat And Body-Mass Index Among A Multiethnic Sample Of College-Age Men And Women. J. Obes. 2013, 2013, 19–21. [Google Scholar] [CrossRef] [Green Version]
- Deurenberg, P.; Yap, M.; Van Staveren, W.A. Body mass index and percent body fat: A meta analysis among different ethnic groups. Int. J. Obes. 1998, 22, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Romero-Corral, A.; Somers, V.K.; Sierra-Johnson, J.; Thomas, R.J.; Collazo-Clavell, M.L.; Korinek, J.; Allison, T.G.; Batsis, J.A.; Sert-Kuniyoshi, F.H.; Lopez-Jimenez, F. Accuracy of body mass index in diagnosing obesity in the adult general population. Int. J. Obes. 2008, 32, 959–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valencak, T.G.; Osterrieder, A.; Schulz, T.J. Sex matters: The effects of biological sex on adipose tissue biology and energy metabolism. Redox Biol. 2017, 12, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Geisler, C.; Onur, S.; Korth, O.; Selberg, O.; Schrezenmeir, J.; Müller, M.J. Value of body fat mass vs anthropometric obesity indices in the assessment of metabolic risk factors. Int. J. Obes. 2006, 30, 475–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Rojas, C.A.; Cruz-Soto, R.; Sánchez-Muñoz, V.; Romero, A.; Mosti-Molina, M.; Sánchez-Aguilar, H.A.; Velázquez-Fernández, D.; Herrera, M.F. Does FMI Correlate Better than BMI with the Occurrence of Metabolic Changes in Obese Patients? Study Based on 2007 Consecutive Mexican Patients. Obes. Surg. 2020, 30, 1324–1331. [Google Scholar] [CrossRef]
- De Oliveira, B.R.; Bragança, M.L.B.M.; Batalha, M.A.; Coelho, C.C.N.d.S.; Bettiol, H.; Barbieri, M.A.; Saraiva, M.d.C.P.; Kac, G.; da Silva, A.A.M. Diagnostic performance of body mass index in the detection of obesity using different cut-off points for excess body fat. Nutrition 2020, 79, 110950. [Google Scholar] [CrossRef] [PubMed]
- Bowen, M.E.; Xuan, L.; Lingvay, I.; Halm, E.A.; Doc, I. Just Ate: Interpreting Random Blood Glucose Values in Patients with Unknown Glycemic Status. J. Gen. Intern. Med. 2018, 33, 142–144. [Google Scholar] [CrossRef] [Green Version]
- Fields, D.A.; Goran, M.I.; McCrory, M.A. Body-composition assessment via air-displacement plethysmography in adults and children: A review. Am. J. Clin. Nutr. 2002, 75, 453–467. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Gallagher, D. Assessment methods in human body composition Seon. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 566–572. [Google Scholar] [CrossRef] [Green Version]
Variables | Adults from Pelotas (30 Years of Age) | Adults from Ribeirão Preto (37–39 Years of Age) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Men | n | Women | p-Value * | n | Men | n | Women | p-Value * | |
Weight (kg) | 1735 | 80.2 (70.6–90.7) a | 1782 | 65.9 (58.0–78.0) a | <0.001 | 808 | 88.9 (87.8–90.0) b | 888 | 75.4 (74.3–76.5) b | <0.001 |
Height (cm) | 1735 | 174.4 (174.1–174.7) b | 1782 | 161.4(161.1–161.7) b | <0.001 | 808 | 175.4 (174.9–175.9) b | 888 | 162.6 (162.1–163.0) b | <0.001 |
BMI (kg/m2) | 1735 | 26.3 (23.7–29.5) a | 1782 | 25.3 (22.5–29.7) a | <0.001 | 808 | 28.3 (25.6–31.6) a | 888 | 27.4 (24.0–32.0) a | 0.001 |
Non-obese, n (%) | 1351 (77.9) | 1359 (76.3) | 0.258 | 522 (64.6) | 587 (66.1) | 0.517 | ||||
Obese, n (%) | 384 (22.1) | 423 (23.7) | 286 (35.4) | 301 (33.9) | ||||||
FMI (kg/m2) | 1735 | 6.5 (4.3–8.9) a | 1782 | 9.5 (7.0–12.8) a | <0.001 | 808 | 7.5 (5.2–10.0) a | 888 | 10.5 (8.0–14.1) a | <0.001 |
BF% | 1735 | 24.6 (24.2–25.0) b | 1782 | 37.4 (37.0–37.7) b | <0.001 | 808 | 25.9 (25.4–26.5) b | 888 | 38.3 (37.7–38.9) b | <0.001 |
Systolic blood pressure (mmHg) | 1735 | 127.0 (119.5–135.5) a | 1780 | 113.5 (106.5–121) | <0.001 | 808 | 127.7(119.5–136) a | 887 | 115 (107.5–124.5) a | <0.001 |
Normal, n (%) | 1001 (57.7) | 1585 (89.0) | <0.001 | 452 (55.9) | 704 (79.4) | <0.001 | ||||
Altered, n (%) | 734 (42.3) | 195 (11.0) | 356 (44.1) | 183 (20.6) | ||||||
Diastolic blood pressure (mmHg) | 1735 | 76.0 (70.5–82.5) a | 1780 | 73.0 (68.0–79.5) a | <0.001 | 808 | 79.5 (73.5–86.5) a | 887 | 75.0 (68.5–82.0) a | <0.001 |
Normal, n (%) | 1387 (79.9) | 1547 (86.9) | <0.001 | 527 (65.2) | 685 (77.2) | <0.001 | ||||
Altered, n (%) | 348 (20.1) | 233 (13.1) | 281 (34.8) | 202 (22.8) | ||||||
Blood pressure (mmHg) | 1735 | 1780 | 808 | 887 | ||||||
Normal, n (%) | 963 (55.5) | 1.504 (84.5) | <0.001 | 397 (49.1) | 653 (73.6) | <0.001 | ||||
Altered, n (%) | 772 (44.5) | 276 (15.5) | 411 (50.9) | 234 (26.4) | ||||||
Blood glucose (mg/dL) | 1717 | 88.0 (81.0–97.0) a | 1771 | 84.0 (77.0–92.0) a | <0.001 | 805 | 91.0 (82.0–103.0) a | 887 | 86.0 (78.0–97.0) a | <0.001 |
Normal, n (%) | 1346 (78.4) | 1549 (87.5) | <0.001 | 552 (68.6) | 679 (76.6) | <0.001 | ||||
Altered, n (%) | 371 (21.6) | 222 (12.5) | 253 (31.4) | 208 (23.4) | ||||||
Triglycerides (mg/dL) | 1717 | 106.0 (73.0–168) a | 1771 | 86.0 (64.0–123.0) a | <0.001 | 803 | 163.0(105.0–247.0) a | 886 | 101.0 (72.0–148.0) a | <0.001 |
Normal, n (%) | 1307 (76.1) | 1596 (90.1) | <0.001 | 429 (53.4) | 724 (81.7) | <0.001 | ||||
Altered, n (%) | 410 (23.9) | 175 (9.9) | 374 (46.6) | 162 (18.3) | ||||||
Total cholesterol (mg/dL) | 1717 | 189.0 (166.0–217) a | 1771 | 186.0 (165.0–213) a | 0.017 | 803 | 184.0 (160.0–210.0) a | 886 | 174.0 (153.0–196.0) a | <0.001 |
Normal, n (%) | 855 (49.8) | 963 (54.4) | 0.007 | 439 (54.7) | 609 (68.2) | <0.001 | ||||
Altered, n (%) | 862 (50.2) | 808 (45.6) | 364 (45.3) | 282 (31.8) | ||||||
LDL-c (mg/dL) | 1717 | 112.3 (110.9–113.7) b | 1771 | 106.6 (105.3–107.9) b | <0.001 | 748 | 105.0 (85.0–127.0) a | 874 | 99.0 (83.0–120.0) a | 0.002 |
Normal, n (%) | 1596 (92.9) | 1686 (95.2) | 0.005 | 682 (91.2) | 829 (94.9) | 0.003 | ||||
Altered, n (%) | 121 (7.1) | 85 (4.8) | 66 (8.8) | 45 (5.1) | ||||||
HDL-c (mg/dL) | 1717 | 53.8 (53.2–54.4) b | 1771 | 63.4 (62.8–64.1) b | <0.001 | 802 | 41.6 (35.3–47.3) a | 886 | 48.0 (40.6–57.5) a | <0.001 |
Normal, n (%) | 1528 (89.0) | 1492 (84.2) | <0.001 | 441 (55.0) | 382 (43.1) | <0.001 | ||||
Reduced, n (%) | 189 (11.0) | 279 (15.8) | 361 (45.0) | 504 (56.9) | ||||||
C-reactive protein (mg/dL) | 1717 | 0.1 (0.1–0.3) a | 1771 | 0.3 (0.1–0.7) a | <0.001 | 801 | 0.1 (0.1–0.3) a | 885 | 0.3 (0.1–0.6) a | <0.001 |
Normal, n (%) | 1686 (98.2) | 1703 (96.2) | <0.001 | 790 (98.6) | 850 (96.1) | 0.001 | ||||
Altered, n (%) | 31 (1.8) | 68 (3.8) | 11 (1.4) | 35 (3.9) | ||||||
Glycated hemoglobin (%) | 1718 | 5.1 (4.9–5.3) a | 1772 | 5.1 (4.9–5.3) a | 0.012 | 805 | 5.3 (5.0–5.6) a | 883 | 5.2 (5.0–5.5) a | 0.002 |
Normal, n (%) | 1570 (91.4) | 1614 (91.1) | 0.753 | 676 (84.0) | 775 (87.8) | 0.025 | ||||
Altered, n (%) | 148 (8.6) | 158 (8.9) | 129 (16.0) | 108 (12.2) | ||||||
Three or more cardiometabolic risk factors, n (%) | 1735 | 452 (26.1) | 1782 | 216 (12.1) | <0.001 | 808 | 386 (47.8) | 888 | 243 (27.4) | <0.001 |
Cardiometabolic Risk Factors | Adults from Pelotas (30 Years of Age) | Adults from Ribeirão Preto (37–39 Years of Age) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | |||||||||
BF% | FMI (kg/m2) | BMI (kg/m2) | BF% | FMI (kg/m2) | BMI (kg/m2) | BF% | FMI (kg/m2) | BMI (kg/m2) | BF% | FMI (kg/m2) | BMI (kg/m2) | |
Blood pressure 1—Pelotas (1735 men and 1780 women) and Ribeirão Preto (808 men and 887 women) | ||||||||||||
Cut-off | 25.5 | 6.7 | 26.4 | 39.1 | 10.4 | 26.4 | 26.1 | 7.5 | 28.3 | 40.5 | 11.6 | 28.6 |
Sensitivity (%) | 61.1 | 62.8 | 64.2 | 61.6 | 62.0 | 61.6 | 61.6 | 62.8 | 64.5 | 67.5 | 67.9 | 68.4 |
Specificity (%) | 61.1 | 61.5 | 63.3 | 60.2 | 62.0 | 61.5 | 60.4 | 62.2 | 62.5 | 67.2 | 67.8 | 66.3 |
AUC (95%CI) | 0.652 (0.626;0.678) | 0.668 (0.642;0.694) | 0.680 (0.654;0.705) | 0.647 (0.609;0.686) | 0.652 (0.614;0.691) | 0.653 (0.614;0.692) | 0.651 (0.614;0.689) | 0.666 (0.629;0.703) | 0.672 (0.636;0.709) | 0.729 (0.690;0.767) | 0.745 (0.707;0.783) | 0.746 (0.708;0.784) |
Discriminant Power (AUC) | Acceptable | Acceptable | ||||||||||
Blood glucose 2—Pelotas (1717 men and 1771 women) and Ribeirão Preto (805 men and 887 women) | ||||||||||||
Cut-off | 26.3 | 7.0 | 26.8 | 38.4 | 10.0 | 25.9 | 26.6 | 7.6 | 28.6 | 39.7 | 11.2 | 28.1 |
Sensitivity (%) | 59.3 | 59.3 | 59.3 | 56.8 | 56.8 | 56.3 | 56.5 | 56.9 | 57.7 | 60.1 | 60.1 | 58.6 |
Specificity (%) | 58.2 | 59.0 | 58.8 | 55.7 | 56.6 | 56.2 | 55.8 | 55.1 | 56.2 | 59.8 | 59.9 | 57.9 |
AUC (95%CI) | 0.609 (0.577;0.642) | 0.617 (0.585;0.650) | 0.618 (0.585;0.650) | 0.597 (0.557;0.637) | 0.596 (0.555;0.636) | 0.587 (0.546;0.629) | 0.592 (0.550;0.635) | 0.593 (0.550;0.636) | 0.581 (0.537;0.624) | 0.636 (0.594;0.678) | 0.640 (0.598;0.683) | 0.633 (0.589;0.676) |
Discriminant Power (AUC) | Low | Low | ||||||||||
Triglycerides 3—Pelotas (1717 men and 1771 women) and Ribeirão Preto (803 men and 886 women) | ||||||||||||
Cut-off | 26.9 | 7.2 | 27.1 | 39.6 | 10.6 | 26.9 | 26.3 | 7.3 | 28.4 | 40.0 | 11.5 | 28.5 |
Sensitivity (%) | 64.9 | 65.8 | 65.4 | 62.3 | 62.3 | 63.4 | 61.0 | 63.6 | 61.2 | 61.1 | 61.7 | 62.3 |
Specificity (%) | 64.4 | 64.5 | 64.3 | 61.6 | 62.2 | 63.0 | 60.8 | 62.0 | 60.4 | 59.9 | 61.6 | 60.6 |
AUC (95%CI) | 0.697 (0.670;0.724) | 0.708 (0.681;0.735) | 0.702 (0.674;0.729) | 0.684 (0.645;0.724) | 0.693 (0.652;0.733) | 0.684 (0.641;0.727) | 0.650 (0.612;0.688) | 0.661 (0.624;0.698) | 0.654 (0.616;0.691) | 0.655 (0.611;0.698) | 0.662 (0.619;0.706) | 0.657 (0.612;0.702) |
Discriminant Power (AUC) | Acceptable | Acceptable | ||||||||||
Total cholesterol 4—Pelotas (1717 men and 1771 women) and Ribeirão Preto (803 men and 886 women) | ||||||||||||
Cut-off | 25.2 | 6.5 | 26.3 | 37.4 | 9.5 | 25.4 | 26.3 | 7.6 | 28.4 | 39.3 | 11.0 | 27.8 |
Sensitivity (%) | 61.2 | 61.6 | 59.3 | 57.4 | 57.5 | 55.2 | 59.6 | 61.0 | 58.8 | 59.6 | 59.6 | 57.1 |
Specificity (%) | 61.2 | 61.2 | 58.2 | 56.5 | 57.4 | 55.1 | 59.2 | 60.8 | 57.9 | 59.6 | 58.9 | 56.8 |
AUC (95%CI) | 0.655 (0.629;0.680) | 0.652 (0.626;0.678) | 0.626 (0.599;0.652) | 0.600 (0.573;0.626) | 0.595 (0.568;0.621) | 0.583 (0.556;0.609) | 0.631 (0.593;0.669) | 0.628 (0.590;0.667) | 0.612 (0.573;0.651) | 0.635 (0.597;0.674) | 0.625 (0.586;0.663) | 0.607 (0.567;0.646) |
Discriminant Power (AUC) | Acceptable | Low | Low | |||||||||
LDL-c 5—Pelotas (1717 men and 1771 women) and Ribeirão Preto (748 men and 874 women) | ||||||||||||
Cut-off | 27.8 | 7.5 | 27.3 | 39.7 | 10.3 | 26.1 | 27.8 | 7.7 | 28.5 | 40.6 | 11.1 | 27.5 |
Sensitivity (%) | 63.6 | 63.6 | 61.2 | 61.2 | 58.8 | 56.5 | 60.6 | 56.1 | 53.0 | 60.0 | 55.6 | 55.6 |
Specificity (%) | 63.3 | 63.1 | 61.1 | 61.1 | 58.2 | 56.3 | 60.0 | 55.7 | 52.9 | 59.9 | 55.0 | 51.0 |
AUC (95%CI) | 0.666 (0.619;0.713) | 0.660 (0.613;0.706) | 0.625 (0.576;0.673) | 0.638 (0.580;0.697) | 0.625 (0.565;0.684) | 0.601 (0.538;0.663) | 0.614 (0.544;0.683) | 0.601 (0.535;0.668) | 0.573 (0.510;0.637) | 0.664 (0.589;0.740) | 0.618 (0.541;0.695) | 0.565 (0.483;0.647) |
Discriminant Power (AUC) | Acceptable | Low | Low | Acceptable | Low | |||||||
HDL-c 6—Pelotas (1717 men and 1771 women) and Ribeirão Preto (802 men and 886 women) | ||||||||||||
Cut-off | 26.8 | 7.2 | 27.1 | 38.1 | 9.9 | 26.0 | 26.2 | 7.5 | 28.4 | 38.5 | 10.2 | 27.2 |
Sensitivity (%) | 59.3 | 60.8 | 60.3 | 54.8 | 56.3 | 57.7 | 55.1 | 56.8 | 56.5 | 57.7 | 59.3 | 59.9 |
Specificity (%) | 58.8 | 60.1 | 59.6 | 54.5 | 56.0 | 57.5 | 54.4 | 55.1 | 56.0 | 57.1 | 59.2 | 59.2 |
AUC (95%CI) | 0.618 (0.577;0.659) | 0.630 (0.588;0.672) | 0.633 (0.589;0.676) | 0.558 (0.522;0.594) | 0.574 (0.538;0.611) | 0.585 (0.548;0.621) | 0.580 (0.540;0.619) | 0.588 (0.549;0.628) | 0.587 (0.547;0.626) | 0.604 (0.567;0.641) | 0.620 (0.582;0.657) | 0.626 (0.589;0.663) |
Discriminant Power (AUC) | Low | Low | ||||||||||
C-reactive protein 7—Pelotas (1717 men and 1771 women) and Ribeirão Preto (801 men and 885 women) | ||||||||||||
Cut-off | 25.3 | 6.3 | 26.7 | 39.6 | 10.8 | 27.2 | 27.2 | 7.3 | 28.3 | 42.2 | 12.2 | 29.6 |
Sensitivity (%) | 51.6 | 48.4 | 54.8 | 63.2 | 63.2 | 63.2 | 54.5 | 54.5 | 54.5 | 68.6 | 65.7 | 65.7 |
Specificity (%) | 50.4 | 47.7 | 54.0 | 60.1 | 63.0 | 63.2 | 54.4 | 48.0 | 49.1 | 66.1 | 65.1 | 64.7 |
AUC (95%CI) | 0.526 (0.414;0.637) | 0.523 (0.409;0.637) | 0.523 (0.403;0.644) | 0.675 (0.603;0.746) | 0.679 (0.607;0.752) | 0.673 (0.599;0.748) | 0.577 (0.363;0.791) | 0.565 (0.344;0.787) | 0.539 (0.300;0.779) | 0.740 (0.652;0.828) | 0.740 (0.657;0.824) | 0.738 (0.662;0.815) |
Discriminant Power (AUC) | Low | Acceptable | Low | Acceptable | ||||||||
Glycated hemoglobin 8—Pelotas (1718 men and 1772 women) and Ribeirão Preto (805 men and 883 women) | ||||||||||||
Cut-off | 25.7 | 6.7 | 26.4 | 37.7 | 9.8 | 25.9 | 27.5 | 7.8 | 29.0 | 40.5 | 11.8 | 29.2 |
Sensitivity (%) | 53.4 | 52.0 | 51.3 | 51.9 | 54.4 | 55.7 | 58.9 | 58.1 | 58.1 | 61.1 | 63.9 | 65.7 |
Specificity (%) | 52.6 | 52.0 | 50.5 | 51.7 | 54.3 | 55.6 | 58.7 | 58.0 | 58.1 | 60.9 | 63.7 | 65.3 |
AUC (95%CI) | 0.539 (0.492;0.587) | 0.537 (0.489;0.584) | 0.527 (0.478;0.576) | 0.545 (0.498;0.592) | 0.556 (0.509;0.603) | 0.565 (0.518;0.612) | 0.614 (0.559;0.667) | 0.622 (0.568;0.676) | 0.624 (0.570;0.677) | 0.638 (0.579;0.696) | 0.677 (0.621;0.733) | 0.709 (0.656;0.761) |
Discriminant Power (AUC) | No discrimination | Low | Low | Acceptable | ||||||||
Three or more cardiometabolic risk factors—Pelotas (1735 men and 1782 women) and Ribeirão Preto (808 men and 888 women) | ||||||||||||
Cut-off | 26.8 | 7.2 | 27.0 | 39.6 | 10.5 | 26.9 | 26.3 | 7.5 | 28.4 | 40.0 | 11.4 | 28.5 |
Sensitivity (%) | 65.7 | 66.1 | 65.9 | 63.4 | 63.0 | 64.3 | 61.9 | 64.2 | 63.2 | 65.0 | 65.4 | 64.6 |
Specificity (%) | 65.0 | 66.0 | 64.8 | 62.3 | 62.4 | 63.9 | 61.8 | 64.0 | 62.3 | 64.2 | 65.4 | 64.5 |
AUC (95%CI) | 0.713 (0.687;0.739) | 0.721 (0.695;0.747) | 0.707 (0.679;0.734) | 0.675 (0.636;0.714) | 0.681 (0.641;0.720) | 0.673 (0.632;0.714) | 0.680 (0.643;0.717) | 0.691 (0.655;0.727) | 0.683 (0.647;0.720) | 0.708 (0.670;0.745) | 0.720 (0.683;0.757) | 0.717 (0.679;0.755) |
Discriminant Power (AUC) | Acceptable | Acceptable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, B.R.d.; Magalhães, E.I.d.S.; Bragança, M.L.B.M.; Coelho, C.C.N.d.S.; Lima, N.P.; Bettiol, H.; Barbieri, M.A.; Cardoso, V.C.; Santos, A.M.d.; Horta, B.L.; et al. Performance of Body Fat Percentage, Fat Mass Index and Body Mass Index for Detecting Cardiometabolic Outcomes in Brazilian Adults. Nutrients 2023, 15, 2974. https://doi.org/10.3390/nu15132974
Oliveira BRd, Magalhães EIdS, Bragança MLBM, Coelho CCNdS, Lima NP, Bettiol H, Barbieri MA, Cardoso VC, Santos AMd, Horta BL, et al. Performance of Body Fat Percentage, Fat Mass Index and Body Mass Index for Detecting Cardiometabolic Outcomes in Brazilian Adults. Nutrients. 2023; 15(13):2974. https://doi.org/10.3390/nu15132974
Chicago/Turabian StyleOliveira, Bianca Rodrigues de, Elma Izze da Silva Magalhães, Maylla Luanna Barbosa Martins Bragança, Carla Cristine Nascimento da Silva Coelho, Natália Peixoto Lima, Heloisa Bettiol, Marco Antônio Barbieri, Viviane Cunha Cardoso, Alcione Miranda dos Santos, Bernardo Lessa Horta, and et al. 2023. "Performance of Body Fat Percentage, Fat Mass Index and Body Mass Index for Detecting Cardiometabolic Outcomes in Brazilian Adults" Nutrients 15, no. 13: 2974. https://doi.org/10.3390/nu15132974
APA StyleOliveira, B. R. d., Magalhães, E. I. d. S., Bragança, M. L. B. M., Coelho, C. C. N. d. S., Lima, N. P., Bettiol, H., Barbieri, M. A., Cardoso, V. C., Santos, A. M. d., Horta, B. L., & Silva, A. A. M. d. (2023). Performance of Body Fat Percentage, Fat Mass Index and Body Mass Index for Detecting Cardiometabolic Outcomes in Brazilian Adults. Nutrients, 15(13), 2974. https://doi.org/10.3390/nu15132974