Socio-Demographic Factors Associated with Rural Residents’ Dietary Diversity and Dietary Pattern: A Cross-Sectional Study in Pingnan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Samples
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. General Demographic Characteristics of the Study Participants
3.2. The Six Food Varieties and Dietary Diversity
3.3. Latent Class Analysis of Dietary Patterns
3.4. Distribution of Demographic Information among Participants by the Dietary Diversity and by Dietary Patterns
3.5. Generalized Linear Regression Analysis of Factors Affecting the Dietary Diversity
3.6. Multiple Logistic Regression Analysis of Factors Affecting Dietary Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Gonzalez, M.A.; Zazpe, I.; Razquin, C.; Sanchez-Tainta, A.; Corella, D.; Salas-Salvado, J.; Toledo, E.; Ros, E.; Munoz, M.A.; Recondo, J.; et al. Empirically-derived food patterns and the risk of total mortality and cardiovascular events in the PREDIMED study. Clin. Nutr. 2015, 34, 859–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Rosenberg, I.; Uauy, R. History of modern nutrition science—Implications for current research, dietary guidelines, and food policy. BMJ 2018, 361, k2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques-Vidal, P.; Waeber, G.; Vollenweider, P.; Guessous, I. Socio-demographic and lifestyle determinants of dietary patterns in French-speaking Switzerland, 2009–2012. BMC Public Health 2018, 18, 131. [Google Scholar] [CrossRef] [Green Version]
- Ruel, M.T. Operationalizing dietary diversity: A review of measurement issues and research priorities. J. Nutr. 2003, 133, 3911S–3926S. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, S.; Dorosty-Motlagh, A.R.; Hoshiar-Rad, A.; Eshraghian, M.R.; Sotoudeh, G.; Azadbakht, L.; Karimi, M.; Jalali-Farahani, S. Is dietary diversity a proxy measurement of nutrient adequacy in Iranian elderly women? Appetite 2016, 105, 468–476. [Google Scholar] [CrossRef]
- Otsuka, R.; Tange, C.; Nishita, Y.; Kato, Y.; Tomida, M.; Imai, T.; Ando, F.; Shimokata, H. Dietary Diversity and All-Cause and Cause-Specific Mortality in Japanese Community-Dwelling Older Adults. Nutrients 2020, 12, 1052. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2018, 118, 74–100.e111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, J.; Xiao, S.; Shi, L.; Xue, Y.; Zheng, X.; Benli, X.; Chen, Y.; Li, X.; Kai, Y.; et al. Health-related quality of life and its association with socioeconomic status and diet diversity in Chinese older adults. Front. Public. Health 2022, 10, 999178. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Karam, G.; Agarwal, A.; Sadeghirad, B.; Jalink, M.; Hitchcock, C.L.; Ge, L.; Kiflen, R.; Ahmed, W.; Zea, A.M.; Milenkovic, J.; et al. Comparison of seven popular structured dietary programmes and risk of mortality and major cardiovascular events in patients at increased cardiovascular risk: Systematic review and network meta-analysis. BMJ 2023, 380, e072003. [Google Scholar] [CrossRef]
- Gazan, R.; Bechaux, C.; Crepet, A.; Sirot, V.; Drouillet-Pinard, P.; Dubuisson, C.; Havard, S. Dietary patterns in the French adult population: A study from the second French national cross-sectional dietary survey (INCA2) (2006–2007). Br. J. Nutr. 2016, 116, 300–315. [Google Scholar] [CrossRef] [Green Version]
- Naska, A.; Fouskakis, D.; Oikonomou, E.; Almeida, M.D.; Berg, M.A.; Gedrich, K.; Moreiras, O.; Nelson, M.; Trygg, K.; Turrini, A.; et al. Dietary patterns and their socio-demographic determinants in 10 European countries: Data from the DAFNE databank. Eur. J. Clin. Nutr. 2006, 60, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Imperatori, C.; Innamorati, M.; Tamburello, S.; Continisio, M.; Contardi, A.; Tamburello, A.; Fabbricatore, M. Gender differences in food craving among overweight and obese patients attending low energy diet therapy: A matched case-control study. Eat. Weight Disord. 2013, 18, 297–303. [Google Scholar] [CrossRef]
- Chalermsri, C.; Herzig van Wees, S.; Ziaei, S.; Ekstrom, E.C.; Muangpaisan, W.; Rahman, S.M. Exploring the Experience and Determinants of the Food Choices and Eating Practices of Elderly Thai People: A Qualitative Study. Nutrients 2020, 12, 3497. [Google Scholar] [CrossRef] [PubMed]
- Chalermsri, C.; Rahman, S.M.; Ekstrom, E.C.; Muangpaisan, W.; Aekplakorn, W.; Satheannopakao, W.; Ziaei, S. Socio-demographic characteristics associated with the dietary diversity of Thai community-dwelling older people: Results from the national health examination survey. BMC Public Health 2022, 22, 377. [Google Scholar] [CrossRef] [PubMed]
- Arruda, S.P.; da Silva, A.A.; Kac, G.; Goldani, M.Z.; Bettiol, H.; Barbieri, M.A. Socioeconomic and demographic factors are associated with dietary patterns in a cohort of young Brazilian adults. BMC Public Health 2014, 14, 654. [Google Scholar] [CrossRef] [Green Version]
- Mendez, I.; Fasano, M.V.; Guajardo, V.; Zonis, L.; Kovalskys, I. Dietary Patterns in the Argentinian Population and Their Association with Sociodemographic Characteristics: Results from the ELANS Study (2014–2015). Front. Nutr. 2022, 9, 778390. [Google Scholar] [CrossRef]
- de Juras, A.R.; Hsu, W.C.; Hu, S.C. Dietary Patterns and Their Association with Sociodemographic and Lifestyle Factors in Filipino Adults. Nutrients 2022, 14, 886. [Google Scholar] [CrossRef] [PubMed]
- Alkerwi, A.; Vernier, C.; Sauvageot, N.; Crichton, G.E.; Elias, M.F. Demographic and socioeconomic disparity in nutrition: Application of a novel Correlated Component Regression approach. BMJ Open 2015, 5, e006814. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Afshin, A.; Singh, G.; Mozaffarian, D. Do healthier foods and diet patterns cost more than less healthy options? A systematic review and meta-analysis. BMJ Open 2013, 3, e004277. [Google Scholar] [CrossRef] [Green Version]
- Jiang, K.; Wen, Y.; Li, S.; Wang, T.; Li, Z.; Sharma, M.; Shi, Z.; Zhao, Y. Differences in Awareness of Chinese Dietary Guidelines Among Urban and Rural Residents: A Cross-Sectional Survey in Southwest China. Int. J. Public. Health 2023, 68, 1605344. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Li, L. Does Smartphone Use Improve the Dietary Diversity of Rural Residents? Evidence from Household Survey Data from 5 Provinces. Int. J. Environ. Res. Public. Health 2022, 19, 11129. [Google Scholar] [CrossRef] [PubMed]
- Seventh National Census Bulletin of Ningde. Available online: http://www.ningde.gov.cn/zwgk/tjxx/tjgb/202106/t20210615_1486325.htm (accessed on 15 June 2021).
- Statistical Bulletin on National Economic and Social Development of Pingnan in 2022. Available online: http://www.pingnan.gov.cn/zwgk/sjfb/tjgb/202304/t20230407_1748915.htm (accessed on 7 April 2023).
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ren, H.; Wang, N.; Xiong, Y.; Xu, F. The relationship between socioeconomic position and health literacy among urban and rural adults in regional China. BMC Public Health 2021, 21, 527. [Google Scholar] [CrossRef]
- Guo, Q.; Fang, H.; Zhao, L.; Ju, L.; Xu, X.; Yu, D. Level of Fruit and Vegetable Intake and Its Relationship with Risk for Malnutrition in China’s Adult Labor Force: China Nutrition and Health Surveillance, 2015–2017. Nutrients 2023, 15, 1431. [Google Scholar] [CrossRef]
- Hu, J.; Yang, R.; Li, D.; Zhao, S.; Wan, Y.; Tao, F.; Fang, J.; Zhang, S. A latent class analysis of psychological symptoms and health risk behaviors among Chinese adolescents. Asian J. Psychiatry 2021, 55, 102518. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. Factor analysis and AIC. Psychometrika 1987, 52, 317–332. [Google Scholar] [CrossRef]
- Gideon, S. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Sclove, S.L. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 1987, 52, 333–343. [Google Scholar] [CrossRef]
- Kim, S.Y. Determining the Number of Latent Classes in Single- and Multi-Phase Growth Mixture Models. Struct. Equ. Modeling 2014, 21, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.H.; Kang, M.J.; Lee, H.J.; Yun, M.S. A Latent Class Analysis of Health-Related Quality of Life in Korean Older Adults. Int. J. Environ. Res. Public. Health 2021, 18, 7874. [Google Scholar] [CrossRef] [PubMed]
- Atzendorf, J.; Apfelbacher, C.; Gomes de Matos, E.; Kraus, L.; Piontek, D. Patterns of multiple lifestyle risk factors and their link to mental health in the German adult population: A cross-sectional study. BMJ Open 2018, 8, e022184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Chen, Y.; Tang, S.; Chen, S.; Gong, S.; Jiang, X.; Wang, L.; Zhang, Y. Dietary Diversity and Nutrient Intake of Han and Dongxiang Smallholder Farmers in Poverty Areas of Northwest China. Nutrients 2021, 13, 3908. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, D.; Rao, S. Socio-economic and socio-demographic determinants of diet diversity among rural pregnant women from Pune, India. BMC Nutr. 2022, 8, 54. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, Y.; Park, H.; Song, K. Gender and age group differences in nutrition intake and dietary quality of Korean adults eating alone: Based on Korean National Health and Nutrition Examination Survey Data, 2013–2016. Nutr. Res. Pract. 2021, 15, 66–79. [Google Scholar] [CrossRef]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A.; Darmon, N. Food choices and diet costs: An economic analysis. J. Nutr. 2005, 135, 900–904. [Google Scholar] [CrossRef] [Green Version]
- Zhen, S.; Ma, Y.; Zhao, Z.; Yang, X.; Wen, D. Dietary pattern is associated with obesity in Chinese children and adolescents: Data from China Health and Nutrition Survey (CHNS). Nutr. J. 2018, 17, 68. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; Shen, X.M.; Li, C.; Zhang, X.Y.; Zheng, P.F. Dietary patterns are associated with type 2 diabetes mellitus among middle-aged adults in Zhejiang Province, China. Nutr. J. 2017, 16, 81. [Google Scholar] [CrossRef] [Green Version]
- Cocate, P.G.; Natali, A.J.; de Oliveira, A.; Alfenas Rde, C.; Peluzio Mdo, C.; Longo, G.Z.; dos Santos, E.C.; Buthers, J.M.; de Oliveira, L.L.; Hermsdorff, H.H. Red but not white meat consumption is associated with metabolic syndrome, insulin resistance and lipid peroxidation in Brazilian middle-aged men. Eur. J. Prev. Cardiol. 2015, 22, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Liu, Z.; Varma, D.S.; Wan, R.; Zhao, S. Diet diversity and nutritional status among adults in southwest China. PLoS ONE 2017, 12, e0172406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Wang, J.; Duan, Y.; Luo, X.; Wan, Z.; Luo, Y.; Li, Y.; Wang, Y.; Xie, J. Dietary diversity and determinants of young adults in central China: A cross-sectional study from 2015 to 2020. Front. Nutr. 2022, 9, 931107. [Google Scholar] [CrossRef]
- Mozaffari, H.; Hosseini, Z.; Lafrenière, J.; Conklin, A.I. The role of dietary diversity in preventing metabolic-related outcomes: Findings from a systematic review. Obes. Rev. 2021, 22, e13174. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Esmaillzadeh, A. Dietary diversity score is related to obesity and abdominal adiposity among Iranian female youth. Public. Health Nutr. 2011, 14, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2017, 8, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yu, L.; Liu, Z.; Jia, S.; Man, Q.; Zhu, Q.; Li, C.; Yang, Y.; Liu, B.; Zhang, J. Dietary Pattern Associated with the Risk of Poor Glycemic Control in Chinese Diabetic Adults: Results from the China Nutrition and Health Surveillance 2015–2017 Survey. Nutrients 2022, 15, 56. [Google Scholar] [CrossRef]
- Andreeva, V.A.; Allès, B.; Feron, G.; Gonzalez, R.; Sulmont-Rossé, C.; Galan, P.; Hercberg, S.; Méjean, C. Sex-Specific Sociodemographic Correlates of Dietary Patterns in a Large Sample of French Elderly Individuals. Nutrients 2016, 8, 484. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zhang, C.; Cai, H.; Liu, F.; Liu, Y.; Li, J.; Pan, Y.; Guo, C.; He, Z.; Ke, Y. The Willingness to Change Risky Health Behaviors among Chinese Rural Residents: What We Learned from a Population-Based Esophageal Cancer Cohort Study. PLoS ONE 2016, 11, e0161999. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Rogers, K.; van der Ploeg, H.; Stamatakis, E.; Bauman, A.E. Traditional and Emerging Lifestyle Risk Behaviors and All-Cause Mortality in Middle-Aged and Older Adults: Evidence from a Large Population-Based Australian Cohort. PLoS Med. 2015, 12, e1001917. [Google Scholar] [CrossRef] [PubMed]
- Ramo, D.E.; Thrul, J.; Vogel, E.A.; Delucchi, K.; Prochaska, J.J. Multiple Health Risk Behaviors in Young Adult Smokers: Stages of Change and Stability over Time. Ann. Behav. Med. 2020, 54, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Participants | Constitutional Ratio (%) | |
---|---|---|---|
Gender | Male | 888 | 49.33 |
Female | 912 | 50.67 | |
Age (years) | 18–44 | 335 | 18.61 |
45–59 | 746 | 41.44 | |
≥60 | 719 | 39.95 | |
Marital status | Married | 1556 | 86.44 |
Others | 244 | 13.56 | |
Educational level | Below primary school | 534 | 29.66 |
Primary school | 529 | 29.39 | |
Junior high school | 380 | 21.11 | |
Senior high school | 194 | 10.78 | |
Junior college or above | 163 | 9.06 | |
AHI (CNY) | <12,000 | 234 | 13.00 |
12,000–19,999 | 352 | 19.56 | |
20,000–59,999 | 785 | 43.61 | |
≥60,000 | 429 | 23.83 | |
Smoking | Yes | 523 | 29.06 |
No | 1277 | 70.94 | |
Drinking | Yes | 495 | 27.50 |
No | 1305 | 72.50 | |
Obesity | Yes | 497 | 27.61 |
No | 1303 | 72.39 | |
Hypertension | Yes | 610 | 33.89 |
No | 1190 | 66.11 | |
Diabetes | Yes | 311 | 17.28 |
No | 1489 | 82.72 |
Model | AIC | BIC | ssaBIC | LRT p-Value | BLRT p-Value | Entropy |
---|---|---|---|---|---|---|
1-class | 12,367.612 | 12,400.585 | 12,381.524 | - | - | - |
2-class | 11,525.404 | 11,596.846 | 11,555.546 | <0.001 | <0.001 | 0.633 |
3-class | 11,462.201 | 11,572.112 | 11,508.573 | <0.001 | <0.001 | 0.656 |
4-class | 11,438.537 | 11,586.916 | 11,501.139 | 0.004 | <0.001 | 0.586 |
5-class | 11,440.136 | 11,626.984 | 11,518.968 | 0.182 | 1.000 | 0.622 |
Variable | DD ≤ 2 (n = 330) | DD = 3 (n = 340) | DD = 4 (n = 414) | DD = 5 (n = 425) | DD = 6 (n = 291) |
---|---|---|---|---|---|
Gender (χ2 = 16.059, p = 0.003) | |||||
Male | 170 (19.14) | 175 (19.71) | 227 (25.56) | 197 (22.18) | 119 (13.40) |
Female | 160 (17.54) | 165 (18.09) | 187 (20.50) | 228 (25.00) | 172 (18.86) |
Age (years) (χ2 = 106.496, p < 0.001) | |||||
18–44 | 28 (8.36) | 51 (15.22) | 75 (22.39) | 85 (25.37) | 96 (28.66) |
45–59 | 109 (14.61) | 148 (19.84) | 181 (24.26) | 187 (25.07) | 121 (16.22) |
≥60 | 193 (26.84) | 141 (19.61) | 158 (21.97) | 153 (21.28) | 74 (10.29) |
Marital status (χ2 = 6.135, p = 0.189) | |||||
Married | 281 (18.06) | 295 (18.96) | 346 (22.24) | 377 (24.23) | 257 (16.52) |
Others | 49 (20.08) | 45 (18.44) | 68 (27.87) | 48 (19.67) | 34 (13.93) |
Educational level (χ2 = 279.110, p < 0.001) | |||||
Below primary school | 158 (29.59) | 122 (22.85) | 131 (24.53) | 81 (15.17) | 42 (7.87) |
Primary school | 116 (21.93) | 118 (22.31) | 127 (24.01) | 104 (19.66) | 64 (12.10) |
Junior high school | 43 (11.32) | 66 (17.37) | 97 (25.53) | 109 (28.68) | 65 (17.11) |
Senior high school | 11 (5.67) | 26 (13.40) | 31 (15.98) | 67 (34.54) | 59 (30.41) |
Junior college or above | 2 (1.23) | 8 (4.91) | 28 (17.18) | 64 (39.26) | 61 (37.42) |
AHI (CNY) (χ2 = 180.460, p < 0.001) | |||||
<12,000 | 82 (35.04) | 62 (26.50) | 44 (18.80) | 35 (14.96) | 11 (4.70) |
12,000–19,999 | 92 (26.14) | 69 (19.60) | 94 (26.70) | 70 (19.89) | 27 (7.67) |
20,000–59,999 | 122 (15.54) | 152 (19.36) | 183 (23.31) | 193 (24.59) | 135 (17.20) |
≥60,000 | 34 (7.93) | 57 (13.29) | 93 (21.68) | 127 (29.60) | 118 (27.51) |
Smoking (χ2 = 13.527, p = 0.009) | |||||
Yes | 105 (20.08) | 112 (21.41) | 128 (24.47) | 116 (22.18) | 62 (11.85) |
No | 225 (17.62) | 228 (17.85) | 286 (22.40) | 309 (24.20) | 229 (17.93) |
Drinking (χ2 = 3.392, p = 0.495) | |||||
Yes | 90 (18.39) | 97 (18.62) | 107 (23.52) | 110 (24.14) | 91 (15.33) |
No | 240 (18.18) | 243 (19.60) | 307 (21.62) | 315 (22.22) | 200 (18.38) |
Obesity (χ2 = 18.797, p < 0.001) | |||||
Yes | 119 (23.94) | 100 (20.12) | 106 (21.33) | 108 (21.73) | 64 (12.88) |
No | 211 (16.19) | 240 (18.42) | 308 (23.64) | 317 (24.33) | 227 (17.42) |
Hypertension (χ2 = 33.835, p < 0.001) | |||||
Yes | 148 (24.26) | 119 (19.51) | 146 (23.93) | 127 (20.82) | 70 (11.48) |
No | 182 (15.29) | 221 (18.57) | 268 (22.52) | 298 (25.04) | 221 (18.57) |
Diabetes (χ2 = 4.754, p = 0.314) | |||||
Yes | 63 (20.26) | 67 (21.54) | 66 (21.22) | 74 (23.79) | 41 (13.18) |
No | 267 (17.93) | 273 (18.33) | 348 (23.37) | 351 (23.57) | 250 (16.79) |
Variable | DP 1 (n = 863) | DP 2 (n = 611) | DP 3 (n = 326) |
---|---|---|---|
Gender (χ2 = 25.793, p < 0.001) | |||
Male | 387 (43.58) | 301 (33.90) | 200 (22.52) |
Female | 476 (52.19) | 310 (33.99) | 126 (13.82) |
Age (years) (χ2 = 91.568, p < 0.001) | |||
18–44 | 212 (63.28) | 103 (30.75) | 20 (5.97) |
45–59 | 371 (49.73) | 262 (35.12) | 113 (15.15) |
≥60 | 280 (38.94) | 246 (34.21) | 193 (26.84) |
Marital status (χ2 = 0.851, p = 0.653) | |||
Married | 751 (45.90) | 528 (34.02) | 277 (20.08) |
Others | 112 (48.26) | 83 (33.93) | 49 (17.80) |
Educational level (χ2 = 232.449, p < 0.001) | |||
Below primary school | 161 (30.15) | 229 (42.88) | 144 (26.97) |
Primary school | 214 (40.45) | 196 (37.05) | 119 (22.50) |
Junior high school | 211 (55.53) | 124 (32.63) | 45 (11.84) |
Senior high school | 138 (71.13) | 41 (21.13) | 15 (7.73) |
Junior college or above | 139 (85.28) | 21 (12.88) | 3 (1.84) |
AHI (CNY) (χ2 = 120.361, p < 0.001) | |||
<12,000 | 68 (29.06) | 93 (39.74) | 73 (31.20) |
12,000–19,999 | 126 (35.80) | 149 (42.33) | 77 (21.88) |
20,000–59,999 | 386 (49.17) | 270 (34.40) | 129 (16.43) |
≥60,000 | 283 (65.97) | 99 (23.08) | 47 (10.96) |
Smoking (χ2 = 21.174, p < 0.001) | |||
Yes | 219 (41.87) | 177 (33.84) | 127 (24.28) |
No | 644 (50.43) | 434 (33.99) | 199 (15.58) |
Drinking (χ2 = 7.098, p = 0.029) | |||
Yes | 234 (47.27) | 153 (30.91) | 108 (21.82) |
No | 629 (48.20) | 458 (35.10) | 218 (16.70) |
Obesity (χ2 = 26.836, p < 0.001) | |||
Yes | 195 (39.24) | 181 (36.42) | 121 (24.35) |
No | 668 (51.27) | 430 (33.00) | 205 (15.73) |
Hypertension (χ2 = 36.651, p < 0.001) | |||
Yes | 247 (40.49) | 209 (34.26) | 154 (25.25) |
No | 616 (51.76) | 402 (33.78) | 172 (14.45) |
Diabetes (χ2 = 1.895, p = 0.388) | |||
Yes | 141 (45.34) | 116 (37.30) | 66 (21.22) |
No | 722 (48.49) | 495 (33.24) | 348 (23.37) |
Variable | β (95%CI) | p |
---|---|---|
Gender (reference = Male) | - | - |
Female | −0.23 (−0.38, −0.08) | 0.003 |
Age (years) (reference = ≥60) | - | - |
18–44 | 0.08 (−0.11, 0.26) | 0.423 |
45–59 | 0.04 (−0.10, 0.17) | 0.612 |
Marital status (reference = Married) | - | - |
Others | 0.04 (−0.13, 0.21) | 0.641 |
Educational level (reference = Below primary school) | - | - |
Primary school | 0.23 (0.08, 0.38) | 0.003 |
Junior high school | 0.61 (0.43, 0.78) | <0.001 |
Senior high school | 0.92 (0.70, 1.15) | <0.001 |
Junior college or above | 1.17 (0.93, 1.41) | <0.001 |
AHI (CNY) (reference = <12,000) | - | - |
12,000–19,999 | 0.15 (−0.05, 0.36) | 0.149 |
20,000–59,999 | 0.43 (0.24, 0.62) | <0.001 |
≥60,000 | 0.58 (0.37, 0.80) | <0.001 |
Smoking (reference = Yes) | - | - |
No | 0.09 (−0.07, 0.25) | 0.274 |
Drinking (reference = Yes) | - | - |
No | 0.04 (−0.11, 0.18) | 0.608 |
Obesity (reference = Yes) | - | - |
No | 0.15 (0.02, 0.29) | 0.020 |
Hypertension (reference = Yes) | - | - |
No | 0.12 (−0.01, 0.25) | 0.073 |
Diabetes (reference = Yes) | - | - |
No | −0.08 (−0.23, 0.08) | 0.317 |
Variable | DP 2 | DP 3 | ||
---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | |
Gender (reference = Male) | - | - | - | - |
Female | 1.45 (1.08, 1.94) | 0.014 | 2.02 (1.39, 2.94) | <0.001 |
Age (years) (reference = ≥60) | - | - | - | - |
18–44 | 1.46 (1.02, 2.10) | 0.039 | 0.49 (0.28, 0.86) | 0.013 |
45–59 | 1.29 (0.98, 1.68) | 0.065 | 0.77 (0.56, 1.07) | 0.119 |
Marital status (reference = Married) | - | - | - | - |
Others | 0.91 (0.65, 1.27) | 0.572 | 0.86 (0.57, 1.30) | 0.474 |
Educational level (reference = Below primary school) | - | - | - | - |
Primary school | 0.63 (0.47, 0.85) | 0.002 | 0.65 (0.47, 0.92) | 0.015 |
Junior high school | 0.38 (0.27, 0.53) | <0.001 | 0.28 (0.18, 0.44) | <0.001 |
Senior high school | 0.22 (0.14, 0.35) | <0.001 | 0.19 (0.10, 0.35) | <0.001 |
Junior college or above | 0.13 (0.07, 0.22) | <0.001 | 0.04 (0.01, 0.14) | <0.001 |
AHI (CNY) (reference = <12,000) | - | - | - | - |
12,000–19,999 | 1.00 (0.67, 1.51) | 0.990 | 0.78 (0.49, 1.25) | 0.310 |
20,000–59,999 | 0.69 (0.47, 1.00) | 0.050 | 0.54 (0.35, 0.82) | 0.005 |
≥60,000 | 0.45 (0.29, 0.69) | <0.001 | 0.41 (0.24, 0.68) | 0.001 |
Smoking (reference = Yes) | - | - | - | - |
No | 0.99 (0.72, 1.38) | 0.976 | 0.84 (0.57, 1.23) | 0.374 |
Drinking (reference = Yes) | - | - | - | - |
No | 1.05 (0.79, 1.40) | 0.720 | 0.77 (0.55, 1.08) | 0.130 |
Obesity (reference = Yes) | - | - | - | - |
No | 0.80 (0.62, 1.04) | 0.095 | 0.59 (0.44, 0.80) | 0.001 |
Hypertension (reference = Yes) | - | - | - | - |
No | 0.97 (0.75, 1.26) | 0.842 | 0.71 (0.52, 0.96) | 0.026 |
Diabetes (reference = Yes) | - | - | - | - |
No | 0.97 (0.72, 1.31) | 0.861 | 1.50 (1.03, 2.19) | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Chang, H.; Chen, Y.; Ruan, W.; Cai, L.; Song, F.; Liu, X. Socio-Demographic Factors Associated with Rural Residents’ Dietary Diversity and Dietary Pattern: A Cross-Sectional Study in Pingnan, China. Nutrients 2023, 15, 2955. https://doi.org/10.3390/nu15132955
Zhang L, Chang H, Chen Y, Ruan W, Cai L, Song F, Liu X. Socio-Demographic Factors Associated with Rural Residents’ Dietary Diversity and Dietary Pattern: A Cross-Sectional Study in Pingnan, China. Nutrients. 2023; 15(13):2955. https://doi.org/10.3390/nu15132955
Chicago/Turabian StyleZhang, Lingling, Huajing Chang, Yating Chen, Wenqian Ruan, Longhua Cai, Fang Song, and Xiaojun Liu. 2023. "Socio-Demographic Factors Associated with Rural Residents’ Dietary Diversity and Dietary Pattern: A Cross-Sectional Study in Pingnan, China" Nutrients 15, no. 13: 2955. https://doi.org/10.3390/nu15132955
APA StyleZhang, L., Chang, H., Chen, Y., Ruan, W., Cai, L., Song, F., & Liu, X. (2023). Socio-Demographic Factors Associated with Rural Residents’ Dietary Diversity and Dietary Pattern: A Cross-Sectional Study in Pingnan, China. Nutrients, 15(13), 2955. https://doi.org/10.3390/nu15132955