The Role of Choline in Neurodevelopmental Disorders—A Narrative Review Focusing on ASC, ADHD and Dyslexia
Abstract
:1. Introduction
2. Neurodevelopment
3. In Utero Origins
Gestation
4. Mechanistic Studies
Author(s), Year | Publication | Choline Mechanisms |
---|---|---|
Blusztajn et al. (2017; 2012) [50,52] | Discussion paper | Precursor of PC, acetylcholine, and via betaine, the methyl group donor S-adenosylmethionine. Cho as a methyl donor influences DNA and histone methylation (regulates gene expression). |
Bekdash et al. (2019; 2018; 2016) [36,53,61] | Discussion paper | Cho maintains structural and functional integrity of membranes and regulates cholinergic neurotransmission via acetylcholine synthesis. |
Zeisel et al. (2020; 2017; 2011; 2006; 2000; 1997) [38,54,55,62,63,64] | Discussion paper | Cho can induce changes in the development of the memory center (hippocampus), modulate methylation via BHMT (and its metabolite, betaine) and regulate S-adenosylhomocysteine and S-adenosylmethionine levels. Plausible mechanisms: changes in transmembrane signal transduction, stem cell proliferation/differentiation, regulation of apoptosis, gene expression in neuronal and endothelial progenitor cells. |
Bastian et al. (2022) [57] | Murine model | Cho restored dendritic function in developing hippocampal neurons that were iron-deficient. |
Agam et al. (2020) [59] | MTHFR-deficient mice | Cho supplementation, even at adulthood, to offspring of MTHFR-deficient mothers attenuated the autistic-like phenotype. |
Chin et al. (2019) [56] | Knockout murine model | Cho enhanced neuronal morphology, rescued deficits in motor coordination and increased density of dendritic spines. |
Wang et al. (2016) [58] | Murine model | When Cho supply was reduced during gestation, the number of two types of cortical NPCs (radial glial cells and intermediate progenitor cells) were significantly reduced in fetal brains. |
Langley et al. (2015) [60] | Mouse model of autism | Cho intake during early development can prevent/dramatically reduce deficits in social behavior and anxiety. |
5. Brain Imaging (Animal Models)
6. Human Studies
6.1. ASD
Author, Year | Study Design/Approach | Age | No. of Participants | Key Findings |
---|---|---|---|---|
Wang et al. (2022) [74] | Metabolomic analysis | ASD 3.02 ± 0.67 y TD 3.13 ± 0.46 y | n = 28 boys ASD n = 30 boys TD | The level of Cho was inversely correlated with ABC-language score in ASD group. |
O’Neill et al. (2020) [70] | Magnetic resonance spectroscopy | 5–60 y | n = 78 ASD n = 96 TD | Cho metabolites were lower in ASD than in TD. |
Gabis et al. (2019) [75] | Randomized, DB, PC trial (12-wk int., 6-months washout) | NR | n = 60 ASD | Donepezil hydrochloride + Cho contributed to a sustainable effect on receptive language skills in ASD children for 6 months after treatment, with a more significant effect in those <10 y. |
Margari et al. (2018) [71] | Case-control | 21 months to 14 y, 1 month | n = 75 ASD n = 50 controls | Cho/Cr ratios were significantly altered in ASD vs. controls. |
Doyle-Thomas et al. (2014) [73] | Case-control | 7–18 y | n = ASD n = 16 TD controls | Boys had increased Cho in the thalamus. Cho in the three brain regions studies correlated with behavioral scores in the ASD group |
Corrigan et al. (2013) [69] | Cross-sectional analysis | 3–4 y 7–9 y 9–10 y | n = 45 ASD n = 14 DD n = 14 TD | At 3–4 y, the ASD group exhibited lower Cho concentrations than did the TD group |
Hamlin et al. (2013) [76] | Observational analysis | 2–11 y | n = 288 ASD | Cho intake was inadequate in a significant subgroup of ASD children and reflected in lower plasma levels. This may contribute to metabolic abnormalities. |
Hyman et al. (2012) [77] | Prospective analysis | 2–11 y | n = 252 ASD | Few children met the recommended intakes for Cho. |
Hardan et al. (2008) [72] | Case-control | 8–15 y | n = 18 M ASD n = 16 controls | Lower levels of Cho-containing metabolites were found on the left side of the thalamus in the ASD group vs. controls. |
Friedman et al. (2006) [68] | Cross-sectional spectroscopic imaging | 3–4 y | n = 45 ASD n = 12 DD n = 10 TD | Children with ASD had significantly decreased gray matter concentrations of Cho (p < 0.001) |
6.2. ADHD
Author, Year | Study Design/Approach | Age | No. of Participants | Key Findings |
---|---|---|---|---|
Alger et al. (2021) [78] | Case-control | 8–13 y | n = 23 ADHD + PAE n = 19 ADHD − PAE n = 28 TD | Cho findings were less prominent in this study. |
Borlase et al. (2020) [82] | Randomized PC trial | 11 y (mean) | n = 27 ADHD (non-medicated) | In the treatment group (12 capsules/day; dose NS) there was a trend for decreased choline in the striatum. |
Wozniak et al. (2020) [81] | Randomized, DB, PC trial (9-months) | 2–5 y | n = 15 FASD Cho n = 16 FASD placebo | Children receiving Cho (1.25 g. Cho bitartrate powder delivering 513 mg/day Cho) had higher non-verbal intelligence, higher visual-spatial skill, higher working memory ability, better verbal memory and fewer behavioral symptoms of ADHD than those receiving the placebo. |
O’Neill et al. (2019) [79] | Case-control | 7–17 y | n = 44, by subgroup | Low Cho may stem from abnormal Cho metabolism. |
Wiguna et al. (2012) [86] | Prospective analysis | 9 y (mean) | n = 21 ADHD | The Cho/creatine ratio decreased 12% in the right prefrontal cortex after stimulant treatment. |
Kronenberg et al. (2008) [84] | Spectroscopic test-retest study | Adults | n = 7 ADHD | Analysis of regional brain showed a significantly decreased signal of Cho-containing compounds following treatment with MPH. |
Carrey et al. (2003) [83] | Magnetic resonance spectroscopy | NR | n = 14 ADHD | Cho metabolites did not demonstrate any change in response to medication. |
Jin et al. (2001) [80] | Magnetic resonance spectroscopy | NR | n = 12 B ADHD n = 10 controls | In ADHD children the bilateral striatum Cho/Cr ratio showed a mild unilateral increase. There appears to be mild hyperactivity of the cholinergic system. |
6.3. Dyslexia
Author, Year | Study Design/Approach | Age | No. of Participants | Key Findings |
---|---|---|---|---|
Kossowski et al. (2019) [94] | MEGA-PRESS single-voxel spectroscopy | 30.28 ± 4.09 D 28.02 ± 3.40 C 10.90 ± 0.98 D 11.21 ± 0.95 C | n = 36 adults (50% D) n = 52 children (50% D) | Adults vs. children were characterized by higher Cho in the left temporo-parietal and occipital cortices. |
Horowitz-Kraus et al. (2018) [87] | Magnetic resonance spectroscopy | 8–12 y | n = 24 dyslexia n = 30 TR | After adjustment for multiple comparisons, F with dyslexia showed strong significant inverse correlations between processing speed and Cho (r = −0.54, p = 0.005) levels. |
Del Tufo et al. (2018) [89] | Magnetic resonance spectroscopy | 8.1 y (mean) | n = 231, Metabolites measured in n = 70 | There was an inverse association between Cho and reading ability. |
Pugh et al. (2014) [88] | Longitudinal analysis | 6.1–10.1 y | n = 75 reading abilities across a continuum (including those with RD) | Cho levels were inversely correlated with reading, phonology and vocabulary (possible links to white matter anomalies and hyperexcitability). |
Bruno et al. (2013) [90] | Magnetic resonance spectroscopy | 18–30 y | n = 31 young adults | Lower scores on phonological decoding and sight word reading measures were associated with higher Cho concentrations. |
Laycock et al. (2008) [91] | Whole-brain volumetric MRI | NR | n = 10 M dyslexic n = 11 M controls | The dyslexic group had a lower ratio of NAA/Cho in the right cerebellar hemisphere and a higher ratio of Cho/Cr in the left cerebellar hemisphere, possibly indicative of excessive connectivity or abnormal myelination. |
6.4. Processing Speed and Attention
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parenti, I.; Rabaneda, L.G.; Schoen, H.; Novarino, G. Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci. 2020, 43, 608–621. [Google Scholar] [CrossRef]
- APA (American Psychiatric Association). Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Morris-Rosendahl, D.J.; Crocq, M.A. Neurodevelopmental disorders-the history and future of a diagnostic concept Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef]
- Antshel, K.M.; Russo, N. Autism Spectrum Disorders and ADHD: Overlapping Phenomenology, Diagnostic Issues, and Treatment Considerations. Curr. Psychiatry Rep. 2019, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Antshel, K.M.; Zhang-James, Y.; Wagner, K.E.; Ledesma, A.; Faraone, S.V. An update on the comorbidity of ADHD and ASD: A focus on clinical management. Expert. Rev. Neurother. 2016, 16, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Brimo, K.; Dinkler, L.; Gillberg, C.; Lichtenstein, P.; Lundstrom, S.; Asberg Johnels, J. The co-occurrence of neurodevelopmental problems in dyslexia. Dyslexia 2021, 27, 277–293. [Google Scholar] [CrossRef]
- Li, Z.; Yang, L.; Chen, H.; Fang, Y.; Zhang, T.; Yin, X.; Man, J.; Yang, X.; Lu, M. Global, regional and national burden of autism spectrum disorder from 1990 to 2019: Results from the Global Burden of Disease Study 2019. Epidemiol. Psychiatr. Sci. 2022, 31, e33. [Google Scholar] [CrossRef]
- GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef]
- Sayal, K.; Prasad, V.; Daley, D.; Ford, T.; Coghill, D. ADHD in children and young people: Prevalence, care pathways, and service provision. Lancet Psychiatry 2018, 5, 175–186. [Google Scholar] [CrossRef]
- Lockwood Estrin, G.; Milner, V.; Spain, D.; Happe, F.; Colvert, E. Barriers to Autism Spectrum Disorder Diagnosis for Young Women and Girls: A Systematic Review. Rev. J. Autism Dev. Disord. 2021, 8, 454–470. [Google Scholar] [CrossRef]
- Heady, N.; Watkins, A.; John, A.; Hutchings, H. Prevalence of neurodevelopmental disorders and their impact on the health and social well-being among looked after children (LAC): A systematic review protocol. Syst. Rev. 2022, 11, 49. [Google Scholar] [CrossRef]
- Willis, R.; Dhakras, S.; Cortese, S. Attention-Deficit/Hyperactivity Disorder in Looked-After Children: A Systematic Review of the Literature. Curr. Dev. Disord. Rep. 2017, 4, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altabella, L.; Zoratto, F.; Adriani, W.; Canese, R. MR imaging-detectable metabolic alterations in attention deficit/hyperactivity disorder: From preclinical to clinical studies. AJNR Am. J. Neuroradiol. 2014, 35, S55–S63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaywitz, S.E.; Shaywitz, J.E.; Shaywitz, B.A. Dyslexia in the 21st century. Curr. Opin. Psychiatry 2021, 34, 80–86. [Google Scholar] [CrossRef]
- Wagner, R.K.; Zirps, F.A.; Edwards, A.A.; Wood, S.G.; Joyner, R.E.; Becker, B.J.; Liu, G.; Beal, B. The Prevalence of Dyslexia: A New Approach to Its Estimation. J. Learn. Disabil. 2020, 53, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Reid, G. Dyslexia: A Practitioner’s Handbook, 5th ed.; Wiley-Blackwell: Chichester, UK, 2016; p. 5. [Google Scholar]
- Acosta, M.T. Neurodevelopmental disorders: From the laboratory to the classroom. Med. B Aires 2022, 82 (Suppl. S1), 6–10. [Google Scholar]
- Savatt, J.M.; Myers, S.M. Genetic Testing in Neurodevelopmental Disorders. Front. Pediatr. 2021, 9, 526779. [Google Scholar] [CrossRef] [PubMed]
- Krakowiak, P.; Walker, C.K.; Bremer, A.A.; Baker, A.S.; Ozonoff, S.; Hansen, R.L.; Hertz-Picciotto, I. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 2012, 129, e1121–e1128. [Google Scholar] [CrossRef] [Green Version]
- Loewen, O.K.; Maximova, K.; Ekwaru, J.P.; Asbridge, M.; Ohinmaa, A.; Veugelers, P.J. Adherence to Life-Style Recommendations and Attention-Deficit/Hyperactivity Disorder: A Population-Based Study of Children Aged 10 to 11 Years. Psychosom. Med. 2020, 82, 305–315. [Google Scholar] [CrossRef]
- Cortes-Albornoz, M.C.; Garcia-Guaqueta, D.P.; Velez-van-Meerbeke, A.; Talero-Gutierrez, C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021, 13, 3530. [Google Scholar] [CrossRef]
- Basak, S.; Mallick, R.; Duttaroy, A.K. Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients 2020, 12, 3615. [Google Scholar] [CrossRef]
- Agostoni, C.; Nobile, M.; Ciappolino, V.; Delvecchio, G.; Tesei, A.; Turolo, S.; Crippa, A.; Mazzocchi, A.; Altamura, C.A.; Brambilla, P. The Role of Omega-3 Fatty Acids in Developmental Psychopathology: A Systematic Review on Early Psychosis, Autism, and ADHD. Int. J. Mol. Sci. 2017, 18, 2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, B.P.; Bandarra, N.M.; Figueiredo-Braga, M. The role of marine omega-3 in human neurodevelopment, including Autism Spectrum Disorders and Attention-Deficit/Hyperactivity Disorder—A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1431–1446. [Google Scholar] [CrossRef] [PubMed]
- Irvine, N.; England-Mason, G.; Field, C.J.; Dewey, D.; Aghajafari, F. Prenatal Folate and Choline Levels and Brain and Cognitive Development in Children: A Critical Narrative Review. Nutrients 2022, 14, 364. [Google Scholar] [CrossRef]
- Obeid, R.; Derbyshire, E.; Schon, C. Association between Maternal Choline, Fetal Brain Development, and Child Neurocognition: Systematic Review and Meta-Analysis of Human Studies. Adv. Nutr. 2022, 13, 2445–2457. [Google Scholar] [CrossRef]
- Derbyshire, E.; Obeid, R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients 2020, 12, 1731. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; West, A.A.; Caudill, M.A. Maternal choline supplementation: A nutritional approach for improving offspring health? Trends Endocrinol. Metab. 2014, 25, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Abramov, A.Y. The brain-from neurodevelopment to neurodegeneration. FEBS J. 2022, 289, 2010–2012. [Google Scholar] [CrossRef]
- Stiles, J.; Jernigan, T.L. The basics of brain development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef] [Green Version]
- Tau, G.Z.; Peterson, B.S. Normal development of brain circuits. Neuropsychopharmacology 2010, 35, 147–168. [Google Scholar] [CrossRef] [Green Version]
- Sydnor, V.J.; Larsen, B.; Bassett, D.S.; Alexander-Bloch, A.; Fair, D.A.; Liston, C.; Mackey, A.P.; Milham, M.P.; Pines, A.; Roalf, D.R.; et al. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron 2021, 109, 2820–2846. [Google Scholar] [CrossRef]
- Barker, D.J. In utero programming of chronic disease. Clin. Sci. 1998, 95, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Amgalan, A.; Andescavage, N.; Limperopoulos, C. Prenatal origins of neuropsychiatric diseases. Acta Paediatr. 2021, 110, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Francis, E.; Hinkle, S.N.; Ajjarapu, A.S.; Zhang, C. Preconception and Prenatal Nutrition and Neurodevelopmental Disorders: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekdash, R.A. Neuroprotective Effects of Choline and Other Methyl Donors. Nutrients 2019, 11, 2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heland, S.; Fields, N.; Ellery, S.J.; Fahey, M.; Palmer, K.R. The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity. Front. Nutr. 2022, 9, 992120. [Google Scholar] [CrossRef]
- Zeisel, S.H. The fetal origins of memory: The role of dietary choline in optimal brain development. J. Pediatr. 2006, 149, S131–S136. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, W.; Full, A.; Arand, J.; Maas, C.; Poets, C.F.; Franz, A.R. Choline supply of preterm infants: Assessment of dietary intake and pathophysiological considerations. Eur. J. Nutr. 2013, 52, 1269–1278. [Google Scholar] [CrossRef]
- Strain, J.J.; Bonham, M.P.; Duffy, E.M.; Wallace, J.M.W.; Robson, P.J.; Clarkson, T.W.; Shamlaye, C. Nutrition and neurodevelopment: The search for candidate nutrients in the Seychelles Child Development Nutrition Study. Neurotoxicology 2020, 81, 300–306. [Google Scholar] [CrossRef]
- Christifano, D.N.; Chollet-Hinton, L.; Hoyer, D.; Schmidt, A.; Gustafson, K.M. Intake of eggs, choline, lutein, zeaxanthin, and DHA during pregnancy and their relationship to fetal neurodevelopment. Nutr. Neurosci. 2022, 26, 749–755. [Google Scholar] [CrossRef]
- Trujillo-Gonzalez, I.; Friday, W.B.; Munson, C.A.; Bachleda, A.; Weiss, E.R.; Alam, N.M.; Sha, W.; Zeisel, S.H.; Surzenko, N. Low availability of choline in utero disrupts development and function of the retina. FASEB J. 2019, 33, 9194–9209. [Google Scholar] [CrossRef]
- Korsmo, H.W.; Jiang, X.; Caudill, M.A. Choline: Exploring the Growing Science on Its Benefits for Moms and Babies. Nutrients 2019, 11, 1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedeman, A.M.; Barr, S.I.; Green, T.J.; Xu, Z.; Innis, S.M.; Kitts, D.D. Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients 2018, 10, 1513. [Google Scholar] [CrossRef] [Green Version]
- Derbyshire, E.; Obeid, R.; Schon, C. Habitual Choline Intakes across the Childbearing Years: A Review. Nutrients 2021, 13, 4390. [Google Scholar] [CrossRef] [PubMed]
- EFSA. EFSA Dietary Reference Values for Choline. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 2016, 14, 4484. [Google Scholar]
- Roeren, M.; Kordowski, A.; Sina, C.; Smollich, M. Inadequate Choline Intake in Pregnant Women in Germany. Nutrients 2022, 14, 4862. [Google Scholar] [CrossRef]
- Probst, Y.; Sulistyoningrum, D.C.; Netting, M.J.; Gould, J.F.; Wood, S.; Makrides, M.; Best, K.P.; Green, T.J. Estimated Choline Intakes and Dietary Sources of Choline in Pregnant Australian Women. Nutrients 2022, 14, 3819. [Google Scholar] [CrossRef]
- Zeisel, S.H.; da Costa, K.A. Choline: An essential nutrient for public health. Nutr. Rev. 2009, 67, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Blusztajn, J.K.; Slack, B.E.; Mellott, T.J. Neuroprotective Actions of Dietary Choline. Nutrients 2017, 9, 815. [Google Scholar] [CrossRef] [Green Version]
- Loffelholz, K.; Klein, J.; Koppen, A. Choline, a precursor of acetylcholine and phospholipids in the brain. Prog. Brain Res. 1993, 98, 197–200. [Google Scholar] [CrossRef]
- Blusztajn, J.K.; Mellott, T.J. Choline nutrition programs brain development via DNA and histone methylation. Cent. Nerv. Syst. Agents Med. Chem. 2012, 12, 82–94. [Google Scholar] [CrossRef]
- Bekdash, R.A. Choline and the Brain: An Epigenetic Perspective. Adv. Neurobiol. 2016, 12, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H. Choline: Needed for normal development of memory. J. Am. Coll. Nutr. 2000, 19, 528S–531S. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H.; Niculescu, M.D. Perinatal choline influences brain structure and function. Nutr. Rev. 2006, 64, 197–203. [Google Scholar] [CrossRef]
- Chin, E.W.M.; Lim, W.M.; Ma, D.; Rosales, F.J.; Goh, E.L.K. Choline Rescues Behavioural Deficits in a Mouse Model of Rett Syndrome by Modulating Neuronal Plasticity. Mol. Neurobiol. 2019, 56, 3882–3896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastian, T.W.; von Hohenberg, W.C.; Kaus, O.R.; Lanier, L.M.; Georgieff, M.K. Choline Supplementation Partially Restores Dendrite Structural Complexity in Developing Iron-Deficient Mouse Hippocampal Neurons. J. Nutr. 2022, 152, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Surzenko, N.; Friday, W.B.; Zeisel, S.H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. FASEB J. 2016, 30, 1566–1578. [Google Scholar] [CrossRef] [Green Version]
- Agam, G.; Taylor, Z.; Vainer, E.; Golan, H.M. The influence of choline treatment on behavioral and neurochemical autistic-like phenotype in Mthfr-deficient mice. Transl. Psychiatry 2020, 10, 316. [Google Scholar] [CrossRef]
- Langley, E.A.; Krykbaeva, M.; Blusztajn, J.K.; Mellott, T.J. High maternal choline consumption during pregnancy and nursing alleviates deficits in social interaction and improves anxiety-like behaviors in the BTBR T+Itpr3tf/J mouse model of autism. Behav. Brain Res. 2015, 278, 210–220. [Google Scholar] [CrossRef]
- Bekdash, R.A. Choline, the brain and neurodegeneration: Insights from epigenetics. Front. Biosci. 2018, 23, 1113–1143. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S. Choline, Other Methyl-Donors and Epigenetics. Nutrients 2017, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S.H. Choline: Essential for brain development and function. Adv. Pediatr. 1997, 44, 263–295. [Google Scholar] [PubMed]
- Zeisel, S.H. The supply of choline is important for fetal progenitor cells. Semin. Cell. Dev. Biol. 2011, 22, 624–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudd, A.T.; Getty, C.M.; Sutton, B.P.; Dilger, R.N. Perinatal choline deficiency delays brain development and alters metabolite concentrations in the young pig. Nutr. Neurosci. 2016, 19, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Mudd, A.T.; Getty, C.M.; Dilger, R.N. Maternal Dietary Choline Status Influences Brain Gray and White Matter Development in Young Pigs. Curr. Dev. Nutr. 2018, 2, nzy015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, L.; Basiri, R. Amino Acids, B Vitamins, and Choline May Independently and Collaboratively Influence the Incidence and Core Symptoms of Autism Spectrum Disorder. Nutrients 2022, 14, 2896. [Google Scholar] [CrossRef]
- Friedman, S.D.; Shaw, D.W.; Artru, A.A.; Dawson, G.; Petropoulos, H.; Dager, S.R. Gray and white matter brain chemistry in young children with autism. Arch. Gen. Psychiatry 2006, 63, 786–794. [Google Scholar] [CrossRef]
- Corrigan, N.M.; Shaw, D.W.; Estes, A.M.; Richards, T.L.; Munson, J.; Friedman, S.D.; Dawson, G.; Artru, A.A.; Dager, S.R. Atypical developmental patterns of brain chemistry in children with autism spectrum disorder. JAMA Psychiatry 2013, 70, 964–974. [Google Scholar] [CrossRef]
- O’Neill, J.; Bansal, R.; Goh, S.; Rodie, M.; Sawardekar, S.; Peterson, B.S. Parsing the Heterogeneity of Brain Metabolic Disturbances in Autism Spectrum Disorder. Biol. Psychiatry 2020, 87, 174–184. [Google Scholar] [CrossRef]
- Margari, L.; De Giacomo, A.; Craig, F.; Palumbi, R.; Peschechera, A.; Margari, M.; Picardi, F.; Caldarola, M.; Maghenzani, M.A.; Dicuonzo, F. Frontal lobe metabolic alterations in autism spectrum disorder: A (1)H-magnetic resonance spectroscopy study. Neuropsychiatr. Dis. Treat. 2018, 14, 1871–1876. [Google Scholar] [CrossRef] [Green Version]
- Hardan, A.Y.; Minshew, N.J.; Melhem, N.M.; Srihari, S.; Jo, B.; Bansal, R.; Keshavan, M.S.; Stanley, J.A. An MRI and proton spectroscopy study of the thalamus in children with autism. Psychiatry Res. 2008, 163, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Doyle-Thomas, K.A.; Card, D.; Soorya, L.V.; Wang, A.T.; Fan, J.; Anagnostou, E. Metabolic mapping of deep brain structures and associations with symptomatology in autism spectrum disorders. Res. Autism Spectr. Disord. 2014, 8, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zheng, R.; Xu, Y.; Zhou, Z.; Guan, P.; Wu, Y.; Zhou, J.; Cheng, Z.; Zhang, L. Altered Metabolic Characteristics in Plasma of Young Boys with Autism Spectrum Disorder. J. Autism Dev. Disord. 2022, 52, 4897–4907. [Google Scholar] [CrossRef] [PubMed]
- Gabis, L.V.; Ben-Hur, R.; Shefer, S.; Jokel, A.; Shalom, D.B. Improvement of Language in Children with Autism with Combined Donepezil and Choline Treatment. J. Mol. Neurosci. 2019, 69, 224–234. [Google Scholar] [CrossRef]
- Hamlin, J.C.; Pauly, M.; Melnyk, S.; Pavliv, O.; Starrett, W.; Crook, T.A.; James, S.J. Dietary intake and plasma levels of choline and betaine in children with autism spectrum disorders. Autism Res. Treat. 2013, 2013, 578429. [Google Scholar] [CrossRef] [Green Version]
- Hyman, S.L.; Stewart, P.A.; Schmidt, B.; Cain, U.; Lemcke, N.; Foley, J.T.; Peck, R.; Clemons, T.; Reynolds, A.; Johnson, C.; et al. Nutrient intake from food in children with autism. Pediatrics 2012, 130 (Suppl. S2), S145–S153. [Google Scholar] [CrossRef] [Green Version]
- Alger, J.R.; O’Neill, J.; O’Connor, M.J.; Kalender, G.; Ly, R.; Ng, A.; Dillon, A.; Narr, K.L.; Loo, S.K.; Levitt, J.G. Neuroimaging of Supraventricular Frontal White Matter in Children with Familial Attention-Deficit Hyperactivity Disorder and Attention-Deficit Hyperactivity Disorder Due to Prenatal Alcohol Exposure. Neurotox. Res. 2021, 39, 1054–1075. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J.; O’Connor, M.J.; Yee, V.; Ly, R.; Narr, K.; Alger, J.R.; Levitt, J.G. Differential neuroimaging indices in prefrontal white matter in prenatal alcohol-associated ADHD versus idiopathic ADHD. Birth Defects Res. 2019, 111, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zang, Y.F.; Zeng, Y.W.; Zhang, L.; Wang, Y.F. Striatal neuronal loss or dysfunction and choline rise in children with attention-deficit hyperactivity disorder: A 1H-magnetic resonance spectroscopy study. Neurosci. Lett. 2001, 315, 45–48. [Google Scholar] [CrossRef]
- Wozniak, J.R.; Fink, B.A.; Fuglestad, A.J.; Eckerle, J.K.; Boys, C.J.; Sandness, K.E.; Radke, J.P.; Miller, N.C.; Lindgren, C.; Brearley, A.M.; et al. Four-year follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder. J. Neurodev. Disord. 2020, 12, 9. [Google Scholar] [CrossRef]
- Borlase, N.; Melzer, T.R.; Eggleston, M.J.F.; Darling, K.A.; Rucklidge, J.J. Resting-state networks and neurometabolites in children with ADHD after 10 weeks of treatment with micronutrients: Results of a randomised placebo-controlled trial. Nutr. Neurosci. 2020, 23, 876–886. [Google Scholar] [CrossRef]
- Carrey, N.; MacMaster, F.P.; Fogel, J.; Sparkes, S.; Waschbusch, D.; Sullivan, S.; Schmidt, M. Metabolite changes resulting from treatment in children with ADHD: A 1H-MRS study. Clin. Neuropharmacol. 2003, 26, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, G.; Ende, G.; Alm, B.; Deuschle, M.; Heuser, I.; Colla, M. Increased NAA and reduced choline levels in the anterior cingulum following chronic methylphenidate. A spectroscopic test-retest study in adult ADHD. Eur. Arch. Psychiatry Clin. Neurosci. 2008, 258, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Russell, V.A.; Oades, R.D.; Tannock, R.; Killeen, P.R.; Auerbach, J.G.; Johansen, E.B.; Sagvolden, T. Response variability in Attention-Deficit/Hyperactivity Disorder: A neuronal and glial energetics hypothesis. Behav. Brain Funct. 2006, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Wiguna, T.; Guerrero, A.P.; Wibisono, S.; Sastroasmoro, S. Effect of 12-week administration of 20-mg long-acting methylphenidate on Glu/Cr, NAA/Cr, Cho/Cr, and mI/Cr ratios in the prefrontal cortices of school-age children in Indonesia: A study using 1H magnetic resonance spectroscopy (MRS). Clin. Neuropharmacol. 2012, 35, 81–85. [Google Scholar] [CrossRef]
- Horowitz-Kraus, T.; Brunst, K.J.; Cecil, K.M. Children With Dyslexia and Typical Readers: Sex-Based Choline Differences Revealed Using Proton Magnetic Resonance Spectroscopy Acquired Within Anterior Cingulate Cortex. Front. Hum. Neurosci. 2018, 12, 466. [Google Scholar] [CrossRef] [PubMed]
- Pugh, K.R.; Frost, S.J.; Rothman, D.L.; Hoeft, F.; Del Tufo, S.N.; Mason, G.F.; Molfese, P.J.; Mencl, W.E.; Grigorenko, E.L.; Landi, N.; et al. Glutamate and choline levels predict individual differences in reading ability in emergent readers. J. Neurosci. 2014, 34, 4082–4089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Tufo, S.N.; Frost, S.J.; Hoeft, F.; Cutting, L.E.; Molfese, P.J.; Mason, G.F.; Rothman, D.L.; Fulbright, R.K.; Pugh, K.R. Neurochemistry Predicts Convergence of Written and Spoken Language: A Proton Magnetic Resonance Spectroscopy Study of Cross-Modal Language Integration. Front. Psychol. 2018, 9, 1507. [Google Scholar] [CrossRef] [Green Version]
- Bruno, J.L.; Lu, Z.L.; Manis, F.R. Phonological processing is uniquely associated with neuro-metabolic concentration. Neuroimage 2013, 67, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Laycock, S.K.; Wilkinson, I.D.; Wallis, L.I.; Darwent, G.; Wonders, S.H.; Fawcett, A.J.; Griffiths, P.D.; Nicolson, R.I. Cerebellar volume and cerebellar metabolic characteristics in adults with dyslexia. Ann. N. Y. Acad. Sci. 2008, 1145, 222–236. [Google Scholar] [CrossRef] [PubMed]
- Yeatman, J.D.; Dougherty, R.F.; Ben-Shachar, M.; Wandell, B.A. Development of white matter and reading skills. Proc. Natl. Acad. Sci. USA 2012, 109, E3045–E3053. [Google Scholar] [CrossRef] [Green Version]
- Wandell, B.A.; Yeatman, J.D. Biological development of reading circuits. Curr. Opin. Neurobiol. 2013, 23, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossowski, B.; Chyl, K.; Kacprzak, A.; Bogorodzki, P.; Jednorog, K. Dyslexia and age related effects in the neurometabolites concentration in the visual and temporo-parietal cortex. Sci. Rep. 2019, 9, 5096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, L.J.; Brown, F.C.; Roth, R.M.; Beers, S.R. Processing speed and working memory performance in those with both ADHD and a reading disorder compared with those with ADHD alone. Arch. Clin. Neuropsychol. 2011, 26, 425–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudill, M.A.; Strupp, B.J.; Muscalu, L.; Nevins, J.E.H.; Canfield, R.L. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: A randomized, double-blind, controlled feeding study. FASEB J. 2018, 32, 2172–2180. [Google Scholar] [CrossRef] [Green Version]
- Bahnfleth, C.L.; Strupp, B.J.; Caudill, M.A.; Canfield, R.L. Prenatal choline supplementation improves child sustained attention: A 7-year follow-up of a randomized controlled feeding trial. FASEB J. 2022, 36, e22054. [Google Scholar] [CrossRef]
- Nevins, J.E.H.; Donovan, S.M.; Snetselaar, L.; Dewey, K.G.; Novotny, R.; Stang, J.; Taveras, E.M.; Kleinman, R.E.; Bailey, R.L.; Raghavan, R.; et al. Omega-3 Fatty Acid Dietary Supplements Consumed During Pregnancy and Lactation and Child Neurodevelopment: A Systematic Review. J. Nutr. 2021, 151, 3483–3494. [Google Scholar] [CrossRef]
- Davis-Bruno, K.; Tassinari, M.S. Essential fatty acid supplementation of DHA and ARA and effects on neurodevelopment across animal species: A review of the literature. Birth Defects Res. B Dev. Reprod. Toxicol. 2011, 92, 240–250. [Google Scholar] [CrossRef]
- Richardson, A.J. Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. Int. Rev. Psychiatry 2006, 18, 155–172. [Google Scholar] [CrossRef]
- Wortmann, S.B.; Mayr, J.A. Choline-related-inherited metabolic diseases-A mini review. J. Inherit. Metab. Dis. 2019, 42, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Tayebati, S.K.; Amenta, F. Choline-containing phospholipids: Relevance to brain functional pathways. Clin. Chem. Lab. Med. 2013, 51, 513–521. [Google Scholar] [CrossRef]
- Lebel, C.; MacMaster, F.P.; Dewey, D. Brain metabolite levels and language abilities in preschool children. Brain Behav. 2016, 6, e00547. [Google Scholar] [CrossRef] [PubMed]
- Benamor, L. (1)H-Magnetic resonance spectroscopy study of stimulant medication effect on brain metabolites in French Canadian children with attention deficit hyperactivity disorder. Neuropsychiatr. Dis. Treat. 2014, 10, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, M.; Mirizzi, P.; Fadda, R.; Pirollo, C.; Ricciardi, O.; Mazza, M.; Valenti, M. Food Selectivity in Children with Autism: Guidelines for Assessment and Clinical Interventions. Int. J. Environ. Res. Public. Health 2023, 20, 5092. [Google Scholar] [CrossRef] [PubMed]
- Thorsteinsdottir, S.; Olsen, A.; Olafsdottir, A.S. Fussy Eating among Children and Their Parents: Associations in Parent-Child Dyads, in a Sample of Children with and without Neurodevelopmental Disorders. Nutrients 2021, 13, 2196. [Google Scholar] [CrossRef]
- Stein, J. The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia 2019, 130, 66–77. [Google Scholar] [CrossRef]
- Wallace, T.C.; Blusztajn, J.K.; Caudill, M.A.; Klatt, K.C.; Zeisel, S.H. Choline: The Neurocognitive Essential Nutrient of Interest to Obstetricians and Gynecologists. J. Diet. Suppl. 2020, 17, 733–752. [Google Scholar] [CrossRef]
- Wallace, T.C.; Blusztajn, J.K.; Caudill, M.A.; Klatt, K.C.; Natker, E.; Zeisel, S.H.; Zelman, K.M. Choline: The Underconsumed and Underappreciated Essential Nutrient. Nutr. Today 2018, 53, 240–253. [Google Scholar] [CrossRef]
- AMA. AMA Backs Global Health Experts in Calling Infertility a Disease. Available online: https://www.ama-assn.org/delivering-care/public-health/ama-backs-global-health-experts-calling-infertility-disease#:~:text=Experts%20at%20the%20World%20Health%20Organization%20%28WHO%29%20and,of%20WHO%E2%80%99s%20designation%20of%20infertility%20as%20a%20disease (accessed on 17 April 2023).
- AAP. Food for Thought: American Academy of Pediatrics Aims to Ensure Kids Get Key Nutrients for Brain Development during First 1000 Days of Life. Available online: https://www.healthychildren.org/English/news/Pages/AAP-aims-to-ensure-kids-get-nutrients-for-brain-development-policy.aspx (accessed on 17 April 2023).
- Vennemann, F.B.; Ioannidou, S.; Valsta, L.M.; Dumas, C.; Ocke, M.C.; Mensink, G.B.; Lindtner, O.; Virtanen, S.M.; Tlustos, C.; D’Addezio, L.; et al. Dietary intake and food sources of choline in European populations. Br. J. Nutr. 2015, 114, 2046–2055. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.B.; Kirby, J.K.; Sorensen, J.C.; Pollard, E.L.; Audhya, T. Evidence based recommendations for an optimal prenatal supplement for women in the US: Vitamins and related nutrients. Matern. Health Neonatol. Perinatol. 2022, 8, 4. [Google Scholar] [CrossRef]
- Growdon, J.H.; Cohen, E.L.; Wurtman, R.J. Huntington’s disease: Clinical and chemical effects of choline administration. Ann. Neurol. 1977, 1, 418–422. [Google Scholar] [CrossRef]
- Gelenberg, A.J.; Doller-Wojcik, J.C.; Growdon, J.H. Choline and lecithin in the treatment of tardive dyskinesia: Preliminary results from a pilot study. Am. J. Psychiatry 1979, 136, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, C.M.; Millac, P.; Stout, G.S.; Ward, J.W. The use of choline chloride in ataxic disorders. J. Neurol. Neurosurg. Psychiatry 1980, 43, 452–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derbyshire, E. Could we be overlooking a potential choline crisis in the United Kingdom? BMJ Nutr. Prev. Health 2019, 2, 86–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derbyshire, E.; Maes, M. The Role of Choline in Neurodevelopmental Disorders—A Narrative Review Focusing on ASC, ADHD and Dyslexia. Nutrients 2023, 15, 2876. https://doi.org/10.3390/nu15132876
Derbyshire E, Maes M. The Role of Choline in Neurodevelopmental Disorders—A Narrative Review Focusing on ASC, ADHD and Dyslexia. Nutrients. 2023; 15(13):2876. https://doi.org/10.3390/nu15132876
Chicago/Turabian StyleDerbyshire, Emma, and Michael Maes. 2023. "The Role of Choline in Neurodevelopmental Disorders—A Narrative Review Focusing on ASC, ADHD and Dyslexia" Nutrients 15, no. 13: 2876. https://doi.org/10.3390/nu15132876
APA StyleDerbyshire, E., & Maes, M. (2023). The Role of Choline in Neurodevelopmental Disorders—A Narrative Review Focusing on ASC, ADHD and Dyslexia. Nutrients, 15(13), 2876. https://doi.org/10.3390/nu15132876