Influence of Exogenous Factors Related to Nutritional and Hydration Strategies and Environmental Conditions on Fatigue in Endurance Sports: A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Search Strategies
2.3. Data Extraction
2.4. Quality Assessment and Risk of Bias
2.5. Data Analysis
3. Results
3.1. Data Search and Study Characteristics
3.1.1. Influence of Nutritional and Hydration Strategies to Modify Performance and Perceived Fatigability
3.1.2. Influence of Environmental Conditions to Modify Performance and Perceived Fatigability
3.2. Quality Assessment and Publication Bias
3.3. Results Found with the Modification of Exogenous Variables Related to Nutrition and Hydration
3.4. Results Found with the Modification of Exogenous Variables Related to Environmental Conditions
4. Discussion
4.1. Influence of CHO Intake on Fatigue
4.2. Influence of CHO + PROT Intake on Fatigue
4.3. Influence of Hydration on Fatigue
4.4. Influence of High-Altitude Environments on Fatigue
4.5. Influence of Cold Environments on Fatigue
4.6. Influence of Hot Environments on Fatigue
4.7. Limitations
4.8. Practical and Theoretical Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Enoka, R.M.; Duchateau, J. Translating Fatigue to Human Performance. Med. Sci. Sports Exerc. 2016, 48, 2228–2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrens, M.; Gube, M.; Chaabene, H.; Prieske, O.; Zenon, A.; Broscheid, K.-C.; Schega, L.; Husmann, F.; Weippert, M. Fatigue and Human Performance: An Updated Framework. Sports Med. 2023, 53, 7–31. [Google Scholar] [CrossRef]
- Madsen, K.; Pedersen, P.K.; Djurhuus, M.S.; Klitgaard, N.A. Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise. J. Appl. Physiol. 1993, 75, 1444–1451. [Google Scholar] [CrossRef]
- Lindinger, M.I.; Spriet, L.L.; Hultman, E.; Putman, T.; McKelvie, R.S.; Lands, L.C.; Jones, N.L.; Heigenhauser, G.J. Plasma volume and ion regulation during exercise after low- and high-carbohydrate diets. Am. J. Physiol. 1994, 266, R1896–R1906. [Google Scholar] [CrossRef] [PubMed]
- Costill, D.L.; Sparks, K.; Gregor, R.; Turner, C. Muscle glycogen utilization during exhaustive running. J. Appl. Physiol. 1971, 31, 353–356. [Google Scholar] [CrossRef]
- Marino, F.E.; Mbambo, Z.; Kortekaas, E.; Wilson, G.; Lambert, M.I.; Noakes, T.D.; Dennis, S.C. Influence of ambient temperature on plasma ammonia and lactate accumulation during prolonged submaximal and self-paced running. Eur. J. Appl. Physiol. 2001, 86, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Lawler, J.; Dodd, S.; Tulley, R.; Landry, G.; Wheeler, K. Fluid replacement drinks during high intensity exercise effects on minimizing exercise-induced disturbances in homeostasis. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Jackson, D.A.; Broadwell, M.S.; Queary, J.L.; Lambert, C.L. Carbohydrate Drinks Delay Fatigue during Intermittent, High-Intensity Cycling in Active Men and Women. Int. J. Sport Nutr. 1997, 7, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.; Velasques, B.; Koch, A.J.; Machado, M.; Paulucio, D.; Ribeiro, P.; Pompeu, F.A.M.S. Carbohydrate mouth rinse enhances time to exhaustion during treadmill exercise. Clin. Physiol. Funct. Imaging 2017, 37, 17–22. [Google Scholar] [CrossRef]
- Coyle, E.F.; Hagberg, J.M.; Hurley, B.F.; Martin, W.H.; Ehsani, A.A.; Holloszy, J.O. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J. Appl. Physiol. 1983, 55, 230–235. [Google Scholar] [CrossRef]
- Nassis, G.P.; Williams, C.; Chisnall, P. Effect of a carbohydrate-electrolyte drink on endurance capacity during prolonged intermittent high intensity running. Br. J. Sports Med. 1998, 32, 248–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornery, D.J.; Farrow, D.; Mujika, I.; Young, W.B. Caffeine, Carbohydrate, and Cooling Use During Prolonged Simulated Tennis. Int. J. Sports Physiol. Perform. 2007, 2, 423–438. [Google Scholar] [CrossRef] [Green Version]
- Lee, V.; Rutherfurd-Markwick, K.; Ali, A. Effect of carbohydrate ingestion during cycling exercise on affective valence and activation in recreational exercisers. J. Sports Sci. 2018, 36, 340–347. [Google Scholar] [CrossRef]
- Gomes, R.V.; Moreira, A.; Coutts, A.J.; Capitani, C.D.; Aoki, M.S. Effect of Carbohydrate Supplementation on the Physiological and Perceptual Responses to Prolonged Tennis Match Play. J. Strength Cond. Res. 2014, 28, 735–741. [Google Scholar] [CrossRef]
- Coyle, E.F.; Coggan, A.R.; Hemmert, M.K.; Ivy, J.L. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J. Appl. Physiol. 1986, 61, 165–172. [Google Scholar] [CrossRef]
- Ball, T.C.; Headley, S.A.; Vanderburgh, P.M.; Smith, J.C. Periodic Carbohydrate Replacement during 50 Min of High-Intensity Cycling Improves Subsequent Sprint Performance. Int. J. Sport Nutr. 1995, 5, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Lim, C.L.; Chew, S.A.N.; Ming, E.T.Y. Water versus Carbohydrate-Electrolyte Fluid Replacement during Loaded Marching Under Heat Stress. Mil. Med. 2005, 170, 715–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Essen, M.; Gibala, M.J. Failure of Protein to Improve Time Trial Performance when Added to a Sports Drink. Med. Sci. Sports Exerc. 2006, 38, 1476–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, M.-C.; Chien, K.-Y.; Hsu, C.-C.; Chung, C.-J.; Chan, K.-H.; Su, B. Effects of BCAA, Arginine and Carbohydrate Combined Drink on Post-Exercise Biochemical Response and Psychological Condition. Chin. J. Physiol. 2011, 54, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Alghannam, A.F.; Tsintzas, K.; Thompson, D.; Bilzon, J.; Betts, J.A. Exploring mechanisms of fatigue during repeated exercise and the dose dependent effects of carbohydrate and protein ingestion: Study protocol for a randomised controlled trial. Trials 2014, 15, 95. [Google Scholar] [CrossRef] [Green Version]
- Valentine, R.J.; Saunders, M.J.; Todd, M.K.; Laurent, T.G.S. Influence of carbohydrate-protein beverage on cycling endurance and indices of muscle disruption. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Bastos-Silva, V.J.; Melo, A.D.A.; Lima-Silva, A.E.; Moura, F.A.; Bertuzzi, R.; De Araujo, G.G. Carbohydrate Mouth Rinse Maintains Muscle Electromyographic Activity and Increases Time to Exhaustion during Moderate but not High-Intensity Cycling Exercise. Nutrients 2016, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Javierre, C.; Segura, R.; Ventura, J.L.; Suárez, A.; Rosés, J.M. L-Tryptophan Supplementation Can Decrease Fatigue Perception During an Aerobic Exercise with Supramaximal Intercalated Anaerobic Bouts in Young Healthy Men. Int. J. Neurosci. 2010, 120, 319–327. [Google Scholar] [CrossRef]
- Hultman, E. Nutritional effects on work performance. Am. J. Clin. Nutr. 1989, 49, 949–957. [Google Scholar] [CrossRef]
- Bergström, J.; Hultman, E. A Study of the Glycogen Metabolism during Exercise in Man. Scand. J. Clin. Lab. Investig. 1967, 19, 218–228. [Google Scholar] [CrossRef]
- Skorski, S.; Hammes, D.; Schwindling, S.; Veith, S.; Pfeiffer, M.; Ferrauti, A.; Kellmann, M.; Meyer, T. Effects of Training-Induced Fatigue on Pacing Patterns in 40-km Cycling Time Trials. Med. Sci. Sports Exerc. 2015, 47, 593–600. [Google Scholar] [CrossRef]
- Kalman, D.S.; Feldman, S.; Krieger, D.R.; Bloomer, R.J. Comparison of coconut water and a carbohydrate-electrolyte sport drink on measures of hydration and physical performance in exercise-trained men. J. Int. Soc. Sports Nutr. 2012, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Reichhold, S.; Neubauer, O.; Bulmer, A.C.; Knasmüller, S.; Wagner, K.-H. Endurance exercise and DNA stability: Is there a link to duration and intensity? Mutat. Res./Rev. Mutat. Res. 2009, 682, 28–38. [Google Scholar] [CrossRef]
- Zaryski, C.; Smith, D.J. Training Principles and Issues for Ultra-endurance Athletes. Curr. Sports Med. Rep. 2005, 4, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Millet, G.Y.; Martin, V.; Temesi, J. The role of the nervous system in neuromuscular fatigue induced by ultra-endurance exercise. Appl. Physiol. Nutr. Metab. 2018, 43, 1151–1157. [Google Scholar] [CrossRef]
- Costa, R.J.; Hoffman, M.D.; Stellingwerff, T. Considerations for ultra-endurance activities: Part 1—Nutrition. Res. Sports Med. 2019, 27, 166–181. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, E.A.; Blomstrand, E.; McAndrew, N.; Parry-Billings, M. Biochemical Causes of Fatigue and Overtraining. In Endurance of Sport; The Encyclopaedia of Sports Medicine, Shephards, R.J., Astrand, P.O., Eds.; Blackwell Scientific Publications: London, UK, 1992; pp. 127–138. [Google Scholar]
- Banister, E.W.; Cameron, B.J.C. Exercise-Induced Hyperammonemia: Peripheral and Central Effects. Int. J. Sports Med. 1990, 11 (Suppl. S2), S129–S142. [Google Scholar] [CrossRef]
- Karlsson, J.; Saltin, B. Diet, muscle glycogen, and endurance performance. J. Appl. Physiol. 1971, 31, 203–206. [Google Scholar] [CrossRef]
- Reilly, T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J. Sports Sci. 1997, 15, 257–263. [Google Scholar] [CrossRef]
- Wilmore, J.H.; Costill, D.L.; Kenney, W.L. Physiology of Sport and Exercise, 4th ed.; Human Kinetics: Champaign, IL, USA, 2007; ISBN 8480197498. [Google Scholar]
- Broberg, S.; Sahlin, K. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J. Appl. Physiol. 1989, 67, 116–122. [Google Scholar] [CrossRef]
- Baker, L.B.; Conroy, D.E.; Kenney, W.L. Dehydration Impairs Vigilance-Related Attention in Male Basketball Players. Med. Sci. Sports Exerc. 2007, 39, 976–983. [Google Scholar] [CrossRef] [Green Version]
- Moyen, N.E.; Ganio, M.S.; Wiersma, L.D.; Kavouras, S.; Gray, M.; McDermott, B.P.; Adams, J.; Binns, A.P.; Judelson, D.A.; McKenzie, A.L.; et al. Hydration status affects mood state and pain sensation during ultra-endurance cycling. J. Sports Sci. 2015, 33, 1962–1969. [Google Scholar] [CrossRef]
- Hillman, A.R.; Vince, R.V.; Taylor, L.; McNaughton, L.; Mitchell, N.; Siegler, J. Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress. Appl. Physiol. Nutr. Metab. 2011, 36, 698–706. [Google Scholar] [CrossRef]
- Murray, B. Hydration and Physical Performance. J. Am. Coll. Nutr. 2007, 26, 542S–548S. [Google Scholar] [CrossRef]
- Linseman, M.E.; Palmer, M.S.; Sprenger, H.M.; Spriet, L.L. Maintaining hydration with a carbohydrate–electrolyte solution improves performance, thermoregulation, and fatigue during an ice hockey scrimmage. Appl. Physiol. Nutr. Metab. 2014, 39, 1214–1221. [Google Scholar] [CrossRef]
- Hillman, A.R.; Turner, M.C.; Peart, D.J.; Bray, J.W.; Taylor, L.; McNaughton, L.R.; Siegler, J.C. A Comparison of Hyperhydration Versus Ad Libitum Fluid Intake Strategies on Measures of Oxidative Stress, Thermoregulation, and Performance. Res. Sports Med. 2013, 21, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Wittbrodt, M.; Millard-Stafford, M.; Sherman, R.A.; Cheatham, C.C. Fluid Replacement Attenuates Physiological Strain Resulting from Mild Hypohydration Without Impacting Cognitive Performance. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Alonso, G.; Coyle, E. Efectos Fisiológicos de La Deshidratación. ¿Por Qué Los Deportistas Deben Ingerir Líquidos Durante El Ejercicio En El Calor? Apunts. Educ. Física Deportes 1985, 4, 46–52. [Google Scholar]
- VanHaitsma, T.A.; Light, A.R.; Light, K.C.; Hughen, R.W.; Yenchik, S.; White, A.T. Fatigue sensation and gene expression in trained cyclists following a 40 km time trial in the heat. Eur. J. Appl. Physiol. 2016, 116, 541–552. [Google Scholar] [CrossRef]
- Wright, H.E.; Selkirk, G.A.; Rhind, S.G.; McLellan, T.M. Peripheral markers of central fatigue in trained and untrained during uncompensable heat stress. Eur. J. Appl. Physiol. 2012, 112, 1047–1057. [Google Scholar] [CrossRef]
- Périard, J.D.; Caillaud, C.; Thompson, M.W. The role of aerobic fitness and exercise intensity on endurance performance in uncompensable heat stress conditions. Eur. J. Appl. Physiol. 2012, 112, 1989–1999. [Google Scholar] [CrossRef]
- Wingo, J.E.; Lafrenz, A.J.; Ganio, M.S.; Edwards, G.L.; Cureton, K.J. Cardiovascular Drift Is Related to Reduced Maximal Oxygen Uptake during Heat Stress. Med. Sci. Sports Exerc. 2005, 37, 248–255. [Google Scholar] [CrossRef]
- Low, D.; Cable, T.; Purvis, A. Exercise thermoregulation and hyperprolactinaemia. Ergonomics 2005, 48, 1547–1557. [Google Scholar] [CrossRef]
- Sandsund, M.; Sue-Chu, M.; Helgerud, J.; Reinertsen, R.E.; Bjermer, L. Effect of cold exposure (−15 °C) and Salbutamol treatment on physical performance in elite nonasthmatic cross-country skiers. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 77, 297–304. [Google Scholar] [CrossRef]
- Roach, R.C.; Koskolou, M.D.; Calbet, J.A.L.; Saltin, B. Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am. J. Physiol. Circ. Physiol. 1999, 276, H438–H445. [Google Scholar] [CrossRef]
- Calbet, J.A.; Boushel, R.; Radegran, G.; Søndergaard, H.; Wagner, P.D.; Saltin, B. Determinants of maximal oxygen uptake in severe acute hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R291–R303. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. Declaración PRISMA 2020: Una Guía Actualizada Para La Publicación de Revisiones Sistemáticas. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Borenstein, M. Comprehensive Meta-Analysis Software. In Systematic Reviews in Health Research; Wiley: Hoboken, NJ, USA, 2022; pp. 535–548. [Google Scholar]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I² index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thompson, S.G. Controlling the risk of spurious findings from meta-regression. Stat. Med. 2004, 23, 1663–1682. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 0805802835. [Google Scholar]
- Wadley, A.J.; Svendsen, I.S.; Gleeson, M. Heightened Exercise-Induced Oxidative Stress at Simulated Moderate Level Altitude vs. Sea Level in Trained Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, K.E.; Coffman, K.E.; Mitchell, K.M.; Luippold, A.J.; Fulco, C.S.; Kenefick, R.W. Separate and combined influences of heat and hypobaric hypoxia on self-paced aerobic exercise performance. J. Appl. Physiol. 2019, 127, 513–519. [Google Scholar] [CrossRef]
- Komiyama, T.; Sudo, M.; Higaki, Y.; Kiyonaga, A.; Tanaka, H.; Ando, S. Does moderate hypoxia alter working memory and executive function during prolonged exercise? Physiol. Behav. 2015, 139, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Ansley, L.; Marvin, G.; Sharma, A.; Kendall, M.; Jones, D.; Bridge, M. The effects of head cooling on endurance and neuroendocrine responses to exercise in warm conditions. Physiol. Res. 2008, 57, 863–872. [Google Scholar] [CrossRef]
- Ferguson, S.A.H.; Eves, N.D.; Roy, B.D.; Hodges, G.J.; Cheung, S.S. Effects of mild whole body hypothermia on self-paced exercise performance. J. Appl. Physiol. 2018, 125, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Ito, R.; Yamashita, N.; Ishihara, K.; Matsumoto, T. Rain exacerbates cold and metabolic strain during high-intensity running. J. Sports Med. Phys. Fit. 2019, 59, 1601–1607. [Google Scholar] [CrossRef]
- Spencer, M.K.; Katz, A. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Am. J. Physiol. 1991, 260, E859–E864. [Google Scholar] [CrossRef]
- Spencer, M.K.; Yan, Z.; Katz, A. Carbohydrate supplementation attenuates IMP accumulation in human muscle during prolonged exercise. Am. J. Physiol. 1991, 261, C71–C76. [Google Scholar] [CrossRef] [Green Version]
- McConell, G.; Snow, R.J.; Proietto, J.; Hargreaves, M. Muscle metabolism during prolonged exercise in humans: Influence of carbohydrate availability. J. Appl. Physiol. 1999, 87, 1083–1086. [Google Scholar] [CrossRef]
- Baldwin, J.; Snow, R.J.; Gibala, M.J.; Garnham, A.; Howarth, K.; Febbraio, M.A. Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. J. Appl. Physiol. 2003, 94, 2181–2187. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A. Los carbohidratos durante el ejercicio: La investigación de los últimos 10 años. Nuevas Recomendaciones. Apunt. Educ. Física Deportes 2013, 113, 7–22. [Google Scholar] [CrossRef]
- Garcia-Roves, P.M.; Terrados, N.; Fernández, S.; Patterson, A.M. Comparison of Dietary Intake and Eating Behavior of Professional Road Cyclists during Training and Competition. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 82–98. [Google Scholar] [CrossRef] [PubMed]
- García-Rovés, P.M.; Terrados, N.; Fernandez, S.F.; Patterson, A.M. Macronutrients Intake of Top Level Cyclists During Continuous Competition—Change in the Feeding Pattern. Int. J. Sports Med. 1998, 19, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Urhausen, A.; Coen, B.; Weiler, B.; Kindermann, W. Individual Anaerobic Threshold and Maximum Lactate Steady State. Int. J. Sports Med. 1993, 14, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, K.; Katz, A.; Broberg, S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 1990, 259, C834–C841. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E. Carbohydrate intake during exercise and performance. Nutrition 2004, 20, 669–677. [Google Scholar] [CrossRef]
- Achten, J.; Halson, S.L.; Moseley, L.; Rayson, M.P.; Casey, A.; Jeukendrup, A.E. Higher dietary carbohydrate content during intensified running training results in better maintenance of performance and mood state. J. Appl. Physiol. 2004, 96, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Jeukendrup, A.E. Carbohydrate feeding during exercise. Eur. J. Sport Sci. 2008, 8, 77–86. [Google Scholar] [CrossRef]
- Terrados, N.; Maughan, R.J. Exercise in the heat: Strategies to minimize the adverse effects on performance. J. Sports Sci. 1995, 13, S55–S62. [Google Scholar] [CrossRef]
- Baker, L.B.; Lang, J.A.; Kenney, W.L. Change in body mass accurately and reliably predicts change in body water after endurance exercise. Eur. J. Appl. Physiol. 2009, 105, 959–967. [Google Scholar] [CrossRef]
- Knechtle, B.; Knechtle, P.; Wirth, A.; Rüst, C.A.; Rosemann, T. A faster running speed is associated with a greater body weight loss in 100-km ultra-marathoners. J. Sports Sci. 2012, 30, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Rüst, C.A.; Knechtle, B.; Knechtle, P.; Wirth, A.; Rosemann, T. Body Mass Change and Ultraendurance Performance. J. Strength Cond. Res. 2012, 26, 1505–1516. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.; Bilo, G.; Caravita, S.; Parati, G. Blood pressure and high altitude: Physiological response and clinical management. Medwave 2021, 21, e8194. [Google Scholar] [CrossRef] [PubMed]
- Terrados, N.; Mizuno, M.; Andersen, H. Reduction in maximal oxygen uptake at low altitudes; role of training status and lung function. Clin. Physiol. Funct. Imaging 1985, 5 (Suppl. S3), 75–79. [Google Scholar] [CrossRef] [PubMed]
- Gore, C.J.; Little, S.C.; Hahn, A.G.; Scroop, G.C.; Norton, K.I.; Bourdon, P.C.; Woolford, S.M.; Buckley, J.D.; Stanef, T.; Campbell, D.P.; et al. Reduced performance of male and female athletes at 580 m altitude. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Vallerand, A.L.; Zamecnik, J.; Jones, P.J.; Jacobs, I. Cold stress increases lipolysis, FFA Ra and TG/FFA cycling in humans. Aviat. Space Environ. Med. 1999, 70, 42–50. [Google Scholar]
- Parkin, J.M.; Carey, M.F.; Zhao, S.; Febbraio, M.A. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J. Appl. Physiol. 1999, 86, 902–908. [Google Scholar] [CrossRef] [Green Version]
- González-Alonso, J.; Calbet, J.A.; Nielsen, B. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J. Physiol. 1998, 513 (Pt 3), 895–905. [Google Scholar] [CrossRef]
- Mora-Rodríguez, R.; Del Coso, J.; Hamouti, N.; Estevez, E.; Ortega, J.F. Aerobically trained individuals have greater increases in rectal temperature than untrained ones during exercise in the heat at similar relative intensities. Eur. J. Appl. Physiol. 2010, 109, 973–981. [Google Scholar] [CrossRef]
- Nybo, L. Hyperthermia and fatigue. J. Appl. Physiol. 2008, 104, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Güner, R.S.; Kunduracioglu, B.; Ulkar, B.; Ergen, E. Running velocities and heart rates at fixed blood lactate concentrations in elite soccer players. Adv. Ther. 2005, 22, 613–620. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Zempo, H.; Fuku, N.; Kikuchi, N.; Miyachi, M.; Murakami, H. Heritability estimates of endurance-related phenotypes: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2018, 28, 834–845. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Hansen, J.; Stensløkken, L.; Joyner, M.J.; Lundby, C. Case Studies in Physiology: Temporal changes in determinants of aerobic performance in individual going from alpine skier to world junior champion time trial cyclist. J. Appl. Physiol. 2019, 127, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.K. The Relevance of Sex Differences in Performance Fatigability. Med. Sci. Sports Exerc. 2016, 48, 2247–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julián-Almárcegui, C.; Gómez-Cabello, A.; Huybrechts, I.; González-Agüero, A.; Kaufman, J.M.; Casajús, J.A.; Vicente-Rodríguez, G. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: A systematic review. Nutr. Rev. 2015, 73, 127–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heibel, A.B.; Perim, P.H.L.; de Oliveira, L.F.; McNaughton, L.R.; Saunders, B. Time to Optimize Supplementation: Modifying Factors Influencing the Individual Responses to Extracellular Buffering Agents. Front. Nutr. 2018, 5, 35. [Google Scholar] [CrossRef]
- Cerullo, G.; Parimbelli, M.; Perna, S.; Pecoraro, M.; Liguori, G.; Negro, M.; D’antona, G. Sodium citrate supplementation: An updated revision and practical recommendations on exercise performance, hydration status, and potential risks. Transl. Sports Med. 2020, 3, 518–525. [Google Scholar] [CrossRef]
- Grgic, J.; Rodriguez, R.F.; Garofolini, A.; Saunders, B.; Bishop, D.J.; Schoenfeld, B.J.; Pedisic, Z. Effects of Sodium Bicarbonate Supplementation on Muscular Strength and Endurance: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 1361–1375. [Google Scholar] [CrossRef]
- Sale, C.; Saunders, B.; Hudson, S.; Wise, J.A.; Harris, R.C.; Sunderland, C. Effect of β-Alanine Plus Sodium Bicarbonate on High-Intensity Cycling Capacity. Med. Sci. Sports Exerc. 2011, 43, 1972–1978. [Google Scholar] [CrossRef]
- Bellinger, P.M.; Howe, S.T.; Shing, C.M.; Fell, J.W. Effect of Combined β-Alanine and SodiumBicarbonate Supplementation on Cycling Performance. Med. Sci. Sports Exerc. 2012, 44, 1545–1551. [Google Scholar] [CrossRef] [Green Version]
- Stephens, T.J.; McKenna, M.J.; Canny, B.J.; Snow, R.J.; McConell, G.K. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med. Sci. Sports Exerc. 2002, 34, 614–621. [Google Scholar] [CrossRef]
Authors | Sex (n) | Age (X ± DE) | Characteristics of the Sample | Exogenous Factors | Test Performed | Control Group | Experimental Group | Dependent Variable |
---|---|---|---|---|---|---|---|---|
Powers et al. [7] | CG: Men 9; EG: Men 9 | GC 25.9 ± 5.8; GE 25.9 ± 5.8 | Cyclists, highly trained | CHO | Cycling 110% of ventilatory threshold (range 82–88%) to fatigue | Water with placebo | Intake of CHO 7% with electrolytes | Time until exhaustion (min) |
Davis et al. [8] | CG: Men 9, Women 7; EG Men 9, Women 7 | GC Male 25.8 ± 3.3, Female 22.3 ± 2.6; GE Male 25.8 ± 3.3, Female 22.3 ± 2.6 | Healthy, physically active | CHO | 1 min of cycling on an ergometer bike at 120–130% of VO2max, separated by 3 min of rest until fatigue | Before 4 mL/kg body mass of flavored drink, for 4 mL/kg body mass of flavored drink every 20 min | Before 4 mL/kg body mass of 18% CHO drink, during 4 mL/kg body mass of 6% CHO drink every 20 min | Time until exhaustion (min) |
Fraga et al. [9] | CG Men 6; EG Men 6 | GC 26 ± 6; GE 26 ± 6 | Well-trained runners | CHO | Participants ran to fatigue at 85% of VO2max | Ingestion or mouth rinse with a placebo drink without CHO | Ingestion of a 6% CHO solution or mouth rinse with an 8% CHO solution | Time until exhaustion (min), lactate (mmol/L), HR (bpm) |
Coyle et al. [10] | CG Men 9, Women 1; CG Men 9, Women 1 | CG 28 ± 2; EG 28 ± 2 | Trained cyclists | CHO | 74 ± 2% VO2 max (range 70–79% of VO2max until fatigue) | A placebo | At 20 min 1 g/kg body mass, at 60, 90, 120 min 0.25 g/kg body mass t or 6% of drink with CHO | Time until exhaustion (min), lactate (mmol/L) |
Nassis et al. [11] | CG Men 8, Women 1; EG Men 8, Women 1 | CG 25 ± 4.3; EG 25 ± 4.3 | Trained runners (women and men) | CHO | Repeated sets of 15 s of fast running (at 80% of VO2max for the first 60 min, at 85% of VO2max from 60 to 100 min of exercise, and, finally, at 90% of VO2max from 100 min of exercise to exhaustion), separated by 10 s of slow running (at 45% VO2max) | Water placebo | 6.9% CHO and electrolytes immediately before the race (3 mL/kg body mass) and every 20 min thereafter (2 mL/kg body mass) | Time until exhaustion (min) |
Hornery et al. [12] | CG Men 8; EG Men 8 | CG 18.3 ± 3; EG 18.3 ± 3 | Highly trained tennis players | CHO | Simulated tennis matches (2 h, 40 min) | Placebo was a flavored drink | Caffeine supplementation (3 mg/kg), CHO supplementation (6% solution) | Body mass (kg) |
Lee et al. [13] | CG Men 1, Women 5; EG Men 2, Women 4 | CG 45.2 ± 10.2; EG 45.2 ± 10.2 | Recreational athletes (women and men) | CHO | Cycling exercise with 2 sessions of 45 min | Placebo was a flavored drink | Beverage with 7.5% CHO solution | Body mass (kg) |
Gomes et al. [14] | CG Men 12; EG Men 12 | CG 18 ± 1; EG 18 ± 1 | Well-trained tennis players | CHO | Simulated tennis matches (3 h) | Placebo was a flavored water drink | 6% CHO maltodextrin drink | Body mass (kg) |
Coyle et al. [15] | CG Men 7; EG Men 7 | CG 28 ± 1; EG 28 ± 1 | Endurance-trained cyclists | CHO | 71 ± 1% of VO2max until fatigue | Placebo, flavored drink 4 mL/kg body mass | Glucose polymer solution (i.e., 2.0 g /kg at 20 min and 0.4 g/kg every 20 min thereafter) | Lactate (mmol/L), HR (ppm) |
Ball et al. [16] | CG Men 8; EG Men 8 | CG 26.9 ± 4.4; EG 26.9 ± 4.4 | Trained cyclists | CHO | 50 min time trial, subjects immediately performed a Wingate anaerobic power test | Flavored drink without CHO or electrolytes | Drink with CHO + electrolytes at 7% | HR (ppm) |
Byrne et al. [17] | CG Men 14; EG Men 14 | CG 20.7 ± 0.8; EG 20.7 ± 0.8 | Soldiers in the Singapore Armed Forces | CHO | Exercise loaded with 14 kg of body mass, consisting of 3 cycles of 60 min of walking at 4.4 km/h and at a 5% gradient, separated by 15 min of seated rest, carried out in an environmental chamber (35 °C ambient temperature, 55% relative humidity, 2 m s−1 wind speed, and 600 W solar radiation) | Placebo | 5.8 g CHO, 46 mg sodium and 13 mg potassium per 100 mL every 15 min | HR (ppm) |
Van Essen et al. [18] | CG Men 10; EG Men 10 | CG 24 ± 2; EG 24 ± 2 | Trained male cyclists | CHO + PROT | 80 km laboratory time trial | Placebo | 2% protein added to a 6% CHO beverage | Lactate (mmol/L), insulin in blood (µL/mL) |
Hsu et al. [19] | CG Men 14; EG Men 14 | CG 23.4 ± 0.8; EG 23.4 ± 0.8 | Healthy men | CHO + PROT | 5 min warm-up at 55% VO2max, then increased to a pace equivalent to 75% VO2max, for 30 min. After 30 min, the intensity (incline) was gradually increased by 1% every minute until exhaustion was reached | 200 mL H2O citrus-flavored drink with 10 mg sweetener | 200 mL BCAA drink containing valine (0.5 g), leucine (1 g), isoleucine (0.5 g), arginine (0.5 g), CHO (12.1 g), flavors and sweeteners in 100 mL H2O | Lactate (mmol/L), insulin in blood (µL/mL), HR (ppm) |
Alghannam et al. [20] | CG Men 6; EG Men 6 | CG 26 ± 2; EG 26 ± 2 | Healthy men used to running | CHO + PROT | Running on a treadmill at 70% of VO2max, until fatigue | 0.8 g/kg/h sucrose + 0.4 g/kg/h whey protein hydrolysate | 1.2 g/kg/h CHO + 0.4 g/kg/h whey protein hydrolysate | Lactate (mmol/L), HR (ppm) |
Valentine et al. [21] | CG Men 11; EG Men 11 | CG 20.8 ± 2.4; EG 20.8 ± 2.4 | Healthy male cyclists (4 days aerobic training/week, including 2 days cycling training, VO2max greater than 45 mL-kg−1-min−1, and 2 days cycling training, VO2max greater than 45 mL-kg−1-min−1) | CHO + PROT | 75% of VO2max until exhaustion | 250 mL placebo | CHO + Pro (7.75%/1.94%) | Lactate (mmol/L), HR (ppm), RPE |
Bastos-Silva et al. [22] | CG Men 13; EG Men 13 | CG 23.1 ± 2.6; EG 23.1 ± 2.6 | Healthy men | CHO + PROT | Participants pedaled at 80% of their respiratory compensation point and 110% of their maximum power up to the point of exhaustion | Mouthwash with a control drink | Carbohydrate mouthwash | RPE |
Javierre et al. [23] | CG Men 20; EG Men 20 | CG 21.3 ± 0.7; CG 21.3 ± 0.7 | Healthy young people | CHO + PROT | Submaximal exercise on a cycloergometer, 50 of their respective VO2max for 10 min, followed by maximal intensity exercise for 30 s. This sequence was repeated three times, and after the fourth set, each participant continued to exercise at the highest speed they could sustain for 20 min | 2/day 500 mL of an isotonic beverage containing 2.4% glucose and fructose mixture (50% each) and 45 mOsmol/L of Na+ and 7 mOsmol/L of K+; along with the beverage, a capsule containing a placebo | 2/day 500 mL of an isotonic beverage containing 2.4% glucose and fructose mixture (50% each) and 45 mOsmol/L of Na+ and 7 mOsmol/L of K+; together with the drink, a capsule containing 300 mg of L-tryptophan (“active” compound) | HR (bpm), RPE |
Baker et al. [38] | CG Men 17; EG Men 17 | CG 21.1 ± 2.4; EG 21.1 ± 2.4 | Basketball players | Hydration | Walking (50% VO2max) in the heat (40 °C and 20% relative humidity), plus a simulated basketball match | 40 °C and 20% relative humidity, 1% dehydrated | 40 °C and 20% relative humidity, euhydrated | RPE |
Moyen et al. [39] | CG Men 103, Women 16; EG: Men 103, Women 16 | CG 46 ± 9; EG 46 ± 9 | Trained cyclists | Hydration | 161 km of endurance cycling in Wichita Falls, Texas | Dehydrated (USG ≥ 1022) in a thermoneutral environment (23 °C) | Euhydrate (USG ≤ 1018) in a thermoneutral environment (23 °C) | RPE |
Hillman et al. [40] | CG Men 7; EG Men 7 | CG 36.6 ± 6; EG 36 ± 6 | Healthy, trained cyclists (power output (W) at lactate threshold (LT): 199 ± 19 W) | Hydration | 90 min cycling exercise at 95% lactic threshold followed by a 5 km time trial in 4 attempts | Dehydrated in a thermoneutral environment (23 °C) | Euhydrated in a thermoneutral environment (23 °C) | RPE |
Linseman et al. [42] | CG Men 14; EG Men 14 | CG 21.3 ± 0.2; EG 21.3 ± 0.2 | Expert male hockey players | Hydration | 70 min ice hockey match | Dehydration of ~2% BM without liquid | Hydration with CHO and electrolyte solution | Body mass (kg) |
Hillman et al. [43] | CG Men 7; EG Men 7 | CG 28 ± 8; EG 28 ± 8 | Men trained in cycling | Hydration | Cycling time trial of 90 min | No liquid | 26 mL-kg−1 BM water | Body mass (kg) |
Wittbrodt et al. [44] | CG Men 12; EG Men 12 | CG 22.2 ± 2.4; EG 22.2 ± 2.4 | Recreationally active men | Hydration | 50 min of cycling (60% VO2max) in the heat (32 °C; 65% RH) | No liquid | Ad libitum with water | Body mass (kg) |
Authors | Sex (n) | Age (X ± DE) | Characteristics of the Sample | Exogenous Factors | Test Performed | Control Group | Experimental Group | Dependent Variable |
---|---|---|---|---|---|---|---|---|
Wadley et al. [63] | CG Men 12; EG Men 12 | CG 28 ± 4; EG 28 ± 4 | Endurance-trained cyclists | Height | Cycling 75 min at 70% of VO2max to fatigue | Normoxia | Hypobaric hypoxia, equivalent to 2000 m above sea level | HR (bpm), RPE |
Bradbury et al. [64] | CG Men 12; EG Men 12 | CG 26 ± 6; EG 26 ± 6 | Trained healthy males | Height | 30 min of steady state cycling exercise (50% VO2max), followed by 15 min of exercise at own pace | Thermoneutral and normoxia (250 m, 20 °C, 30–50% relative humidity (rh)) | Warm hypobaric hypoxia (HH; 3000 m, 35 °C, 30% rh) | HR (bpm), RPE |
Komiyama et al. [65] | CG Men 16; EG Men 16 | CG 23 ± 2.3; EG 23 ± 2.3 | Healthy and physically active males | Height | Participants cycled on an ergometer for 30 min in normoxia and moderate hypoxia, while maintaining their heart rate (HR) at 140 beats/min | Normoxia | Hypoxia (fraction of inspired oxygen (FIO2) = 0.15, corresponding to an altitude of approx. 2600 m) | HR (bpm), RPE |
Ansley et al. (2008) [66] | CG Men 9; EG Men 9 | CG 24 ± 7; EG 24 ± 7 | Acclimatized healthy and recreationally active | Cold | 75% of VO2max until fatigue using a cycloergometer at an ambient temperature of 29 ± 1.0 °C with a relative humidity of approximately 50% | No head cooling | With head cooling | Lactate (mmol/L) |
Ferguson et al. [67] | CG Men 12; EG Men 12 | CG 29 ± 8; EG 29 ± 8 | Healthy and trained cyclists | Cold | 15 km time trial in different environmental conditions | Exercise at 23 °C | Exercise at 0 °C | Lactate (mmol/L) |
Ito et al. [68] | CG Men 12; EG Men 12 | CG 21 ± 7; EG 21 ± 7 | Healthy men | Cold | Treadmill at 80% VO2max | No rain | With rain at 5 °C | Lactate (mmol/L) |
VanHaitsma et al. [46] | CG Men 20; EG Men 20 | CG 36.1 ± 9.7; EG 36.1 ± 9.7 | Trained cyclists | Heat | Time trial of 40 km with a “race” effort | 21 °C and a relative humidity of 20% | 35 °C and a relative humidity of 25% | HR (bpm), RPE |
Wright et al. [47] | CG Men 7, Women 2; EG Men 7, Women 2 | CG 26 ± 2.5; EG 26 ± 2.5 | Healthy resistance-trained or not resistance trained | Heat | Participants walked on a treadmill (4.5 km h−1, 2% incline) in a warm and dry environment (40 °C, 30% relative humidity, wind speed\0.1 m s−1) | Untrained at 40 °C, 30% relative humidity | Trained at 40 °C, 30% relative humidity | RPE |
Périard et al. [48] | CG Men 8; EG Men 8 | CG 29.9 ± 8.1; EG 26.3 ± 4.4 | Endurance-trained (>250 km/s) male cyclists not acclimatized to heat or untrained | Heat | Ergometer biking, started pedaling at 150 W for 3 min to “warm up”, 60% of VO2max (222.1 + 26.5 W), until exhaustion | Untrained, at 60% VO2max, 40 °C. Untrained at 75% VO2max, 40 °C | Trained, at 60% VO2max, 40 °C. Trained, at 75% VO2max, 40 °C | RPE, HR (bpm), skin temperature (°C), temperature gradient (°C) |
Wingo et al. [49] | CG Men 9; EG Men 9 | CG 25 ± 4; EG 25 ± 4 | Trained cyclists | Heat | 35 °C, 40% relative humidity, 15 min cycling at 60% VO2max, plus 45 min cycling at 60% VO2max | With variable HR | HR held constant | RPE, HR (bpm) |
Low et al. [50] | CG Men 9; EG Men 9 | CG 25.11 ± 3.55; EG 25.11 ± 3.55 | Active men | Heat | ∼60% of VO2max at 70–80 rpm for 45 min on an ergometer bike | Exercise at 18 °C | Exercise at 30 °C | HR (bpm), skin temperature (°C), temperature gradient (°C) |
Authors | n.1 Specified Eligibility Criteria | n.2 Random Allocation | n.3 Concealed Allocation | n.4 Groups Similar at Baseline | n.5 Participants Blinding | n.6 Intervention Blinding | n.7 Measurer Blinding | n.8 Less Than 15% Dropouts | n.9 Intention-to-Treat Analysis | n.10 Between-Group Statistical Comparisons | n.11 Point Measures and Variability Data | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nutritional and hydration strategies as exogenous factors | ||||||||||||
CHO | ||||||||||||
Powers et al. [7] | NO | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 10 |
Davis et al. [8] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Fraga et al. [9] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Coyle et al. [10] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Nassis et al. [11] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Hornery et al. [12] | YES | YES | YES | YES | YES | NO | NO | YES | YES | YES | YES | 9 |
Lee et al. [13] | YES | YES | YES | YES | YES | NO | NO | YES | YES | YES | YES | 10 |
Gomes et al. [14] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Coyle et al. [15] | YES | NO | NO | YES | NO | NO | NO | YES | YES | YES | YES | 6 |
Ball et al. [16] | YES | NO | YES | YES | NO | NO | NO | YES | YES | YES | YES | 7 |
Byrne et al. [17] | YES | YES | YES | YES | NO | NO | NO | YES | YES | YES | YES | 8 |
CHO + PROT | ||||||||||||
Van Essen et al. [18] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Hsu et al. [19] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Alghannam et al. [20] | YES | YES | YES | YES | YES | YES | YES | NO | YES | NO | NO | 8 |
Valentine et al. [21] | YES | NO | NO | YES | YES | YES | YES | YES | YES | YES | YES | 9 |
Bastos-Silva et al. [22] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Javierre et al. [23] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Hydration | ||||||||||||
Baker et al. [38] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Moyen et al. [39] | YES | NO | NO | YES | NO | NO | NO | YES | YES | YES | YES | 6 |
Hillman et al. [40] | YES | YES | YES | YES | NO | NO | NO | YES | YES | YES | YES | 8 |
Linseman et al. [42] | YES | YES | NO | YES | NO | NO | NO | YES | YES | YES | YES | 7 |
Hillman et al. [43] | YES | NO | NO | YES | NO | NO | NO | YES | YES | YES | YES | 6 |
Wittbrodt et al. [44] | NO | YES | NO | YES | NO | NO | NO | YES | YES | YES | YES | 6 |
Environmental conditions as exogenous factors | ||||||||||||
Altitude | ||||||||||||
Wadley et al. [63] | YES | NO | NO | YES | NO | NO | NO | YES | YES | YES | YES | 6 |
Bradbury et al. [64] | NO | YES | YES | NO | YES | NO | NO | YES | YES | YES | YES | 7 |
Komiyama et al. [65] | YES | YES | YES | YES | YES | NO | NO | YES | YES | YES | YES | 9 |
Cold | ||||||||||||
Ansley et al. (2008) [66] | NO | NO | NO | NO | NO | NO | NO | YES | YES | YES | YES | 4 |
Ferguson et al. [67] | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | 11 |
Ito et al. [68] | NO | NO | NO | YES | NO | NO | NO | YES | YES | YES | YES | 5 |
Heat | ||||||||||||
VanHaitsma et al. [46] | YES | NO | NO | YES | NO | NO | NO | YES | YES | YES | YES | 6 |
Wright et al. [47] | YES | NO | NO | NO | NO | NO | NO | YES | YES | YES | YES | 5 |
Périard et al. [48] | YES | YES | NO | NO | NO | NO | NO | YES | YES | YES | YES | 6 |
Wingo et al. [49] | YES | NO | NO | YES | NO | NO | NO | YES | YES | YES | YES | 6 |
Low et al. [50] | NO | NO | NO | YES | NO | NO | NO | YES | YES | YES | YES | 5 |
Dependent Variable | Comparison | Number of Studies | Number of Experimental Group (Total n) | Number of Control Group (Total n) | SMD | 95% CI o IC | z | p | Heterogeneity | I2 | Rosenthal Tolerance Index | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CHO during the test | Time until exhaustion (min) | EG post-test vs. CG post-test | 5 | 5 (n = 41) | 5 (n = 50) | 1.46 | 0.96 to 1.97 | 5.57 | <0.001 | Q = 26.56 (p <0.001; gl = 4) | 85% (95%CI = 67; 93%) | 67 |
Body mass (kg) | Diff EG pre-post vs. diff CG pre-post | 3 | 3 (n = 30) | 3 (n = 30) | 0.01 | −0.49 to 0.51 | 0.05 | 0.959 | Q = 0.02 (p = 0.988; gl = 2) | −8697% (95%CI = 0; −815%) | −2.97 | |
Lactate (mmol/L) | Diff EG pre-test—intermediate test 1 (15–30′) vs. diff CG pre-test—intermediate test 1 (15–30′) | 3 | 3 (n = 23) | 3 (n = 23) | 0.31 | −0.28 to 0.91 | 1.03 | 0.303 | Q = 3.63 (p = 0.163; gl = 2) | 45% (95%CI = 0; 84%) | 1.66 | |
Lactate (mmol/L) | Diff EG intermediate test 1 (15–30′)—intermediate test 2 (30–60′) vs. CG intermediate test 1 (15–30′)—intermediate test 2 (30–60′) | 3 | 3 (n = 23) | 3 (n = 23) | 0.18 | −0.57 to 0.94 | 0.48 | 0.633 | Q = 3.19 (p = 0.203; gl = 2) | 37% (95%CI = 0; 80%) | −0.82 | |
HR (ppm) | Diff EG intermediate test 1 (15–30′)—intermediate test 2 (30–60′) vs. CG intermediate test 1 (15–30′)—intermediate test 2 (30–60′) | 4 | 4 (n = 35) | 4 (n = 35) | −0.59 | −1.07 to −0.09 | 2.36 | 0.018 | Q = 3.97 (p = 0.264; gl = 3) | 25% (95%CI = 0; 88%) | 2.78 | |
CHO + PROT during the test | Lactate (mmol/L) | EG intermediate test (30–60′) vs. CG intermediate test (30–60′) | 4 | 4 (n = 41) | 4 (n = 41) | −0.47 | −0.92 to −0.02 | 2.06 | 0.039 | Q = 5.31 (p = 0.150; gl = 3) | 44% (95%CI = 0; 81%) | 4.70 |
Lactate (mmol/L) | EG post-test vs. CG post-test | 3 | 3 (n = 31) | 3 (n = 31) | 0.02 | −0.48 to −0.52 | 0.07 | 0.946 | Q = 0.54 (p = 0.762; gl = 2) | −268% (95%CI = 0; 62%) | −2.49 | |
RPE | EG intermediate test (15–20′) vs. intermediate test (15–20′) | 3 | 3 (n = 44) | 3 (n = 44) | −0.75 | −1.91 to 0.41 | 1.27 | 0.204 | Q = 12.92 (p = 0.002; gl = 2) | 85% (95%CI = 54%; 95%) | 12.83 | |
HR (ppm) | EG intermediate test (15–45′) vs. intermediate test (15–45′) | 4 | 4 (n = 51) | 4 (n = 51) | −0.06 | −0.45 to 0.33 | 0.31 | 0.756 | Q = 0.305 (p = 0.959; gl = 3) | −882% (95%CI = 0; −50%) | −3.56 | |
HR (ppm) | EG post-test vs. CG post-test | 3 | 3 (n = 37) | 3 (n = 37) | 0.11 | −0.35 to 0.56 | 0.46 | 0.647 | Q = 0.259 (p = 0.879; gl = 2) | −671% (95%CI = 0; 20%) | −2.65 | |
Hydration | RPE | EG post-test vs. CG post-test | 3 | 3 (n = 143) | 3 (n = 143) | 0.29 | 0.05 to 0. 52 | 2.40 | 0.016 | Q = 0.492 (p = 0.782; gl = 2) | −307% (95%CI = 0; 58%) | 3.15 |
Body mass loss (kg) | EG post-test vs. CG post-test | 3 | 3 (n = 33) | 3 (n = 33) | 0.62 | 0.11 to 1.14 | 2.37 | 0.018 | Q = 9.539 (p = 0.008; gl = 2) | 79% (95%CI = 33%; 93%) | 10.76 |
Dependent Variable | Comparison | Number of Studies | Number of Experimental Group (Total n) | Number of Control Group (Total n) | SMD | 95% CI o IC | z | p | Heterogeneity | I2 | Rosenthal Tolerance Index | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Altitude | RPE | EG post-test vs. CG post-test | 3 | 3 (n = 40) | 3 (n = 40) | 0.03 | −0.41 to 0.47 | 0.13 | 0.894 | Q = 0.85 (p = 0.653; gl = 2) | −135% (95%CI = 0; 76%) | −2.40 |
HR (ppm) | EG post-test vs. CG post-test | 3 | 3 (n = 40) | 3 (n = 40) | 0.03 | −0.41 to 0.47 | 0.14 | 0.890 | Q = 0.244 (p = 0.885; gl = 2) | −720% (95%CI = 0; 15%) | −2.82 | |
Cold | Lactate (mmol/L) | EG post-test vs. CG post-test | 3 | 3 (n = 33) | 3 (n = 33) | −0.07 | −0.60 to 0.46 | 0.27 | 0.790 | Q = 19.932 (p = 0.005; gl = 2) | 90% (95%CI = 73%; 96%) | 16.84 |
Heat | RPE | EG post-test vs. CG post-test | 3 | 3 (n = 70) | 3 (n = 70) | 2.18 | 1.67 to 2.68 | 8.40 | <0.001 | Q = 71.080 (p < 0.001; gl = 6) | 92% (95%CI = 95%; 85%) | 340.09 |
HR (ppm) | EG post-test vs. CG post-test | 4 | 4 (n = 70) | 4 (n = 70) | 1.13 | 0.72 to 1.54 | 5.41 | <0.001 | Q = 55.507 (p < 0.001; gl = 6) | 89% (95%CI = 80%; 94%) | 160.08 | |
Skin temperature (°C) | EG post-test vs. CG post-test | 3 | 3 (n = 41) | 3 (n = 41) | 12.37 | 4.40 to 20.33 | 3.04 | 0.002 | Q = 72.51 (p < 0.001; gl = 4) | 94% (95%CI = 90%; 97%) | 208.26 | |
Temperature gradient (°C) | EG post-test vs. CG post-test | 3 | 3 (n = 41) | 3 (n = 41) | −3.78 | −4.81 to −2.75 | 7.20 | <0.001 | Q = 66.418 (p < 0.001; gl = 4) | 89% (95%CI = 97%; 89%) | 207.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellicer-Caller, R.; Vaquero-Cristóbal, R.; González-Gálvez, N.; Abenza-Cano, L.; Horcajo, J.; de la Vega-Marcos, R. Influence of Exogenous Factors Related to Nutritional and Hydration Strategies and Environmental Conditions on Fatigue in Endurance Sports: A Systematic Review with Meta-Analysis. Nutrients 2023, 15, 2700. https://doi.org/10.3390/nu15122700
Pellicer-Caller R, Vaquero-Cristóbal R, González-Gálvez N, Abenza-Cano L, Horcajo J, de la Vega-Marcos R. Influence of Exogenous Factors Related to Nutritional and Hydration Strategies and Environmental Conditions on Fatigue in Endurance Sports: A Systematic Review with Meta-Analysis. Nutrients. 2023; 15(12):2700. https://doi.org/10.3390/nu15122700
Chicago/Turabian StylePellicer-Caller, Roberto, Raquel Vaquero-Cristóbal, Noelia González-Gálvez, Lucía Abenza-Cano, Javier Horcajo, and Ricardo de la Vega-Marcos. 2023. "Influence of Exogenous Factors Related to Nutritional and Hydration Strategies and Environmental Conditions on Fatigue in Endurance Sports: A Systematic Review with Meta-Analysis" Nutrients 15, no. 12: 2700. https://doi.org/10.3390/nu15122700
APA StylePellicer-Caller, R., Vaquero-Cristóbal, R., González-Gálvez, N., Abenza-Cano, L., Horcajo, J., & de la Vega-Marcos, R. (2023). Influence of Exogenous Factors Related to Nutritional and Hydration Strategies and Environmental Conditions on Fatigue in Endurance Sports: A Systematic Review with Meta-Analysis. Nutrients, 15(12), 2700. https://doi.org/10.3390/nu15122700