Nutritional Composition of Plant Protein Beverages on China’s Online Market: A Cross-Sectional Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Evaluation Criterion
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Protein, Energy, Carbohydrate, Fat and Sodium
4.2. Nutrition Fortification and Additives
4.3. Functional Active Substances and Potential Health Benefits
5. Strengths and Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plant-Based Beverages Market Size Worth USD 388.42 Billion by 2027 at 8.5% CAGR—Report by Market Research Future (MRFR): Plant-Based Beverages Market Size and Trends by Source (Fruits, Nuts, Vegetables, Soy, Seeds & Leaves and Others), By Type (RTD Tea & Coffee, Plant-Based Milk, Juices and Others) and By Distribution Channel (Store-Based and Non-Store Based)—Global Forecast till 2027. NASDAQ OMX’s News Release Distribution Channel. 19 July 2022. Available online: https://www.globenewswire.com/news-release/2022/07/19/2481573/0/en/Plant-Based-Beverages-Market-Size-Worth-USD-388-42-Billion-by-2027-at-8-5-CAGR-Report-by-Market-Research-Future-MRFR.html (accessed on 4 June 2023).
- Wang, C.Z. Upgraded Health Trends, Plant Proteins Will Be More Favored—Interview with the Managing Director of Baileyou Asia Pacific Private Limited in Asia Pacific. China Food Saf. 2022, 4–6. [Google Scholar] [CrossRef]
- Pontonio, E.; Rizzello, C.G. Milk Alternatives and Non-Dairy Fermented Products: Trends and Challenges. Foods 2021, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- Oduro, A.F.; Saalia, F.K.; Adjei, M.Y.B. Sensory Acceptability and Proximate Composition of 3-Blend Plant-Based Dairy Alternatives. Foods 2021, 10, 482. [Google Scholar] [CrossRef]
- Geburt, K.; Albrecht, E.H.; Pointke, M.; Pawelzik, E.; Gerken, M.; Traulsen, I. A Comparative Analysis of Plant-Based Milk Alternatives Part 2: Environmental Impacts. Sustainability 2022, 14, 8424. [Google Scholar] [CrossRef]
- Nissim, S.; Gabriel, L.; Uzi, M. The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients 2015, 7, 7312–7331. [Google Scholar]
- Bocker, R.; Silva, E.K. Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. Future Foods 2022, 5, 100098. [Google Scholar] [CrossRef]
- Singhal, S.; Baker, R.D.; Baker, S.S. A Comparison of the Nutritional Value of Cow’s Milk and Nondairy Beverages. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef]
- Schneider, P.; Brockmeier, S.; Halecker, B.; Harmsen, N.-J.; Kadiyan, H.; Wündsch, F. Consumers’ Motivators and Barriers for the Adoption of Plant-Based Milk; The International Society for Professional Innovation Management (ISPIM): Manchester, UK, 2021; pp. 1–20. [Google Scholar]
- Lu, Y.; Sun, X.C. Research on Consumer Behavior of Plant Protein Beverages. J. Chongqing Univ. Sci. Technol. (Soc. Sci. Ed.) 2019, 5, 32–36. [Google Scholar] [CrossRef]
- Man, Y.; Ren, H.R.; Shen, Z.T.; Su, S.J.; Long, Y.F.; Fu, C.C. Investigation on the Consumption Status of Plant Protein Beverage Market in Shaanxi Province. Youth Times 2014, 19, 147–148. [Google Scholar]
- Carmela, S.; Luigi, R.G.; Erdogan, O.I.; Solomon, H.; Maria, D.; Antoni, S.; Fazel, N.S.; Pandima, D.K.; Rosa, L.M.; Rosa, T. Genistein and Cancer: Current Status, Challenges, and Future Directions. Adv. Nutr. 2015, 6, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Poschner, S.; Maier-Salamon, A.; Zehl, M.; Wackerlig, J.; Dobusch, D.; Pachmann, B.; Sterlini, K.L.; Jager, W. The Impacts of Genistein and Daidzein on Estrogen Conjugations in Human Breast Cancer Cells: A Targeted Metabolomics Approach. Front Pharmacol 2017, 8, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, S.; Chu, Y. Whole grain oats, more than just a fiber: Role of unique phytochemicals. Mol. Nutr. Food Res. 2017, 61, 1600715. [Google Scholar] [CrossRef] [PubMed]
- Sandupama, P.; Munasinghe, D.; Jayasinghe, M. Coconut oil as a therapeutic treatment for alzheimer’s disease: A review. J. Future Foods 2022, 2, 41–52. [Google Scholar] [CrossRef]
- Jayawardena, R.; Swarnamali, H.; Lanerolle, P.; Ranasinghe, P. Effect of coconut oil on cardio-metabolic risk: A systematic review and meta-analysis of interventional studies. Diabetes Metab Syndr 2020, 14, 2007–2020. [Google Scholar] [CrossRef]
- Hosseini Adarmanabadi, S.M.H.; Karami Gilavand, H.; Taherkhani, A.; Sadat Rafiei, S.K.; Shahrokhi, M.; Faaliat, S.; Biabani, M.; Abil, E.; Ansari, A.; Sheikh, Z.; et al. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci. Rep. 2023, 14, 1–20. [Google Scholar] [CrossRef]
- Guasch-Ferre, M.; Li, J.; Hu, F.B.; Salas-Salvado, J.; Tobias, D.K. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: An updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 2018, 108, 174–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Moss, R.; Barker, S.; Falkeisen, A.; Gorman, M.; Knowles, S.; McSweeney, M.B. An investigation into consumer perception and attitudes towards plant-based alternatives to milk. Food Res. Int. 2022, 159, 111648. [Google Scholar] [CrossRef]
- Stewart, H.; Kuchler, F.; Cessna, J.; Hahn, W. Are Plant-Based Analogues Replacing Cow’s Milk in the American Diet? J. Agric. Appl. Econ. 2020, 52, 562–579. [Google Scholar] [CrossRef]
- Clark, B.E.; Pope, L.; Belarmino, E.H. Perspectives from healthcare professionals on the nutritional adequacy of plant-based dairy alternatives: Results of a mixed methods inquiry. BMC Nutr. 2022, 8, 46. [Google Scholar] [CrossRef]
- Sousa, A.; Bolanz, K.A.K. Nutritional Implications of an Increasing Consumption of Non-Dairy Plant-Based Beverages Instead of Cow’s Milk in Switzerland. Adv. Dairy Res. 2017, 5, 1000197. [Google Scholar] [CrossRef]
- Craig, W.J.; Fresan, U. International Analysis of the Nutritional Content and a Review of Health Benefits of Non-Dairy Plant-Based Beverages. Nutrients 2021, 13, 842. [Google Scholar] [CrossRef]
- National Food Safety Standard: General Principles for Nutrition Labeling of Prepackaged Food (GB 28050-2011). Available online: http://www.nhc.gov.cn/wjw/aqbz/201306/b78833fceab04bf8a79676940ef8e408.shtml (accessed on 25 April 2023).
- Pointke, M.; Albrecht, E.H.; Geburt, K.; Gerken, M.; Traulsen, I.; Pawelzik, E. A Comparative Analysis of Plant-Based Milk Alternatives Part 1: Composition, Sensory, and Nutritional Value. Sustainability 2022, 14, 7996. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef]
- Vanga, S.K.; Raghavan, V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J. Food Sci. Technol. 2018, 55, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.C.; Gunn, C. Non-dairy milk substitutes: Are they of adequate nutritional composition? In Milk and Dairy Foods; Academic Press: Cambridge, MA, USA, 2020; pp. 347–369. [Google Scholar]
- Wijesinhabettoni, R.; Burlingame, B. Milk and Dairy Product Composition; FAO: Rome, Italy, 2013; pp. 41–90. [Google Scholar]
- Fructuoso, I.; Romao, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An Overview on Nutritional Aspects of Plant-Based Beverages Used as Substitutes for Cow’s Milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, W.; Zhang, N.; Bak, K.H.; Zhang, Y.; Fu, Y. Sugar reduction in beverages: Current trends and new perspectives from sensory and health viewpoints. Food Res. Int. 2022, 162 Pt B, 112076. [Google Scholar] [CrossRef]
- Ye, S.; Shah, B.R.; Li, J.; Liang, H.; Zhan, F.; Geng, F.; Li, B. A critical review on interplay between dietary fibers and gut microbiota. Trends Food Sci. Technol. 2022, 124, 237–249. [Google Scholar] [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Schuster, M.J.; Wang, X.; Tiffany, H.; Painter, J.E. Comparison of the Nutrient Content of Cow’s Milk and Nondairy Milk Alternatives: What’s the Difference? Nutr. Today 2018, 53, 153–159. [Google Scholar] [CrossRef]
- Silva, B.Q.; Smetana, S. Review on milk substitutes from an environmental and nutritional point of view. Appl. Food Res. 2022, 2, 100105. [Google Scholar] [CrossRef]
- Craig, W.J.; Brothers, C.J. Nutritional Content and Health Profile of Non-Dairy Plant-Based Yogurt Alternatives. Nutrients 2021, 13, 4069. [Google Scholar] [CrossRef] [PubMed]
- Glover, A.; Hayes, H.E.; Ni, H.; Raikos, V. A comparison of the nutritional content and price between dairy and non-dairy milks and cheeses in UK supermarkets: A cross sectional analysis. Nutr. Health 2022, 2601060221105744. [Google Scholar] [CrossRef] [PubMed]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef]
- Rogers, P.J.; Hogenkamp, P.S.; de Graaf, C.; Higgs, S.; Lluch, A.; Ness, A.R.; Penfold, C.; Perry, R.; Putz, P.; Yeomans, M.R.; et al. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int. J. Obes. 2015, 40, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.B.; Abou-Setta, A.M.; Chauhan, B.F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Jeyaraman, M.M.; Reid, A.E.; Fiander, M.; et al. Nonnutritive sweeteners and cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ 2017, 189, E929–E939. [Google Scholar] [CrossRef] [Green Version]
- Consumer Demands Accelerate the Upgrading of the Beverage Industry, and the Concept of “Health, Low Sugar” is Hot. Available online: http://www.cb.com.cn/index/show/bzyc/cv/cv135156771647 (accessed on 25 April 2023).
- Zujko, M.E.; Witkowska, A.M. Antioxidant Potential and Polyphenol Content of Beverages, Chocolates, Nuts, and Seeds. Int. J. Food Prop. 2013, 17, 86–92. [Google Scholar] [CrossRef]
- Kang, J.H.; Han, I.H.; Sung, M.K.; Yoo, H.; Kim, Y.G.; Kim, J.S.; Kawada, T.; Yu, R. Soybean saponin inhibits tumor cell metastasis by modulating expressions of MMP-2, MMP-9 and TIMP-2. Cancer Lett. 2008, 261, 84–92. [Google Scholar] [CrossRef]
- Shi, J.; Chen, Q.; Xu, M.; Xia, Q.; Zheng, T.; Teng, J.; Li, M.; Fan, L. Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review. Cancer Med. 2019, 8, 3004–3011. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Z.; Zhang, X.; Tong, H.; Li, P.; Zhang, Z.C.; Jia, Z.; Xie, W.; Han, J. Drosophila neuroligin 4 regulates sleep through modulating GABA transmission. J. Neurosci. 2013, 33, 15545–15554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguez, A.C.; Francisco, J.C.; Barberato, S.H.; Simeoni, R.; Precoma, D.; do Amaral, V.F.; Rodrigues, E.; Olandoski, M.; de Noronha, L.; Greca, F.H.; et al. The functional effect of soybean extract and isolated isoflavone on myocardial infarction and ventricular dysfunction: The soybean extract on myocardial infarction. J. Nutr. Biochem. 2012, 23, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.-Y.; Ye, Y.; Xiao, L.; Rahman, K.; Xia, W.; Zhang, H. Daidzein: A review of pharmacological effects. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 117–132. [Google Scholar] [CrossRef]
- Quaas, A.M.; Kono, N.; Mack, W.J.; Hodis, H.N.; Felix, J.C.; Paulson, R.J.; Shoupe, D. Effect of isoflavone soy protein supplementation on endometrial thickness, hyperplasia, and endometrial cancer risk in postmenopausal women: A randomized controlled trial. Menopause 2013, 20, 840–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakehashi, A.; Tago, Y.; Yoshida, M.; Sokuza, Y.; Wei, M.; Fukushima, S.; Wanibuchi, H. Hormonally active doses of isoflavone aglycones promote mammary and endometrial carcinogenesis and alter the molecular tumor environment in Donryu rats. Toxicol. Sci. 2012, 126, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The Effect of Coconut Oil Consumption on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Clinical Trials. Circulation 2020, 141, 803–814. [Google Scholar] [CrossRef]
- Oliveira-de-Lira, L.; Santos, E.M.C.; de Souza, R.F.; Matos, R.J.B.; Silva, M.C.D.; Oliveira, L.D.S.; Nascimento, T.G.D.; Schemly, P.; Souza, S.L. Supplementation-Dependent Effects of Vegetable Oils with Varying Fatty Acid Compositions on Anthropometric and Biochemical Parameters in Obese Women. Nutrients 2018, 10, 932. [Google Scholar] [CrossRef] [Green Version]
- Polls Show That Online Shopping has Become the Mainstream Shopping Method for Chinese People. Available online: http://it.people.com.cn/n/2014/0520/c1009-25039332.html (accessed on 25 April 2023).
- Lifschitz, C.; Szajewska, H. Cow’s milk allergy: Evidence-based diagnosis and management for the practitioner. Eur. J. Pediatr. 2015, 174, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.J.; Birken, C.S.; Parkin, P.C.; Lebovic, G.; Chen, Y.; L’Abbé, M.; Maguire, J.L. Consumption of non-cow’s milk beverages and serum vitamin D levels in early childhood. Can. Med. Assoc. J. J. L’association Med. Can. 2014, 186, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
Type of Plant Basis | n | Energy (kJ) | Protein (g) | Fat (g) | Carbohydrates (g) | Sodium (mg) |
---|---|---|---|---|---|---|
Almond | 11 | 160.0 (114.0–207.0) b | 1.0 (0.7–1.2) b, c, d | 2.1 (1.6–2.2) | 4.9 (1.6–6.8) b | 40.0 (40.0–51.0) a |
Coconut | 58 | 201.0 (169.0–223.2) b | 0.6 (0.6–0.7) d | 2.6 (2.0–3.0) a | 6.4 (4.2–7.0) b | 36.0 (23.0–49.8) a, c |
Oats | 49 | 246.0 (212.0–270.0) a | 1.1 (1.0–1.3) b, c | 2.6 (1.5–3.1) a | 7.0 (6.5–8.5) a | 37.0 (30.0–45.0) a, c |
Peanut | 5 | 137.0 (115.0–158.0) b | 1.0 (0.8–1.0) | 1.6 (1.5–1.8) | 3.5 (2.9–4.4) b | 52.0 (28.0–52.0) |
Rice | 4 | 201.5 (181.5–211.8) | 0.6 (0.4–0.6) c, d | 1.0 (0.7–1.0) | 9.6 (7.9–10.8) | 11.5 (0.0–32.2) |
Soy | 52 | 195.0 (173.2–208.8) b | 3.0 (2.0–3.6) a | 1.8 (1.3–2.2) b | 4.2 (1.8–6.5) b | 20.0 (10.0–35.0) b, c |
Walnut | 14 | 192.9 (161.8–217.5) | 0.6 (0.6–0.8) c, d | 2.5 (2.4–3.1) a | 3.9 (3.2–5.7) b | 51.0 (26.2–57.2) a, c |
Other beans | 5 | 150.0 (128.0–160.0) b | 0.9 (0.9–1.0) | 0.0 (0.0–1.4) b | 6.5 (5.1–8.5) | 15.0 (15.0–16.0) c |
Mixed nuts | 5 | 143.0 (140.0–151.0) b | 0.7 (0.7–0.8) b, c, d | 1.4 (1.4–2.0) | 4.2 (3.8–4.5) b | 65.0 (45.0–66.0) a |
Mixed beverages | 48 | 208.0 (156.0–233.7) b | 1.2 (1.0–2.3) b | 1.8 (1.3–2.8) | 5.6 (4.5–6.8) b | 29.0 (17.5–40.0) |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Type of Plant Basis | n | Energy ≤201.6 kJ | Protein ≥3.0 g | Fat ≤1.5 g | Carbohydrates ≤7.2 g | Sodium ≤40.0 mg |
---|---|---|---|---|---|---|
Almond | 11 | 7 (63.6%) | 0 (0.0%) | 3 (27.3%) | 10 (90.9%) | 7 (63.6%) |
Coconut | 58 | 29 (50.0%) | 0 (0.0%) | 1 (1.7%) | 50 (86.2%) | 38 (65.5%) |
Oats | 49 | 10 (20.4%) | 0 (0.0%) | 15 (30.6%) | 27 (55.1%) | 28 (57.1%) |
Peanut | 5 | 5 (100.0%) | 0 (0.0%) | 2 (40.0%) | 5 (100.0%) | 2 (40.0%) |
Rice | 4 | 2 (50.0%) | 0 (0.0%) | 4 (100.0%) | 1 (25.0%) | 3 (75.0%) |
Soy | 52 | 33 (63.7%) | 28 (53.9%) | 22 (42.3%) | 47 (90.4%) | 45 (86.5%) |
Walnut | 14 | 7 (50.0%) | 0 (0.0%) | 0 (0.0%) | 12 (85.7%) | 6 (42.9%) |
Other beans | 5 | 5 (100.0%) | 0 (0.0%) | 5 (100.0%) | 3 (60.0%) | 5 (100.0%) |
Mixed nuts | 5 | 5 (100.0%) | 0 (0.0%) | 3 (60.0%) | 5 (100.0%) | 1 (20.0%) |
Mixed beverages | 48 | 21 (43.8%) | 7 (14.6%) | 19 (39.6%) | 39 (81.3%) | 37 (77.1%) |
251 | 124 (49.4%) | 35 (13.9%) | 74 (29.5%) | 199 (79.3%) | 172 (68.5%) |
Type of Plant Basis | n | Trans-Fat-Free | Cholesterol-Free | Sugar-Free | Lactose-Free |
---|---|---|---|---|---|
Almond | 11 | 4 (36.4%) | 4 (36.4%) | 6 (54.5%) | 0 (0.0%) |
Coconut | 58 | 2 (3.4%) | 1 (1.7%) | 15 (25.9%) | 0 (0.0%) |
Oats | 49 | 19 (38.8%) | 22 (44.9%) | 4 (8.2%) | 5 (10.2%) |
Peanut | 5 | 0 (0.0%) | 1 (20.0%) | 1 (20.0%) | 0 (0.0%) |
Rice | 4 | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Soy | 52 | 15 (28.8%) | 21 (40.4%) | 3 (5.8%) | 1 (1.9%) |
Walnut | 14 | 4 (28.6%) | 8 (57.1%) | 6 (42.9%) | 1 (7.1%) |
Other beans | 5 | 1 (20.0%) | 1 (20.0%) | 0 (0.0%) | 0 (0.0%) |
Mixed nuts | 5 | 0 (0.0%) | 2 (40.0%) | 0 (0.0%) | 0 (0.0%) |
Mixed beverages | 48 | 20 (41.7%) | 19 (39.6%) | 4 (8.3%) | 4 (8.3%) |
251 | 65 (25.9%) | 79 (31.5%) | 39 (15.5%) | 11 (4.4%) |
Type of Plant Basis | Labeling Rate of Dietary Fiber (%) n = 61 (24.3%) | Dietary Fiber ≥1.5 g n = 28 (45.9%) | Dietary Fiber ≥3.0 g n = 13 (21.3%) |
---|---|---|---|
Almond | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Coconut | 1 (1.7%) | 0 (0.0%) | 0(0.0%) |
Oats | 33 (67.4%) | 14 (42.4%) | 8 (24.2%) |
Peanut | 0 (0.0%) | 0(0.0%) | 0 (0.0%) |
Rice | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Soy | 10 (19.2%) | 7 (70.0%) | 1 (10.0%) |
Walnut | 1 (7.1%) | 1 (100.0%) | 1 (100.0%) |
Other beans | 1 (20.0%) | 0 (0.0%) | 0 (0.0%) |
Mixed nuts | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Mixed beverages | 15 (31.3%) | 6 (40.0%) | 3 (20.0%) |
Mineral n = 25 (10.0%) | Vitamin n = 12 (4.8%) | ||||
---|---|---|---|---|---|
Mineral | Level/100 mL | n | Vitamin | Level/100 mL | n |
P (n = 2) | ≥52.5 mg | 1 | VE (n = 7) | ≥1.1 mg α-TE a | 5 |
≥105.0 mg | 0 | ≥2.1 mg α-TE | 1 | ||
Mg (n = 2) | ≥22.5 mg | 1 | VB2 (n = 3) | ≥0.1 mg | 3 |
≥52.5 mg | 1 | ≥0.2 mg | 1 | ||
K (n = 2) | ≥150.0 mg | 0 | NIACIN (n = 4) | ≥1.1 mg | 2 |
≥300.0 mg | 0 | ≥2.1 mg | 0 | ||
Ca (n = 20) | ≥60.0 mg | 17 | VB6 (n = 2) | ≥0.1 mg | 2 |
≥120.0 mg | 14 | ≥0.2 mg | 0 | ||
Zn (n = 3) | ≥1.1 mg | 0 | VA (n = 2) | ≥60.0 μg RE b | 1 |
≥2.3 mg | 0 | ≥120.0 μg RE | 1 | ||
Se (n = 1) | ≥3.75 μg | 1 | VD (n = 2) | ≥0.4 μg | 2 |
≥7.5 μg | 1 | ≥0.8 μg | 2 | ||
Fe (n = 1) | ≥1.1 mg | 0 | |||
≥2.3 mg | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cai, Q.; Ji, W. Nutritional Composition of Plant Protein Beverages on China’s Online Market: A Cross-Sectional Analysis. Nutrients 2023, 15, 2701. https://doi.org/10.3390/nu15122701
Zhang J, Cai Q, Ji W. Nutritional Composition of Plant Protein Beverages on China’s Online Market: A Cross-Sectional Analysis. Nutrients. 2023; 15(12):2701. https://doi.org/10.3390/nu15122701
Chicago/Turabian StyleZhang, Jialin, Qiang Cai, and Wei Ji. 2023. "Nutritional Composition of Plant Protein Beverages on China’s Online Market: A Cross-Sectional Analysis" Nutrients 15, no. 12: 2701. https://doi.org/10.3390/nu15122701
APA StyleZhang, J., Cai, Q., & Ji, W. (2023). Nutritional Composition of Plant Protein Beverages on China’s Online Market: A Cross-Sectional Analysis. Nutrients, 15(12), 2701. https://doi.org/10.3390/nu15122701