Muscle Protein Synthesis with a Hybrid Dairy and Plant-Based Protein Blend (P4) Is Equal to Whey Protein in a Murine Ageing Model after Fasting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Protocol
2.3. Protein Simple WesternTM Analysis
2.4. Biochemical Measurements
2.5. Stomach Content
2.6. Statistical Analysis
3. Results
3.1. In Vivo Muscle Protein Synthesis
3.2. Amino Acid Dynamics from Dried Blot Spots
3.3. Amino Acid Concentrations in Plasma at the Endpoint
3.4. Free Amino Acid Concentrations in TA Muscle at the Endpoint
3.5. Stomach Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
L-Amino Acids (µmol∙L−1) | Fasted | Whey | P4 | Casein |
---|---|---|---|---|
Isoleucine | 101.5 ± 5.8 | 199.3 ± 12.8 a | 149.3 ± 4.7 bd | 158.4 ± 6.5 ce |
Leucine | 186.2 ± 13.4 | 330.2 ± 23.2 a | 241.0 ± 7.5 bd | 259.6 ± 11.5 ce |
Valine | 223.0 ± 19.1 | 410.8 ± 23.3 a | 296.7 ± 8.2 bd | 390.8 ± 25.3 cf |
Sum BCAA | 511 ± 37 | 940 ± 58 a | 687 ± 19 bd | 809 ± 43 cef |
Histidine | 69.4 ± 3.5 | 69.3 ± 2.7 | 73.5 ± 2.9 | 76.0 ± 3.3 |
Lysine | 199.3 ± 13.2 | 357.4 ± 20.4 a | 255.4 ± 14.1 d | 283.1 ± 17.0 ce |
Methionine | 50.9 ± 3.9 | 69.9 ± 3.4 a | 66.5 ± 2.6 b | 70.8 ± 4.9 c |
Phenylalanine | 96.3 ± 4.6 | 105.3 ± 3.6 | 101.9 ± 3.6 | 112.1 ± 4.4 c |
Threonine | 153.6 ± 11.7 | 300.0 ± 13.1 a | 220.8 ± 10.6 bd | 201.9 ± 9.3 ce |
Tryptophan | 103.5 ± 6.5 | 130.8 ± 10.1 | 101.8 ± 8.1 d | 122.7 ± 6.9 |
Sum EAA | 1184 ± 60 | 1973 ± 83 a | 1507 ± 39 bd | 1676 ± 55 cef |
Alanine | 246.9 ± 18.1 | 396.3 ± 28.3 a | 338.6 ± 22.1 | 362.8 ± 31.1 c |
Arginine | 63.0 ± 4.8 | 65.5 ± 7.8 | 65.1 ± 6.2 | 57.0 ± 6.9 |
Asparagine | 42.8 ± 2.7 | 51.7 ± 5.9 | 61.7 ± 3.4 b | 56.2 ± 4.2 |
Aspartic acid | 8.3 ± 1.3 | 20.2 ± 6.6 | 7.4 ± 1.0 d | 15.5 ± 4.6 |
Citrulline | 71.6 ± 13.4 | 75.8 ± 8.0 | 69.1 ± 8.1 | 78.7 ± 10.2 |
Glutamine | 360.8 ± 18.9 | 400.4 ± 15.4 | 387.9 ± 23.2 | 443.6 ± 32.0 |
Glutamic acid | 50.9 ± 8.5 | 73.7 ± 15.6 | 44.4 ± 5.5 | 63.0 ± 9.1 |
Glycine | 153.4 ± 15.1 | 146.4 ± 9.2 | 158.9 ± 8.9 | 153.7 ± 10.2 |
Serine | 96.8 ± 6.3 | 117.7 ± 4.4 a | 115.6 ± 3.9 | 123.2 ± 7.7 c |
Taurine | 704.4 ± 82.1 | 794.9 ± 80.7 a | 560.7 ± 51.4 bd | 868.2 ± 121.4 c |
Tyrosine | 67.5 ± 6.2 | 121.4 ± 7.5 | 116.1 ± 7.7 | 150.3 ± 18.0 cf |
Sum NEAA | 1162 ± 53 | 1973 ± 83 | 1365 ± 44 d | 1504 ± 89 cf |
Sum CEAA | 742 ± 31 | 851 ± 18 | 844 ± 23 | 928 ± 56 c |
Total AA | 2346 ± 96 | 3442 ± 115 a | 2872 ± 72 bd | 3180 ± 120 cf |
L-Amino Acids (µmol∙g−1 Dry Weight) | Fasted | Whey | P4 | Casein |
---|---|---|---|---|
Isoleucine | 0.36 ± 0.02 | 0.60 ± 0.04 a | 0.44 ± 0.02 d | 0.47 ± 0.02 ce |
Leucine | 0.60 ± 0.05 | 0.97 ± 0.07 a | 0.71 ± 0.02 d | 0.75 ± 0.04 e |
Valine | 0.81 ± 0.06 | 1.31 ± 0.07 a | 0.96 ± 0.04 d | 1.21 ± 0.08 cf |
Sum BCAA | 1.8 ± 0.1 | 2.9 ± 0.2 a | 2.1 ± 0.1 d | 2.4 ± 0.1 ce |
Histidine | 0.62 ± 0.01 | 0.59 ± 0.02 | 0.60 ± 0.02 | 0.62 ± 0.03 |
Lysine | 1.79 ± 0.12 | 2.73 ± 0.13 a | 2.24 ± 0.15 d | 2.36 ± 0.19 c |
Methionine | 0.17 ± 0.06 | 0.28 ± 0.06 | 0.18 ± 0.05 | 0.21 ± 0.05 |
Phenylalanine | 0.37 ± 0.01 | 0.39 ± 0.02 | 0.36 ± 0.02 | 0.41 ± 0.02 |
Threonine | 1.02 ± 0.06 | 1.62 ± 0.09 a | 1.20 ± 0.06 d | 1.09 ± 0.05 e |
Tryptophan | 15.3 ± 0.5 | 16.0 ± 0.5 | 15.1 ± 0.8 | 15.4 ± 0.5 |
Sum EAA | 21.1 ± 0.5 | 24.5 ± 0.8 a | 21.8 ± 1.1 d | 22.5 ± 0.6 |
Alanine | 8.58 ± 2.14 | 7.84 ± 1.18 | 7.74 ± 1.28 | 7.90 ± 0.96 |
Arginine | 0.83 ± 0.06 | 0.79 ± 0.04 | 0.85 ± 0.06 | 0.84 ± 0.04 |
Asparagine | 0.36 ± 0.03 | 0.40 ± 0.01 | 0.38 ± 0.02 | 0.39 ± 0.03 |
Aspartic acid | 0.87 ± 0.09 | 1.23 ± 0.09 a | 1.10 ± 0.09 | 1.26 ± 0.09 c |
Citrulline | 0.45 ± 0.05 | 0.41 ± 0.04 | 0.38 ± 0.05 | 0.39 ± 0.04 |
Glutamine | 5.26 ± 0.42 | 5.85 ± 0.29 | 5.54 ± 0.12 | 5.74 ± 0.30 |
Glutamic acid | 4.44 ± 0.41 | 5.47 ± 0.25 | 4.83 ± 0.30 | 4.56 ± 0.23 |
Glycine | 3.53 ± 0.11 | 3.41 ± 0.11 | 3.43 ± 0.12 | 3.43 ± 0.13 |
Serine | 1.02 ± 0.07 | 1.02 ± 0.07 | 0.94 ± 0.04 | 0.99 ± 0.05 |
Tyrosine | 0.38 ± 0.03 | 0.62 ± 0.03 a | 0.56 ± 0.04 | 0.73 ± 0.07 cf |
Sum NEAA | 25.7 ± 2.2 | 27.0 ± 1.4 | 25.8 ± 1.3 | 26.2 ± 0.7 |
Sum CEAA | 11.0 ± 0.4 | 11.7 ± 0.4 | 11.3 ± 0.3 | 11.7 ± 0.5 |
Total AA | 46.8 ± 2.62 | 51.5 ± 1.9 | 45.6 ± 2.3 | 48.7 ± 1.2 |
References
- Beaudart, C.; Dawson, A.; Shaw, S.C.; Harvey, N.C.; Kanis, J.A.; Binkley, N.; Reginster, J.Y.; Chapurlat, R.; Chan, D.C.; Bruyere, O.; et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: Systematic review. Osteoporos. Int. 2017, 28, 1817–1833. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Landi, F.; Topinkova, E.; Michel, J.P. Understanding sarcopenia as a geriatric syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.E.; Stephenson, K.W.; King, J.G.; Knight, K.R.; Marshall, T.L.; Scott, W.B. Sarcopenia--mechanisms and treatments. J. Geriatr. Phys. Ther. 2009, 32, 39–45. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Anker, S.D.; Argiles, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Chanet, A.; Verlaan, S.; Salles, J.; Giraudet, C.; Patrac, V.; Pidou, V.; Pouyet, C.; Hafnaoui, N.; Blot, A.; Cano, N.; et al. Supplementing Breakfast with a Vitamin D and Leucine-Enriched Whey Protein Medical Nutrition Drink Enhances Postprandial Muscle Protein Synthesis and Muscle Mass in Healthy Older Men. J. Nutr. 2017, 147, 2262–2271. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, S.; Burd, N.A.; van Loon, L.J. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef]
- Atherton, P.J.; Smith, K.; Etheridge, T.; Rankin, D.; Rennie, M.J. Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 2010, 38, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Klebach, M.; Visser, M.; Hofman, Z. Amino Acid Availability of a Dairy and Vegetable Protein Blend Compared to Single Casein, Whey, Soy, and Pea Proteins: A Double-Blind, Cross-Over Trial. Nutrients 2019, 11, 2613. [Google Scholar] [CrossRef]
- Deane, C.S.; Bass, J.J.; Crossland, H.; Phillips, B.E.; Atherton, P.J. Animal, Plant, Collagen and Blended Dietary Proteins: Effects on Musculoskeletal Outcomes. Nutrients 2020, 12, 2670. [Google Scholar] [CrossRef]
- Liu, A.; Ma, Y.; Zhu, Z. Protective effect of selenoarginine against oxidative stress in D-galactose-induced aging mice. Biosci. Biotechnol. Biochem. 2009, 73, 1461–1464. [Google Scholar] [CrossRef]
- Baehr, L.M.; West, D.W.; Marcotte, G.; Marshall, A.G.; De Sousa, L.G.; Baar, K.; Bodine, S.C. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis. Aging 2016, 8, 127–146. [Google Scholar] [CrossRef]
- Larsson, L. Experimental animal models of muscle wasting in intensive care unit patients. Crit. Care Med. 2007, 35, S484–S487. [Google Scholar] [CrossRef] [PubMed]
- Pulido, L.; Burgos, D.; Garcia Morato, J.; Luna, C.M. Does animal model on ventilator-associated pneumonia reflect physiopathology of sepsis mechanisms in humans? Ann. Transl. Med. 2017, 5, 452. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.; Nagel, J.; Dijk, F.J.; Salles, J.; Verlaan, S.; Walrand, S.; van Norren, K.; Luiking, Y. Sarcopenia in older mice is characterized by a decreased anabolic response to a protein meal. Arch. Gerontol. Geriatr. 2017, 69, 134–143. [Google Scholar] [CrossRef]
- Dijk, F.J.; van Dijk, M.; Walrand, S.; van Loon, L.J.C.; van Norren, K.; Luiking, Y.C. Differential effects of leucine and leucine-enriched whey protein on skeletal muscle protein synthesis in aged mice. Clin. Nutr. ESPEN 2018, 24, 127–133. [Google Scholar] [CrossRef]
- Goodman, C.A.; Mabrey, D.M.; Frey, J.W.; Miu, M.H.; Schmidt, E.K.; Pierre, P.; Hornberger, T.A. Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J. 2011, 25, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.A.; Hornberger, T.A. Measuring protein synthesis with SUnSET: A valid alternative to traditional techniques? Exerc. Sport Sci. Rev. 2013, 41, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef]
- Van Dijk, M.; Dijk, F.J.; Bunschoten, A.; van Dartel, D.A.; van Norren, K.; Walrand, S.; Jourdan, M.; Verlaan, S.; Luiking, Y. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice. Oncotarget 2016, 7, 17338–17355. [Google Scholar] [CrossRef]
- Abdulla, H.; Smith, K.; Atherton, P.J.; Idris, I. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: A systematic review and meta-analysis. Diabetologia 2016, 59, 44–55. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Alway, S.E.; Bennett, B.T.; Wilson, J.C.; Sperringer, J.; Mohamed, J.S.; Edens, N.K.; Pereira, S.L. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. J. Appl. Physiol. 2015, 118, 319–330. [Google Scholar] [CrossRef]
- Babu, S.V.; Shareef, M.M.; Shetty, A.P.; Shetty, K.T. HPLC method for amino acids profile in biological fluids and inborn metabolic disorders of aminoacidopathies. Indian J. Clin. Biochem. 2002, 17, 7–26. [Google Scholar] [CrossRef] [PubMed]
- van den Braak, C.C.; Klebach, M.; Abrahamse, E.; Minor, M.; Hofman, Z.; Knol, J.; Ludwig, T. A novel protein mixture containing vegetable proteins renders enteral nutrition products non-coagulating after in vitro gastric digestion. Clin. Nutr. 2013, 32, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Borack, M.S.; Reidy, P.T.; Husaini, S.H.; Markofski, M.M.; Deer, R.R.; Richison, A.B.; Lambert, B.S.; Cope, M.B.; Mukherjea, R.; Jennings, K.; et al. Soy-Dairy Protein Blend or Whey Protein Isolate Ingestion Induces Similar Postexercise Muscle Mechanistic Target of Rapamycin Complex 1 Signaling and Protein Synthesis Responses in Older Men. J. Nutr. 2016, 146, 2468–2475. [Google Scholar] [CrossRef]
- Butteiger, D.N.; Cope, M.; Liu, P.; Mukherjea, R.; Volpi, E.; Rasmussen, B.B.; Krul, E.S. A soy, whey and caseinate blend extends postprandial skeletal muscle protein synthesis in rats. Clin. Nutr. 2013, 32, 585–591. [Google Scholar] [CrossRef]
- Pinckaers, P.J.M.; Kouw, I.W.K.; Gorissen, S.H.M.; Houben, L.H.P.; Senden, J.M.; Wodzig, W.; de Groot, L.; Verdijk, L.B.; Snijders, T.; van Loon, L.J.C. The Muscle Protein Synthetic Response to the Ingestion of a Plant-Derived Protein Blend Does Not Differ from an Equivalent Amount of Milk Protein in Healthy Young Males. J. Nutr. 2023, 152, 2734–2743. [Google Scholar] [CrossRef]
- Pinckaers, P.J.M.; Kouw, I.W.K.; Hendriks, F.K.; van Kranenburg, J.M.X.; de Groot, L.; Verdijk, L.B.; Snijders, T.; van Loon, L.J.C. No differences in muscle protein synthesis rates following ingestion of wheat protein, milk protein, and their protein blend in healthy, young males. Br. J. Nutr. 2021, 126, 1832–1842. [Google Scholar] [CrossRef]
- Kanda, A.; Nakayama, K.; Sanbongi, C.; Nagata, M.; Ikegami, S.; Itoh, H. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise. Nutrients 2016, 8, 339. [Google Scholar] [CrossRef]
- Yang, Y.; Churchward-Venne, T.A.; Burd, N.A.; Breen, L.; Tarnopolsky, M.A.; Phillips, S.M. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr. Metab. 2012, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Tee, A.R. The Target of Rapamycin and Mechanisms of Cell Growth. Int. J. Mol. Sci. 2018, 19, 880. [Google Scholar] [CrossRef]
- Yao, Y.; Jones, E.; Inoki, K. Lysosomal Regulation of mTORC1 by Amino Acids in Mammalian Cells. Biomolecules 2017, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Jonker, R.; Engelen, M.P.; Deutz, N.E. Role of specific dietary amino acids in clinical conditions. Br. J. Nutr. 2012, 108 (Suppl. S2), S139–S148. [Google Scholar] [CrossRef] [PubMed]
- Luiking, Y.C.; Poeze, M.; Ramsay, G.; Deutz, N.E. The role of arginine in infection and sepsis. J. Parenter. Enter. Nutr. 2005, 29, S70–S74. [Google Scholar] [CrossRef]
- Ten Have, G.A.; Engelen, M.P.; Luiking, Y.C.; Deutz, N.E. Absorption kinetics of amino acids, peptides, and intact proteins. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, S23–S36. [Google Scholar] [CrossRef]
Whey | P4 | Casein | |
---|---|---|---|
Raw material and protein content of gavage (mg/0.5 mL) | |||
Whey (raw material) | 83.9 | 28.6 | |
Pea (raw material) | 15.9 | ||
Soy (raw material) | 14.7 | ||
Casein (raw material) | 19.0 | 75.8 | |
Total protein | 69.6 | 67.8 | 67.6 |
Measured L-amino acid concentration (mg∙g−1 gavage) | |||
Isoleucine | 4.20 ± 0.00 | 3.15 ± 0.21 | 3.15 ± 0.07 |
Leucine | 7.15 ± 0.21 | 5.7 ± 0.57 | 6.15 ± 0.07 |
Valine | 3.85 ± 0.07 | 3.35 ± 0.35 | 4.2 ± 0.00 |
Sum BCAA | 15.2 ± 0.28 | 12.20 ± 1.13 | 13.5 ± 0.00 |
Histidine | 1.15 ± 0.07 | 1.30 ± 0.14 | 1.70 ± 0.00 |
Lysine | 6.15 ± 0.35 | 4.75 ± 0.49 | 5.05 ± 0.07 |
Methionine | 1.40 ± 0.14 | 1.15 ± 0.21 | 1.80 ± 0.00 |
Phenylalanine | 2.15 ± 0.07 | 2.80 ± 0.28 | 3.40 ± 0.00 |
Threonine | 5.15 ± 0.35 | 3.25 ± 0.49 | 2.85 ± 0.21 |
Sum EAA | 31.20 ± 1.27 | 25.45 ± 2.62 | 28.30 ± 0.42 |
Alanine | 3.65 ± 0.21 | 2.75 ± 0.35 | 2.05 ± 0.07 |
Arginine | 1.95 ± 0.35 | 3.10 ± 0.42 | 2.45 ± 0.07 |
Asparagine + Aspartic acid | 8.00 ± 0.42 | 6.55 ± 0.78 | 4.85 ± 0.21 |
Glutamine + Glutamic acid | 12.55 ± 0.49 | 11.95 ± 1.20 | 14.90 ± 0.42 |
Glycine | 1.25 ± 0.07 | 1.70 ± 0.14 | 1.20 ± 0.00 |
Serine | 3.85 ± 0.21 | 3.55 ± 0.35 | 3.95 ± 0.21 |
Tyrosine | 2.10 ± 0.14 | 2.50 ± 0.28 | 3.80 ± 0.14 |
Sum NEAA | 33.35 ± 1.91 | 32.10 ± 3.54 | 33.20 ± 1.13 |
Total AA | 64.55 ± 3.18 | 57.55 ± 6.15 | 61.5 ± 1.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dijk, F.J.; Hofman, Z.; Luiking, Y.C.; Furber, M.J.W.; Roberts, J.D.; van Helvoort, A.; van Dijk, M. Muscle Protein Synthesis with a Hybrid Dairy and Plant-Based Protein Blend (P4) Is Equal to Whey Protein in a Murine Ageing Model after Fasting. Nutrients 2023, 15, 2569. https://doi.org/10.3390/nu15112569
Dijk FJ, Hofman Z, Luiking YC, Furber MJW, Roberts JD, van Helvoort A, van Dijk M. Muscle Protein Synthesis with a Hybrid Dairy and Plant-Based Protein Blend (P4) Is Equal to Whey Protein in a Murine Ageing Model after Fasting. Nutrients. 2023; 15(11):2569. https://doi.org/10.3390/nu15112569
Chicago/Turabian StyleDijk, Francina J., Zandrie Hofman, Yvette C. Luiking, Matthew J. W. Furber, Justin D. Roberts, Ardy van Helvoort, and Miriam van Dijk. 2023. "Muscle Protein Synthesis with a Hybrid Dairy and Plant-Based Protein Blend (P4) Is Equal to Whey Protein in a Murine Ageing Model after Fasting" Nutrients 15, no. 11: 2569. https://doi.org/10.3390/nu15112569
APA StyleDijk, F. J., Hofman, Z., Luiking, Y. C., Furber, M. J. W., Roberts, J. D., van Helvoort, A., & van Dijk, M. (2023). Muscle Protein Synthesis with a Hybrid Dairy and Plant-Based Protein Blend (P4) Is Equal to Whey Protein in a Murine Ageing Model after Fasting. Nutrients, 15(11), 2569. https://doi.org/10.3390/nu15112569