Association between Early Childhood Vitamin D Status and Age 6-Year Lung Function among Children with a History of Severe Bronchiolitis in Infancy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Data Collection
2.3. Exposure and Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Age 3 Serum 25(OH)D Level and Age 6 Lung Function
3.2.1. Associations across Quintiles of Serum 25(OH)D
3.2.2. Associations for Continuous Serum 25(OH)D
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, J.; Muntner, P.; Kaskel, F.J.; Hailpern, S.M.; Melamed, M.L. Prevalence and Associations of 25-Hydroxyvitamin D Deficiency in US Children: NHANES 2001–2004. Pediatrics 2009, 124, e362–e370. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.M.; Feldman, H.A.; Sinclair, L.; Williams, A.L.; Kleinman, P.K.; Perez-Rossello, J.; Cox, J.E. Prevalence of Vitamin D Deficiency among Healthy Infants and Toddlers. Arch. Pediatr. Adolesc. Med. 2008, 162, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.L.; Greer, F.R. American Academy of Pediatrics Section on Breastfeeding; American Academy of Pediatrics Committee on Nutrition Prevention of Rickets and Vitamin D Deficiency in Infants, Children, and Adolescents. Pediatrics 2008, 122, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- Zosky, G.R.; Berry, L.J.; Elliot, J.G.; James, A.L.; Gorman, S.; Hart, P.H. Vitamin D Deficiency Causes Deficits in Lung Function and Alters Lung Structure. Am. J. Respir. Crit. Care Med. 2011, 183, 1336–1343. [Google Scholar] [CrossRef]
- Foong, R.E.; Shaw, N.C.; Berry, L.J.; Hart, P.H.; Gorman, S.; Zosky, G.R. Vitamin D Deficiency Causes Airway Hyperresponsiveness, Increases Airway Smooth Muscle Mass, and Reduces TGF-β Expression in the Lungs of Female BALB/c Mice. Physiol. Rep. 2014, 2, e00276. [Google Scholar] [CrossRef]
- Cremers, E.; Thijs, C.; Penders, J.; Jansen, E.; Mommers, M. Maternal and Child’s Vitamin D Supplement Use and Vitamin D Level in Relation to Childhood Lung Function: The KOALA Birth Cohort Study. Thorax 2011, 66, 474–480. [Google Scholar] [CrossRef]
- Yao, T.-C.; Tu, Y.-L.; Chang, S.-W.; Tsai, H.-J.; Gu, P.-W.; Ning, H.-C.; Hua, M.-C.; Liao, S.-L.; Tsai, M.-H.; Chiu, C.-Y.; et al. Serum 25-Hydroxyvitamin D Levels in Relation to Lung Function and Exhaled Nitric Oxide in Children. J. Pediatr. 2014, 165, 1098–1103.e1. [Google Scholar] [CrossRef]
- Han, Y.-Y.; Forno, E.; Bacharier, L.B.; Phipatanakul, W.; Guilbert, T.W.; Cabana, M.D.; Ross, K.; Blatter, J.; Rosser, F.J.; Durrani, S.; et al. Vitamin D Supplementation, Lung Function, and Asthma Control in Children with Asthma and Low Vitamin D Levels. Eur. Respir. J. 2021, 58, 2100989. [Google Scholar] [CrossRef]
- Behluli, E.; Spahiu, L.; Ismaili-Jaha, V.; Neziri, B.; Temaj, G. Correlation between Level of Vitamin D in Serum and Value of Lung Function in Children Diagnosed with Bronchial Asthma. Folia. Med. 2022, 64, 649–654. [Google Scholar] [CrossRef]
- Swangtrakul, N.; Manuyakorn, W.; Mahachoklertwattana, P.; Kiewngam, P.; Sasisakulporn, C.; Jotikasthirapa, W.; Kamchaisatian, W.; Benjaponpitak, S. Effect of Vitamin D on Lung Function Assessed by Forced Oscillation Technique in Asthmatic Children with Vitamin D Deficiency: A Randomized Double-Blind Placebo-Controlled Trial. Asian Pac. J. Allergy Immunol. 2022, 40, 22–30. [Google Scholar] [CrossRef]
- Loukou, I.; Moustaki, M.; Sardeli, O.; Plyta, M.; Douros, K. Association of Vitamin D Status with Lung Function Measurements in Children and Adolescents with Cystic Fibrosis. Pediatr. Pulmonol. 2020, 55, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Fujiogi, M.; Goto, T.; Yasunaga, H.; Fujishiro, J.; Mansbach, J.M.; Camargo, C.A.; Hasegawa, K. Trends in Bronchiolitis Hospitalizations in the United States: 2000–2016. Pediatrics 2019, 144, e20192614. [Google Scholar] [CrossRef] [PubMed]
- Bush, A. Impact of Early Life Exposures on Respiratory Disease. Paediatr. Respir. Rev. 2021, 40, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Ralston, S.L.; Lieberthal, A.S.; Meissner, H.C.; Alverson, B.K.; Baley, J.E.; Gadomski, A.M.; Johnson, D.W.; Light, M.J.; Maraqa, N.F.; Mendonca, E.A.; et al. Clinical Practice Guideline: The Diagnosis, Management, and Prevention of Bronchiolitis. Pediatrics 2014, 134, e1474–e1502. [Google Scholar] [CrossRef] [PubMed]
- van den Ouweland, J.M.W.; Vogeser, M.; Bächer, S. Vitamin D and Metabolites Measurement by Tandem Mass Spectrometry. Rev. Endocr. Metab. Disord. 2013, 14, 159–184. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of Spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Black, P.N.; Scragg, R. Relationship between Serum 25-Hydroxyvitamin d and Pulmonary Function in the Third National Health and Nutrition Examination Survey. Chest 2005, 128, 3792–3798. [Google Scholar] [CrossRef]
- Shaheen, S.O.; Jameson, K.A.; Robinson, S.M.; Boucher, B.J.; Syddall, H.E.; Sayer, A.A.; Cooper, C.; Holloway, J.W.; Dennison, E.M. Relationship of Vitamin D Status to Adult Lung Function and COPD. Thorax 2011, 66, 692–698. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-Ethnic Reference Values for Spirometry for the 3-95-Yr Age Range: The Global Lung Function 2012 Equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Bhakta, N.R.; Bime, C.; Kaminsky, D.A.; McCormack, M.C.; Thakur, N.; Stanojevic, S.; Baugh, A.D.; Braun, L.; Lovinsky-Desir, S.; Adamson, R.; et al. Race and Ethnicity in Pulmonary Function Test Interpretation: An Official American Thoracic Society Statement. Am. J. Respir. Crit. Care Med. 2023, 207, 978–995. [Google Scholar] [CrossRef] [PubMed]
- Sachs, M.C.; Shoben, A.; Levin, G.P.; Robinson-Cohen, C.; Hoofnagle, A.N.; Swords-Jenny, N.; Ix, J.H.; Budoff, M.; Lutsey, P.L.; Siscovick, D.S.; et al. Estimating Mean Annual 25-Hydroxyvitamin D Concentrations from Single Measurements: The Multi-Ethnic Study of Atherosclerosis1,2,3. Am. J. Clin. Nutr. 2013, 97, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Flexeder, C.; Thiering, E.; Koletzko, S.; Berdel, D.; Lehmann, I.; von Berg, A.; Hoffmann, B.; Bauer, C.-P.; Heinrich, J.; Schulz, H. Higher Serum 25(OH)D Concentrations Are Associated with Improved FEV1 and FVC in Adolescence. Eur. Respir. J. 2017, 49, 1601804. [Google Scholar] [CrossRef] [PubMed]
- Sluyter, J.D.; Camargo, C.A.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Khaw, K.-T.; Scragg, R. Effect of Monthly, High-Dose, Long-Term Vitamin D on Lung Function: A Randomized Controlled Trial. Nutrients 2017, 9, 1353. [Google Scholar] [CrossRef] [PubMed]
- Schittny, J.C. Development of the Lung. Cell Tissue Res. 2017, 367, 427–444. [Google Scholar] [CrossRef]
- Thomas, E.T.; Guppy, M.; Straus, S.E.; Bell, K.J.L.; Glasziou, P. Rate of Normal Lung Function Decline in Ageing Adults: A Systematic Review of Prospective Cohort Studies. BMJ Open 2019, 9, e028150. [Google Scholar] [CrossRef] [PubMed]
- Makrinioti, H.; Hasegawa, K.; Lakoumentas, J.; Xepapadaki, P.; Tsolia, M.; Castro-Rodriguez, J.A.; Feleszko, W.; Jartti, T.; Johnston, S.L.; Bush, A.; et al. The Role of Respiratory Syncytial Virus- and Rhinovirus-Induced Bronchiolitis in Recurrent Wheeze and Asthma-A Systematic Review and Meta-Analysis. Pediatr. Allergy Immunol. 2022, 33, e13741. [Google Scholar] [CrossRef]
- Chauss, D.; Freiwald, T.; McGregor, R.; Yan, B.; Wang, L.; Nova-Lamperti, E.; Kumar, D.; Zhang, Z.; Teague, H.; West, E.E.; et al. Autocrine Vitamin D Signaling Switches off Pro-Inflammatory Programs of TH1 Cells. Nat. Immunol. 2022, 23, 62–74. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Camargo, C.A.; Sluyter, J.D.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.A.; Borzutzky, A.; Damsgaard, C.T.; et al. Vitamin D Supplementation to Prevent Acute Respiratory Infections: A Systematic Review and Meta-Analysis of Aggregate Data from Randomised Controlled Trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Griffiths, C.J.; Camargo, C.A.; Kerley, C.P.; Jensen, M.E.; Mauger, D.; Stelmach, I.; Urashima, M.; et al. Vitamin D Supplementation to Prevent Asthma Exacerbations: A Systematic Review and Meta-Analysis of Individual Participant Data. Lancet Respir. Med. 2017, 5, 881–890. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Mathyssen, C.; Rafiq, R.; de Jongh, R.T.; Camargo, C.A.; Griffiths, C.J.; Janssens, W.; Martineau, A.R. Vitamin D to Prevent Exacerbations of COPD: Systematic Review and Meta-Analysis of Individual Participant Data from Randomised Controlled Trials. Thorax 2019, 74, 337–345. [Google Scholar] [CrossRef] [PubMed]
Q1 (n = 73) (8.4–20.1 ng/mL) | Q2 (n = 73) (20.2–24.2 ng/mL) | Q3 (n = 72) (24.3–27.7 ng/mL) | Q4 (n = 73) (27.8–31.8 ng/mL) | Q5 (n = 72) (31.9–53.0 ng/mL) | p-Value | Total (n = 363) | |
---|---|---|---|---|---|---|---|
Serum 25(OH)D in ng/mL, median (IQR) | 17.8 (16.0–19.0) | 22.5 (21.5–23.5) | 26.2 (25.2–26.9) | 29.5 (28.6–30.7) | 35.7 (33.5–39.7) | --- | 26.5 (21.8–31.2) |
Age at spirometry in years, mean (SD) | 6.9 (0.7) | 6.9 (0.6) | 7.1 (0.9) | 6.9 (0.6) | 6.9 (0.7) | 0.06 * | 6.9 (0.71) |
Male sex, n (%) | 35 (53) | 50 (69) | 39 (58) | 52 (66) | 49 (63) | 0.35 † | 225 (62) |
Race/ethnicity, n (%) | <0.001 † | ||||||
Non-Hispanic White | 11 (17) | 21 (29) | 34 (51) | 44 (56) | 56 (72) | 166 (46) | |
Non-Hispanic Black | 31 (47) | 22 (30) | 14 (21) | 12 (15) | 6 (8) | 85 (23) | |
Hispanic | 23 (35) | 30 (41) | 15 (22) | 19 (24) | 15 (19) | 102 (28) | |
Other | 1 (2) | 0 | 4 (6) | 4 (5) | 1 (1) | 10 (3) | |
Yearly household income, n = 262 (%) | 0.01 † | ||||||
≥$80,000 | 8 (20) | 10 (22) | 14 (27) | 31 (49) | 25 (41) | 88 (34) | |
$40,000–$79,999 | 10 (24) | 13 (29) | 16 (31) | 10 (16) | 18 (30) | 67 (26) | |
<$40,000 | 23 (56) | 22 (49) | 22 (42) | 22 (35) | 18 (30) | 107 (41) | |
Premature birth (<37 weeks), n (%) | 14 (21) | 16 (22) | 8 (12) | 14 (18) | 19 (24) | 0.39 † | 71 (20) |
Secondhand smoke exposure, n (%) | 11 (17) | 11 (15) | 8 (12) | 7 (9) | 10 (13) | 0.78 † | 47 (13) |
Q1 (n = 73) (8.4–20.1 ng/mL) | Q2 (n = 73) (20.2–24.2 ng/mL) | Q3 (n = 72) (24.3–27.7 ng/mL) | Q4 (n = 73) (27.8–31.8 ng/mL) | Q5 (n = 72) (31.9–53.0 ng/mL) | Total (n = 363) | |
---|---|---|---|---|---|---|
FEV1 (L) | 1.3 (1.1, 1.5) | 1.4 (1.2, 1.5) | 1.3 (1.1, 1.6) | 1.3 (1.2, 1.5) | 1.5 (1.3, 1.6) | 1.4 (1.2, 1.6) |
FEV1 percent predicted | 98 (88, 113) | 102 (91, 111) | 106 (94, 118) | 105 (97, 112) | 113 (102, 117) | 106 (94, 115) |
FVC (L) | 1.5 (1.3, 1.7) | 1.6 (1.3, 1.8) | 1.6 (1.4, 1.8) | 1.6 (1.4, 1.8) | 1.7 (1.5, 1.8) | 1.6 (1.4, 1.8) |
FVC percent predicted | 104 (89, 115) | 104 (90, 120) | 109 (100, 117) | 110 (102, 119) | 115 (106, 123) | 109 (98, 119) |
FEV1/FVC | 0.87 (0.84, 0.91) | 0.87 (0.82, 0.93) | 0.87 (0.81, 0.91) | 0.86 (0.81, 0.91) | 0.88 (0.84, 0.92) | 0.87 (0.83, 0.91) |
FEV1 percent predicted/FVC percent predicted | 96 (92, 100) | 95 (92, 101) | 96 (92, 100) | 94 (90, 99) | 98 (92, 101) | 96 (92, 100) |
FEV1 Percent Predicted | FVC Percent Predicted | FEV1 Percent Predicted/FVC Percent Predicted | ||||
---|---|---|---|---|---|---|
Serum 25(OH)D Quintiles | Beta Coefficient (95% CI) | p-Value | Beta Coefficient (95% CI) | p-Value | Beta Coefficient (95% CI) | p-Value |
Q5 (31.9–53.0 ng/mL) | Reference | |||||
Q4 (27.8–31.8 ng/mL) | −6.3 (−11.2, −1.5) | 0.01 | −4.6 (−9.6, 0.5) | 0.08 | −1.7 (−4.1, 0.7) | 0.15 |
Q3 (24.3–27.7 ng/mL) | −5.7 (−10.8, −0.6) | 0.03 | −5.5 (−10.8, −0.2) | 0.04 | −0.5 (−3.0, 1.9) | 0.67 |
Q2 (20.2–24.2 ng/mL) | −9.2 (−14.1, −4.2) | <0.001 | −9.0 (−14.2, −3.8) | 0.001 | −0.3 (−2.7, 2.2) | 0.84 |
Q1 (8.4–20.1 ng/mL) | −11.0 (−16.1, −6.0) | <0.001 | −11.8 (−17.1, −6.5) | <0.001 | −0.01 (−2.5, 2.5) | 0.99 |
FEV1 Percent Predicted | FVC Percent Predicted | FEV1 Percent Predicted/FVC Percent Predicted | ||||
---|---|---|---|---|---|---|
Beta Coefficient (95% CI) | p-Value | Beta Coefficient (95% CI) | p-Value | Beta Coefficient (95% CI) | p-Value | |
Serum 25(OH)D | ||||||
Q5 | Reference | |||||
Q4 | −5.3 (−9.9, −0.6) | 0.03 | −4.4 (−9.4, 0.7) | 0.09 | −0.9 (−3.6, 1.9) | 0.55 |
Q3 | −3.6 (−8.5, 1.4) | 0.16 | −4.3 (−9.7, 1.0) | 0.11 | 0.4 (−2.6, 3.4) | 0.79 |
Q2 | −5.1 (−10.4, 0.1) | 0.06 | −5.3 (−11.0, 0.4) | 0.07 | 0.04 (−3.1, 3.2) | 0.98 |
Q1 | −6.2(−11.7, −0.7) | 0.03 | −6.8 (−12.8, −0.9) | 0.03 | 0.4 (−2.9, 3.7) | 0.83 |
Race/ethnicity | ||||||
White | Reference | |||||
Black | −13.5 (−18.3, −8.8) | <0.001 | −14.0 (−19.1, −8.8) | <0.001 | −0.7 (−3.5, 2.2) | 0.66 |
Hispanic | 1.0 (−3.8, 5.8) | 0.68 | 1.8 (−3.4, 6.9) | 0.50 | −0.5 (−3.3, 2.4) | 0.74 |
Other | −10.0 (−19.5, −0.6) | 0.04 | −8.5 (−18.7, 1.7) | 0.10 | −1.9 (−7.6, 3.7) | 0.50 |
Household income | ||||||
≥$80,000 | Reference | |||||
$40,000–$79,999 | −4.4 (−8.8, −0.1) | 0.047 | −2.7 (−7.4, 2.0) | 0.27 | −1.8 (−4.4, 0.8) | 0.18 |
<$40,000 | −2.0 (−6.5, 2.5) | 0.39 | −0.9 (−5.8, 4.0) | 0.71 | −0.9 (−3.6, 1.8) | 0.51 |
Prematurity | ||||||
No | Reference | |||||
Yes | −0.7 (−4.8, 3.5) | 0.75 | −0.01 (−4.5, 4.5) | 0.99 | −0.6 (−3.0, 1.9) | 0.65 |
Passive smoke exposure | ||||||
No | Reference | |||||
Yes | −7.9 (−12.9, −3.0) | 0.002 | −9.3 (−14.6, −3.9) | 0.001 | 1.0 (−1.9, 4.0) | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doumat, G.; Mehta, G.D.; Mansbach, J.M.; Hasegawa, K.; Camargo, C.A., Jr. Association between Early Childhood Vitamin D Status and Age 6-Year Lung Function among Children with a History of Severe Bronchiolitis in Infancy. Nutrients 2023, 15, 2379. https://doi.org/10.3390/nu15102379
Doumat G, Mehta GD, Mansbach JM, Hasegawa K, Camargo CA Jr. Association between Early Childhood Vitamin D Status and Age 6-Year Lung Function among Children with a History of Severe Bronchiolitis in Infancy. Nutrients. 2023; 15(10):2379. https://doi.org/10.3390/nu15102379
Chicago/Turabian StyleDoumat, George, Geneva D. Mehta, Jonathan M. Mansbach, Kohei Hasegawa, and Carlos A. Camargo, Jr. 2023. "Association between Early Childhood Vitamin D Status and Age 6-Year Lung Function among Children with a History of Severe Bronchiolitis in Infancy" Nutrients 15, no. 10: 2379. https://doi.org/10.3390/nu15102379
APA StyleDoumat, G., Mehta, G. D., Mansbach, J. M., Hasegawa, K., & Camargo, C. A., Jr. (2023). Association between Early Childhood Vitamin D Status and Age 6-Year Lung Function among Children with a History of Severe Bronchiolitis in Infancy. Nutrients, 15(10), 2379. https://doi.org/10.3390/nu15102379