The ALINFA Intervention Improves Diet Quality and Nutritional Status in Children 6 to 12 Years Old
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Description of the Intervention
2.3. Measurements
2.3.1. Dietary Assessment
2.3.2. Anthropometric, Blood Pressure and Body Composition
2.3.3. Biochemical Parameters
2.3.4. Other Questionnaires
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plaza-Díaz, J.; Molina-Montes, E.; Soto-Méndez, M.J.; Madrigal, C.; Hernández-Ruiz, Á.; Valero, T.; Villoslada, F.L.; Leis, R.; de Victoria, E.M.; Moreno, J.M.; et al. Clustering of Dietary Patterns and Lifestyles among Spanish Children in the EsNuPI Study. Nutrients 2020, 12, 2536. [Google Scholar] [CrossRef] [PubMed]
- Brennan, S.F.; Lavelle, F.; Moore, S.E.; Dean, M.; McKinley, M.C.; McCole, P.; Hunter, R.F.; Dunne, L.; O’Connell, N.E.; Cardwell, C.R.; et al. Food Environment Intervention Improves Food Knowledge, Wellbeing and Dietary Habits in Primary School Children: Project Daire, a Randomised-Controlled, Factorial Design Cluster Trial. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Copenhaver, M. Long-Term Effects of Childhood Risk Factors on Cardiovascular Health during Adulthood. Clin. Med. Rev. Vasc. Health 2015, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Longitudinal Changes in Diet from Childhood into Adulthood with Respect to Risk of Cardiovascular Diseases: The Cardiovascular Risk in Young Finns Study. Eur. J. Clin. Nutr. 2004, 58, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention School Health Guidelines to Promote Healthy Eating and Physical Activity. Morb. Mortal. Wkly. Rep. 2011, 60, 1–76.
- Sahoo, K.; Sahoo, B.; Bhadoria, A.; Choudhury, A.; Sofi, N.; Kumar, R. Childhood Obesity: Causes and Consequences. J. Family Med. Prim. Care 2015, 4, 187–192. [Google Scholar] [CrossRef]
- di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.P.; Bentham, J. The Epidemiological Burden of Obesity in Childhood: A Worldwide Epidemic Requiring Urgent Action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef]
- Scaglioni, S.; de Cosmi, V.; Ciappolino, V.; Parazzini, F.; Brambilla, P.; Agostoni, C. Factors Influencing Children’s Eating Behaviours. Nutrients 2018, 10, 706. [Google Scholar] [CrossRef]
- Daniel, C. Economic Constraints on Taste Formation and the True Cost of Healthy Eating. Soc. Sci. Med. 2016, 148, 34. [Google Scholar] [CrossRef]
- Adair, L.; Popkin, B. Are Child Eating Patterns Being Transformed Globally? Obes. Res. 2005, 13, 1281–1299. [Google Scholar] [CrossRef]
- Moreno, L.; Rodriguez, G.; Fleta, J.; Bueno-Lozano, M.; Lazaro, A.; Bueno, G. Trends of Dietary Habits in Adolescents. Crit. Rev. Food Sci. Nutr. 2010, 50, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Rosi, A.; Paolella, G.; Biasini, B.; Scazzina, F. Dietary Habits of Adolescents Living in North America, Europe or Oceania: A Review on Fruit, Vegetable and Legume Consumption, Sodium Intake, and Adherence to the Mediterranean Diet. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 544–560. [Google Scholar] [CrossRef]
- Damsgaard, C.T.; Dalskov, S.M.; Laursen, R.P.; Ritz, C.; Hjorth, M.F.; Lauritzen, L.; Sørensen, L.B.; Petersen, R.A.; Andersen, M.R.; Stender, S.; et al. Provision of Healthy School Meals Does Not Affect the Metabolic Syndrome Score in 8-11-Year-Old Children, but Reduces Cardiometabolic Risk Markers despite Increasing Waist Circumference. Br. J. Nutr. 2014, 112, 1826–1836. [Google Scholar] [CrossRef] [PubMed]
- Latasa, P.; Louzada, M.L.D.C.; Martinez Steele, E.; Monteiro, C.A. Added Sugars and Ultra-Processed Foods in Spanish Households (1990–2010). Eur. J. Clin. Nutr. 2017, 72, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Bibiloni, M.D.M.; Gallardo-Alfaro, L.; Gómez, S.F.; Wärnberg, J.; Osés-Recalde, M.; González-Gross, M.; Gusi, N.; Aznar, S.; Marín-Cascales, E.; González-Valeiro, M.A.; et al. Determinants of Adherence to the Mediterranean Diet in Spanish Children and Adolescents: The PASOS Study. Nutrients 2022, 14, 738. [Google Scholar] [CrossRef] [PubMed]
- Galilea-Zabalza, I.; Buil-Cosiales, P.; Salas-Salvadó, J.; Toledo, E.; Ortega-Azorín, C.; Díez-Espino, J.; Vázquez-Ruiz, Z.; Zomeño, M.D.; Vioque, J.; Martínez, J.A.; et al. Mediterranean Diet and Quality of Life: Baseline Cross-Sectional Analysis of the PREDIMED-PLUS Trial. PLoS ONE 2018, 13, e0198974. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; De La Torre, R.; Martínez-González, M.Á.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef]
- Hadjimbei, E.; Botsaris, G.; Gekas, V.; Panayiotou, A.G. Adherence to the Mediterranean Diet and Lifestyle Characteristics of University Students in Cyprus: A Cross-Sectional Survey. J. Nutr. Metab. 2016, 2016, 2742841. [Google Scholar] [CrossRef]
- Martíncrespo-Blanco, M.C.; Varillas-Delgado, D.; Blanco-Abril, S.; Cid-Exposito, M.G.; Robledo-Martín, J. Effectiveness of an Intervention Programme on Adherence to the Mediterranean Diet in a Preschool Child: A Randomised Controlled Trial. Nutrients 2022, 14, 1536. [Google Scholar] [CrossRef]
- Martin-Calvo, N.; Chavarro, J.E.; Falbe, J.; Hu, F.B.; Field, A.E. Adherence to the Mediterranean Dietary Pattern and BMI Change among U.S. Adolescents. Int. J. Obes. 2016, 40, 1103. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, J.F.; García-Hermoso, A.; Sotos-Prieto, M.; Cavero-Redondo, I.; Martínez-Vizcaíno, V.; Kales, S.N. Mediterranean Diet-Based Interventions to Improve Anthropometric and Obesity Indicators in Children and Adolescents: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Rodríguez, A.; Zazpe, I.; Morell-Azanza, L.; Chueca, M.J.; Azcona-Sanjulian, M.C.; Marti, A. Improved Diet Quality and Nutrient Adequacy in Children and Adolescents with Abdominal Obesity after a Lifestyle Intervention. Nutrients 2018, 10, 1500. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean Diet and Health Status: Meta-Analysis. BMJ 2008, 337, 673–675. [Google Scholar] [CrossRef]
- Seral-Cortes, M.; Sabroso-Lasa, S.; De Miguel-Etayo, P.; Gonzalez-Gross, M.; Gesteiro, E.; Molina-Hidalgo, C.; De Henauw, S.; Erhardt, É.; Censi, L.; Manios, Y.; et al. Interaction Effect of the Mediterranean Diet and an Obesity Genetic Risk Score on Adiposity and Metabolic Syndrome in Adolescents: The HELENA Study. Nutrients 2020, 12, 3841. [Google Scholar] [CrossRef]
- MacArthur, G.; Caldwell, D.M.; Redmore, J.; Watkins, S.H.; Kipping, R.; White, J.; Chittleborough, C.; Langford, R.; Er, V.; Lingam, R.; et al. Individual-, Family-, and School-Level Interventions Targeting Multiple Risk Behaviours in Young People. Cochrane. Database Syst. Rev. 2018, 10, CD009927. [Google Scholar] [CrossRef] [PubMed]
- Wolfenden, L.; Nathan, N.K.; Sutherland, R.; Yoong, S.L.; Hodder, R.K.; Wyse, R.J.; Delaney, T.; Grady, A.; Fielding, A.; Tzelepis, F.; et al. Strategies for Enhancing the Implementation of School-Based Policies or Practices Targeting Risk Factors for Chronic Disease. Cochrane. Database Syst. Rev. 2017, 11, CD011677. [Google Scholar] [CrossRef]
- van Cauwenberghe, E.; Maes, L.; Spittaels, H.; van Lenthe, F.J.; Brug, J.; Oppert, J.M.; de Bourdeaudhuij, I. Effectiveness of School-Based Interventions in Europe to Promote Healthy Nutrition in Children and Adolescents: Systematic Review of Published and “grey” Literature. Br. J. Nutr. 2010, 103, 781–797. [Google Scholar] [CrossRef] [PubMed]
- Likhitweerawong, N.; Boonchooduang, N.; Kittisakmontri, K.; Chonchaiya, W.; Louthrenoo, O. Effectiveness of Mobile Application on Changing Weight, Healthy Eating Habits, and Quality of Life in Children and Adolescents with Obesity: A Randomized Controlled Trial. BMC Pediatr. 2021, 21, 499. [Google Scholar] [CrossRef]
- Varagiannis, P.; Magriplis, E.; Risvas, G.; Vamvouka, K.; Nisianaki, A.; Papageorgiou, A.; Pervanidou, P.; Chrousos, G.P.; Zampelas, A. Effects of Three Different Family-Based Interventions in Overweight and Obese Children: The “4 Your Family” Randomized Controlled Trial. Nutrients 2021, 13, 341. [Google Scholar] [CrossRef]
- Andersen, R.; Biltoft-Jensen, A.; Christensen, T.; Andersen, E.W.; Ege, M.; Thorsen, A.V.; Dalskov, S.M.; Damsgaard, C.T.; Astrup, A.; Michaelsen, K.F.; et al. Dietary Effects of Introducing School Meals Based on the New Nordic Diet—A Randomised Controlled Trial in Danish Children. The OPUS School Meal Study. Br. J. Nutr. 2014, 111, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.F.W.; Kraak, V.I.; Choumenkovitch, S.F.; Hyatt, R.R.; Economos, C.D. The Change Study: A Healthy-Lifestyles Intervention to Improve Rural Children’s Diet Quality. J. Acad. Nutr. Diet 2014, 114, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Wolfenden, L.; Nathan, N.; Janssen, L.M.; Wiggers, J.; Reilly, K.; Delaney, T.; Williams, C.M.; Bell, C.; Wyse, R.; Sutherland, R.; et al. Multi-Strategic Intervention to Enhance Implementation of Healthy Canteen Policy: A Randomised Controlled Trial. Implement. Sci. 2017, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- O’brien, K.M.; Barnes, C.; Yoong, S.; Campbell, E.; Wyse, R.; Delaney, T.; Brown, A.; Stacey, F.; Davies, L.; Lorien, S.; et al. School-Based Nutrition Interventions in Children Aged 6 to 18 Years: An Umbrella Review of Systematic Reviews. Nutrients 2021, 13, 4113. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Sociedad Española de Nutrición Comunitaria (SENC). Guías alimentarias para la población española (SENC, diciembre 2016); la nueva pirámide de la alimentación saludable. Nutr. Hosp. 2016, 33, 1–48. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, Youth and the Mediterranean Diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in Children and Adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, B.R.S.; Rico-Campà, A.; Romanos-Nanclares, A.; Ciriza, E.; Barbosa, K.B.F.; Martínez-González, M.Á.; Martín-Calvo, N. Adherence to Mediterranean Diet Is Inversely Associated with the Consumption of Ultra-Processed Foods among Spanish Children: The SENDO Project. Public Health Nutr. 2021, 24, 3294–3303. [Google Scholar] [CrossRef]
- Moreiras Tuni, O.; Carbajal, Á.; Cabrera Forneiro, L. Tablas de Composición de Alimentos; PIRAMIDE: Madrid, Spain, 2015. [Google Scholar]
- de Onis, M.; Lobstein, T. Defining Obesity Risk Status in the General Childhood Population: Which Cut-Offs Should We Use? Int. J. Pediatr. Obes. 2010, 5, 458–460. [Google Scholar] [CrossRef]
- Friedewald, W.; Levy, R.; Fredrickson, D. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Ravens-Sieberer, U.; Bullinger, M. Assessing Health-Related Quality of Life in Chronically Ill Children with the German KINDL: First Psychometric and Content Analytical Results. Qual. Life Res. 1998, 7, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Rajmil, L.; Serra-Sutton, V.; Fernandez-Lopez, J.A.; Berra, S.; Aymerich, M.; Cieza, A.; Ferrer, M.; Bullinger, M.; Ravens-Sieberer, U. Versión Española Del Cuestionario Alemán de Calidad de Vida Relacionada Con La Salud En Población Infantil y de Adolescentes: El Kindl [Spanish Version of the German Health-Related Quality of Life Questionnaire in Children and Adolescents: The Kindl]. An. Pediatr. 2004, 60, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Crocker, P.R.E.; Bailey, D.A.; Faulkner, R.A.; Kowalski, K.C.; Mcgrath, R. Measuring General Levels of Physical Activity: Preliminary Evidence for the Physical Activity Questionnaire for Older Children. Med. Sci. Sports Exerc. 1997, 29, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, K.; Crocker, P.R.; Donen, R. The Physical Activity Questionnaire for Older Children (PAQ-C) and Adolescents (PAQ-A) Manual; University of Saskatchewan: Saskatoon, Canada, 2004. [Google Scholar]
- Wardle, J.; Guthrie, C.A.; Sanderson, S.; Rapoport, L. Development of the Children’s Eating Behaviour Questionnaire. J. Child Psychol. Psychiatry 2001, 42, 963–970. [Google Scholar] [CrossRef]
- González, A.; Santos, J. Adaptación y Aplicación Del Cuestionario de Conducta de Alimentación Infantil CEBQ [Adaptation and Application of the CEBQ Infant Feeding Behavior Questionnaire]. In Fundamentos de Nutrición y Dietética. Bases metodológicas y aplicaciones; Martínez, J., Navas-Carretero, S., Eds.; Panamericana: Madrid, Spain, 2011; pp. 399–444. [Google Scholar]
- Li, G.; Taljaard, M.; Van Den Heuvel, E.R.; Levine, M.A.H.; Cook, D.J.; Wells, G.A.; Devereaux, P.J.; Thabane, L. An Introduction to Multiplicity Issues in Clinical Trials: The What, Why, When and How. Int. J. Epidemiol. 2017, 46, 746–756. [Google Scholar] [CrossRef]
- Bartelink, N.H.M.; van Assema, P.; Kremers, S.P.J.; Savelberg, H.H.C.M.; Oosterhoff, M.; Willeboordse, M.; van Schayck, O.C.P.; Winkens, B.; Jansen, M.W.J. One- and Two-Year Effects of the Healthy Primary School of the Future on Children’s Dietary and Physical Activity Behaviours: A Quasi-Experimental Study. Nutrients 2019, 11, 689. [Google Scholar] [CrossRef]
- Vik, F.N.; Heslien, K.E.P.; van Lippevelde, W.; Øverby, N.C. Effect of a Free Healthy School Meal on Fruit, Vegetables and Unhealthy Snacks Intake in Norwegian 10- To 12-Year-Old Children. BMC Public Health 2020, 20, 1369. [Google Scholar] [CrossRef]
- Cullen, K.W.; Chen, T.A.; Dave, J.M.; Jensen, H. Differential Improvements in Student Fruit and Vegetable Selection and Consumption in Response to the New National School Lunch Program Regulations: A Pilot Study. J. Acad. Nutr. Diet 2015, 115, 743–750. [Google Scholar] [CrossRef]
- Li, B.; Pallan, M.; Liu, W.J.; Hemming, K.; Frew, E.; Lin, R.; Liu, W.; Martin, J.; Zanganeh, M.; Hurley, K.; et al. The CHIRPY DRAGON Intervention in Preventing Obesity in Chinese Primaryschool-Aged Children: A Cluster-Randomised Controlled Trial. PLoS Med. 2019, 16, e1002971. [Google Scholar] [CrossRef]
- Lee, R.M.; Giles, C.M.; Cradock, A.L.; Emmons, K.M.; Okechukwu, C.; Kenney, E.L.; Thayer, J.; Gortmaker, S.L. Impact of the Out-of-School Nutrition and Physical Activity (OSNAP) Group Randomized Controlled Trial on Children’s Food, Beverage, and Calorie Consumption among Snacks Served. J. Acad. Nutr. Diet 2018, 118, 1425–1437. [Google Scholar] [CrossRef]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean Diet Pyramid: A Cultural Model for Healthy Eating. Am. J. Clin. Nutr. 1995, 61, 1402S–1406S. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.N.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and Potential Health Benefits of the Mediterranean Diet: Views from Experts around the World. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Ferry, R.J.; Cullen, K.W.; Liu, Y. Improvement in Fruit and Vegetable Consumption Associated with More Favorable Energy Density, Nutrient, and Food Group Intake, but Not Kilocalories. J. Acad. Nutr. Diet 2016, 116, 1443. [Google Scholar] [CrossRef] [PubMed]
- Lauria, F.; dello Russo, M.; Formisano, A.; de Henauw, S.; Hebestreit, A.; Hunsberger, M.; Krogh, V.; Intemann, T.; Lissner, L.; Molnar, D.; et al. Ultra-Processed Foods Consumption and Diet Quality of European Children, Adolescents and Adults: Results from the I.Family Study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3031–3043. [Google Scholar] [CrossRef] [PubMed]
- Ledikwe, J.H.; Blanck, H.M.; Khan, L.K.; Serdula, M.K.; Seymour, J.D.; Tohill, B.C.; Rolls, B.J. Dietary Energy Density Is Associated with Energy Intake and Weight Status in US Adults. Am. J. Clin. Nutr. 2006, 83, 1362–1368. [Google Scholar] [CrossRef]
- Andueza, N.; Navas-Carretero, S.; Cuervo, M. Effectiveness of Nutritional Strategies on Improving the Quality of Diet of Children from 6 to 12 Years Old: A Systematic Review. Nutrients 2022, 14, 372. [Google Scholar] [CrossRef]
- FESNAD. Federación Española de Sociedades de Nutrición A y Dietética. In Ingestas Dietéticas de Referencia (IDR) para la Población Española; EUNSA: Madrid, Spain, 2010. [Google Scholar]
- Altman, M.; Cahill Holland, J.; Lundeen, D.; Kolko, R.P.; Stein, R.I.; Saelens, B.E.; Welch, R.R.; Perri, M.G.; Schechtman, K.B.; Epstein, L.H.; et al. Reduction in Food Away from Home Is Associated with Improved Child Relative Weight and Body Composition Outcomes and This Relation Is Mediated by Changes in Diet Quality. J. Acad. Nutr. Diet 2015, 115, 1400–1407. [Google Scholar] [CrossRef]
- Venner, A.A.; Lyon, M.E.; Doyle-Baker, P.K. Leptin: A Potential Biomarker for Childhood Obesity? Clin. Biochem. 2006, 39, 1047–1056. [Google Scholar] [CrossRef]
- Souza, M.S.F.; Cardoso, A.L.; Yasbek, P.; Faintuch, J. Aerobic Endurance, Energy Expenditure, and Serum Leptin Response in Obese, Sedentary, Prepubertal Children and Adolescents Participating in a Short-Term Treadmill Protocol. Nutrition 2004, 20, 900–904. [Google Scholar] [CrossRef]
- Murphy, S.; Moore, G.; Tapper, K.; Lynch, R.; Clarke, R.; Raisanen, L.; Desousa, C.; Moore, L. Free Healthy Breakfasts in Primary Schools: A Cluster Randomised Controlled Trial of a Policy Intervention in Wales, UK. Public Health Nutr. 2011, 14, 219–226. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Angell, S.Y.; Lang, T.; Rivera, J.A. Role of Government Policy in Nutrition—Barriers to and Opportunities for Healthier Eating. BMJ 2018, 361, k2426. [Google Scholar] [CrossRef] [PubMed]
- Barclay, D.; Haschke, F. The Food Industry and Consumer Nutrition and Health. World Rev. Nutr. Diet. 2015, 111, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Lenoir-Wijnkoop, I.; Jones, P.J.; Uauy, R.; Segal, L.; Milner, J. Nutrition Economics—Food as an Ally of Public Health. Br. J. Nutr. 2013, 109, 777. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, A.; Górnicka, M.; Szewczyk, K. Long-Term Effect of One-Time Nutritional Education in School on Nutritional Knowledge of Early School-Aged Children. Rocz. Panstw. Zakl. Hig. 2021, 72, 155–164. [Google Scholar] [CrossRef]
- Hu, C.; Ye, D.; Li, Y.; Huang, Y.; Li, L.; Gao, Y.; Wang, S. Evaluation of a Kindergarten-Based Nutrition Education Intervention for Pre-School Children in China. Public Health Nutr. 2010, 13, 253–260. [Google Scholar] [CrossRef]
- Viggiano, A.; Viggiano, E.; di Costanzo, A.; Viggiano, A.; Andreozzi, E.; Romano, V.; Rianna, I.; Vicidomini, C.; Gargano, G.; Incarnato, L.; et al. Kaledo, a Board Game for Nutrition Education of Children and Adolescents at School: Cluster Randomized Controlled Trial of Healthy Lifestyle Promotion. Eur. J. Pediatr. 2015, 174, 217–228. [Google Scholar] [CrossRef]
- Febriati Yurni, A.; Sinaga, T. The Effect of Nutrition Education on School-Aged Children’s Consumption Pattern, Knowledge and Practice in Bringing Well-Balanced Menu for Lunch. J. Nutr. Sci. Vitaminol. 2020, 66, 196–201. [Google Scholar] [CrossRef]
- Schulz, D.N.; Kremers, S.P.J.; van Osch, L.A.; Schneider, F.; van Adrichem, M.J.G.; de Vries, H. Testing a Dutch Web-Based Tailored Lifestyle Programme among Adults: A Study Protocol. BMC Public Health 2011, 11, 108. [Google Scholar] [CrossRef]
- Mata, J.; Silva, M.N.; Vieira, P.N.; Carraça, E.V.; Andrade, A.M.; Coutinho, S.R.; Sardinha, L.B.; Teixeira, P.J. Motivational “Spill-over” during Weight Control: Increased Self-Determination and Exercise Intrinsic Motivation Predict Eating Self-Regulation. Health Psychol. 2009, 28, 709–716. [Google Scholar] [CrossRef]
- Vajdi, M.; Farhangi, M.A. A Systematic Review of the Association between Dietary Patterns and Health-Related Quality of Life. Health Qual. Life Outcomes 2020, 18, 337. [Google Scholar] [CrossRef]
- Rallidis, L.S.; Lekakis, J.; Kolomvotsou, A.; Zampelas, A.; Vamvakou, G.; Efstathiou, S.; Dimitriadis, G.; Raptis, S.A.; Kremastinos, D.T. Close Adherence to a Mediterranean Diet Improves Endothelial Function in Subjects with Abdominal Obesity. Am. J. Clin. Nutr. 2009, 90, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, L.R.; Smith, T.M.; Stern, K.; Boyd, L.W.M.; Rasmussen, C.G.; Schaffer, K.; Shuell, J.; Broussard, K.; Yaroch, A.L. Meals for Good: An Innovative Community Project to Provide Healthy Meals to Children in Early Care and Education Programs through Food Bank Catering. Prev. Med. Rep. 2017, 8, 210–214. [Google Scholar] [CrossRef]
- Hendrie, G.A.; Lease, H.J.; Bowen, J.; Baird, D.L.; Cox, D.N. Strategies to Increase Children’s Vegetable Intake in Home and Community Settings: A Systematic Review of Literature. Maternal. Child Nutr. 2017, 13, e12276. [Google Scholar] [CrossRef] [PubMed]
- Cano-Ibáñez, N.; Gea, A.; Ruiz-Canela, M.; Corella, D.; Salas-Salvadó, J.; Schröder, H.; Navarrete-Muñoz, E.M.; Romaguera, D.; Martínez, J.A.; Barón-López, F.J.; et al. Diet Quality and Nutrient Density in Subjects with Metabolic Syndrome: Influence of Socioeconomic Status and Lifestyle Factors. A Cross-Sectional Assessment in the PREDIMED-Plus Study. Clin. Nutr. 2020, 39, 1161–1173. [Google Scholar] [CrossRef] [PubMed]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; de Deus Mendonça, R.; de La Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between Consumption of Ultra-Processed Foods and All Cause Mortality: SUN Prospective Cohort Study. BMJ 2019, 365, l1949. [Google Scholar] [CrossRef] [PubMed]
All (n = 55) | Control (n = 11) | Alinfa (n = 44) | p-Value a | |
---|---|---|---|---|
% | 100% | 20% | 80% | |
Gender (boys/girls) | 25/30 | 7/4 | 18/26 | 0.176 |
Age (years) | 9.07 ± 1.73 | 8.81 ± 1.53 | 9.12 ± 1.78 | 0.590 |
Anthropometry | ||||
Weight (kg) | 34.84 ± 8.34 | 35.23 ± 8.76 | 34.74 ± 8.33 | 0.863 |
Height (m) | 1.38 ± 0.09 | 1.38 ± 0.09 | 1.38 ± 0.09 | 0.928 |
BMI (kg/m2) | 17.88 ± 2.93 | 18.23 ± 3.21 | 17.80 ± 2.88 | 0.916 |
BMI z-score | 0.09 ± 0.96 | 0.25 ± 0.93 | 0.05 ± 0.97 | 0.554 |
Waist (cm) | 61.62 ± 7.51 | 62.01 ± 7.66 | 61.52 ± 7.55 | 0.924 |
SBP (mmHg) | 101.9 ± 10.12 | 104.0 ± 10.75 | 101.4 ± 10.01 | 0.155 |
DBP (mmHg) | 67.24 ± 9.03 | 67.86 ± 9.63 | 67.0 ± 8.98 | 0.802 |
Body composition | ||||
Fat mass (kg) | 7.93 ± 4.12 | 8.33 ± 4.42 | 7.82 ± 4.09 | 0.808 |
Lean mass (kg) | 26.86 ± 4.84 | 26.9 ± 4.79 | 26.85 ± 4.91 | 0.975 |
Muscular mass (kg) | 25.42 ± 4.60 | 25.46 ± 4.59 | 25.41 ± 4.66 | 0.975 |
Total water (kg) | 20.05 ± 4.18 | 19.7 ± 3.50 | 20.14 ± 4.36 | 0.858 |
Questionnaires | ||||
Quality of life (KINDL) | 89.54 ± 4.56 | 89.14 ± 5.33 | 89.64 ± 4.41 | 0.803 |
Physical activity (PAQ-C) | 3.08 ± 0.53 | 3.0 ± 0.63 | 3.10 ± 0.51 | 0.611 |
Eating behavior (CEBQ) | ||||
- Food responsiveness | 3.42 ± 0.76 | 3.81 ± 0.76 | 3.32 ± 0.88 | 0.100 |
- Enjoyment of food | 2.21 ± 1.00 | 2.18 ± 1.07 | 2.22 ± 1.00 | 0.865 |
- Emotional overeating | 1.83 ± 0.76 | 1.61 ± 0.76 | 1.89 ± 0.75 | 0.150 |
- Desire to drink | 2.07 ± 0.89 | 1.78 ± 0.76 | 2.15 ± 0.89 | 0.183 |
- Satiety responsiveness | 2.82 ± 0.38 | 2.87 ± 0.36 | 2.80 ± 0.39 | 0.631 |
- Slowness in eating | 2.47 ± 0.48 | 2.29 ± 0.35 | 2.51 ± 0.50 | 0.179 |
- Emotional undereating | 2.17 ± 0.73 | 1.95 ± 0.74 | 2.22 ± 0.73 | 0.277 |
- Food fussiness | 2.92 ± 0.30 | 2.85 ± 0.33 | 2.93 ± 0.29 | 0.430 |
Diet quality (Kidmed index) | ||||
Total punctuation | 7.03 ± 1.97 | 6.90 ± 2.11 | 7.06 ± 1.95 | 0.813 |
Interpretation: | ||||
- Low diet quality | 4 (7.27%) | 1 (9.10%) | 3 (6.82%) | |
- Need to improve dietary pattern | 28 (50.91%) | 5 (45.45%) | 23 (52.27%) | 0.911 b |
- Optimal MD | 23 (41.82%) | 5 (45.45%) | 18 (40.91%) | |
Biochemistry | ||||
Glucose (mg/dL) | 93.21 ± 5.44 | 93.84 ± 3.62 | 93.03 ± 5.89 | 0.698 |
Insulin (µIU/mL) | 9.76 ± 4.03 | 8.88 ± 2.75 | 10.00 ± 4.33 | 0.467 |
Total cholesterol (mg/dL) | 173.5 ± 23.46 | 175.7 ± 25.28 | 172.9 ± 23.31 | 0.752 |
HDL-c (mg/dL) | 62.26 ± 9.44 | 64.94 ± 13.25 | 61.51 ± 8.18 | 0.341 |
LDL-c (mg/dL) | 99.88 ± 21.51 | 99.89 ± 21.46 | 99.87 ± 21.91 | 0.998 |
TNF-α (pg/mL) | 5.07 ± 0.98 | 4.94 ± 0.96 | 5.11 ± 1.00 | 0.642 |
Leptin (ng/mL) | 1.72 ± 1.37 | 1.88 ± 1.23 | 1.68 ± 1.42 | 0.369 |
CRP (mg/dL) | 0.87 ± 0.90 | 1.05 ± 1.24 | 0.82 ± 0.80 | 0.752 |
IL-6 (pg/mL) | 24.26 ± 51.66 | 15.50 ± 41.46 | 26.72 ± 54.51 | 0.075 |
Control (n = 11) | ALINFA (n = 44) | Change between Groups (p-Value) b | |||||
---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | p-Value a | Pre-Intervention | Post-Intervention | p-Value a | ||
Gender (boys/girls) | 7/4 | 18/26 | |||||
Age | 8.81 ± 1.53 | 9.12 ± 1.78 | |||||
Anthropometry | |||||||
Weight (kg) | 35.23 ± 8.76 | 35.94 ± 8.87 | 0.217 | 34.74 ± 8.33 | 34.44 ± 8.14 | 0.195 | 0.082 |
Height (m) | 1.38 ± 0.09 | 1.39 ± 0.09 | 0.062 | 1.38 ± 0.09 | 1.39 ± 0.09 | <0.001 | 0.772 |
BMI (kg/m2) | 18.23 ± 3.21 | 18.34 ± 3.12 | 0.774 | 17.80 ± 2.88 | 17.36 ± 2.55 | <0.001 | 0.082 |
BMI z-score | 0.25 ± 0.93 | 0.21 ± 0.88 | 0.774 | 0.05 ± 0.97 | −0.09 ± 0.83 | <0.001 | 0.280 |
Waist (cm) | 62.01 ± 7.66 | 61.87 ± 9.85 | 0.917 | 61.52 ± 7.55 | 60.19 ± 7.20 | 0.016 | 0.861 |
SBP (mmHg) | 104.0 ± 10.75 | 103.5 ± 9.80 | 0.917 | 101.4 ± 10.01 | 103.1 ± 8.66 | 0.514 | 0.675 |
DBP (mmHg) | 67.86 ± 9.63 | 67.40 ± 8.65 | 0.917 | 67.09 ± 8.98 | 67.43 ± 8.12 | 0.868 | 0.190 |
Body composition | |||||||
Fat mass (kg) | 8.33 ± 4.42 | 8.15 ± 4.07 | 0.657 | 7.82 ± 4.09 | 7.29 ± 3.56 | 0.011 | 0.776 |
Lean mass (kg) | 26.9 ± 4.79 | 27.79 ± 5.30 | 0.103 | 26.85 ± 4.91 | 27.00 ± 5.11 | 0.563 | 0.186 |
Muscular mass (kg) | 25.46 ± 4.59 | 26.31 ± 5.06 | 0.093 | 25.41 ± 4.66 | 25.54 ± 4.85 | 0.577 | 0.186 |
Total water (kg) | 19.7 ± 3.50 | 20.35 ± 3.87 | 0.111 | 20.14 ± 4.36 | 20.16 ± 4.62 | 0.556 | 0.206 |
Questionnaires | |||||||
Quality of life (KINDL) | 89.14 ± 5.33 | 89.64 ± 3.94 | 0.881 | 89.64 ± 4.41 | 90.27 ± 3.95 | 0.577 | 0.776 |
Physical activity (PAQ-C) | 3.0 ± 0.63 | 3.08 ± 0.56 | 0.849 | 3.10 ± 0.51 | 3.18 ± 0.48 | 0.514 | 0.822 |
Eating behavior (CEBQ) | |||||||
- Food responsiveness | 3.81 ± 0.76 | 3.75 ± 0.65 | 0.774 | 3.32 ± 0.88 | 3.33 ± 0.90 | 0.938 | 0.776 |
- Enjoyment of food | 2.18 ± 1.07 | 1.98 ± 0.64 | 0.774 | 2.22 ± 1.00 | 2.28 ± 0.91 | 0.474 | 0.675 |
- Emotional overeating | 1.61 ± 0.76 | 1.79 ± 0.87 | 0.774 | 1.89 ± 0.75 | 1.90 ± 0.68 | 0.789 | 0.776 |
- Desire to drink | 1.78 ± 0.76 | 1.94 ± 0.77 | 0.443 | 2.15 ± 0.89 | 1.99 ± 0.77 | 0.304 | 0.412 |
- Satiety responsiveness | 2.87 ± 0.36 | 2.69 ± 0.37 | 0.521 | 2.80 ± 0.39 | 2.72 ± 0.35 | 0.389 | 0.776 |
- Slowness in eating | 2.29 ± 0.35 | 2.20 ± 0.56 | 0.774 | 2.51 ± 0.50 | 2.49 ± 0.48 | 0.806 | 0.776 |
- Emotional undereating | 1.95 ± 0.74 | 2.11 ± 0.99 | 0.774 | 2.22 ± 0.73 | 2.24 ± 0.76 | 0.904 | 0.776 |
- Food fussiness | 2.85 ± 0.33 | 3.07 ± 0.40 | 0.111 | 2.93 ± 0.29 | 2.9 ± 0.25 | 0.564 | 0.097 |
Diet quality (Kidmed index) | 6.90 ± 2.11 | 7.72 ± 0.68 | 0.081 | 7.06 ± 1.95 | 9.18 ± 1.55 | <0.001 | 0.024 |
Interpretation: | |||||||
- Low diet quality | 1 (9.10%) | 0 (0%) | 3 (6.82%) | 1 (2.27%) | |||
- Need to improve dietary pattern | 5 (45.45%) | 5 (45.45%) | 0.463 c | 23 (52.27%) | 7 (15.91%) | <0.001 c | |
- Optimal MD | 5 (45.45%) | 6 (54.55%) | 18 (40.91%) | 36 (81.82%) | |||
Biochemical parameters | |||||||
Glucose (mg/dL) | 93.84 ± 3.62 | 94.74 ± 5.22 | 0.800 | 93.03 ± 5.89 | 90.85 ± 6.81 | 0.248 | 0.776 |
Insulin (µIU/mL) | 8.88 ± 2.75 | 12.55 ± 4.67 | 0.336 | 10.00 ± 4.33 | 11.09 ± 7.41 | 0.909 | 0.186 |
Total cholesterol (mg/dL) | 175.77 ± 25.28 | 168.66 ± 18.93 | 0.750 | 172.93 ± 23.31 | 167.31 ± 20.63 | 0.248 | 0.776 |
HDL-c (mg/dL) | 64.94 ± 13.25 | 63.68 ± 10.65 | 0.800 | 61.51 ± 8.18 | 62.36 ± 9.10 | 0.665 | 0.901 |
LDL-c (mg/dL) | 99.89 ± 21.46 | 89.68 ± 17.11 | 0.443 | 99.87 ± 21.91 | 93.16 ± 20.29 | 0.118 | 0.776 |
TNF-α (pg/mL) | 4.94 ± 0.96 | 5.38 ± 1.31 | 0.638 | 5.11 ± 1.00 | 5.06 ± 1.47 | 0.868 | 0.529 |
Leptin (ng/mL) | 1.88 ± 1.23 | 2.35 ± 1.87 | 0.881 | 1.68 ± 1.42 | 0.94 ± 0.65 | 0.004 | 0.823 |
CRP (mg/dL) | 1.05 ± 1.24 | 2.47 ± 4.23 | 0.750 | 0.82 ± 0.80 | 1.00 ± 2.03 | 0.370 | 0.412 |
IL-6 (pg/mL) | 15.50 ± 41.46 | 14.46 ± 35.03 | 0.840 | 26.72 ± 54.51 | 18.31 ± 42.75 | 0.564 | 0.776 |
Control (n = 11) | ALINFA (n = 44) | Change between Groups (p-Value) a | |||
---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | ||
Takes a fruit or fruit juice every day (+1) | 63.64% | 81.82% | 79.55% | 90.91% | 0.70 |
Has a second fruit every day (+1) | 36.36% | 54.55% | 43.18% | 68.18% * | 0.63 |
Has fresh or cooked vegetables regularly once a day (+1) | 90.91% | 81.82% | 77.27% | 95.45% * | 0.10 |
Has fresh or cooked vegetables more than once a day (+1) | 54.55% | 54.55% | 43.18% | 65.91% * | 0.25 |
Consumes fish regularly (at least 2–3/week) (+1) | 81.82% | 63.63% | 63.64% | 86.36% * | 0.504 |
Goes >1/ week to a fast-food restaurant (hamburger) (−1) | 9.09% | 18.18% | 15.91% | 2.33% * | 0.66 |
Likes pulses and eats them >1/week (+1) | 90.91% | 81.82% | 81.82% | 95.45% | 0.12 |
Consumes pasta or rice almost every day (5 or more per week) (+1) | 36.36% | 36.36% | 6.82% | 6.82% | 0.37 |
Has cereals or grains (bread, pasta, rice, etc) for breakfast (+1) | 90.91% | 90.91% | 75.00% | 93.18% * | 0.10 |
Consumes nuts regularly (at least 2–3/week) (+1) | 18.18% | 18.18% | 40.91% | 72.73% * | 0.30 |
Uses olive oil at home (+1) | 100% | 100% | 100% | 100% | 1.00 |
Skips breakfast (−1) | 0% | 0% | 4.55% | 4.55% | 0.61 |
Has a dairy product for breakfast (yogurt, milk, etc) (+1) | 100% | 100% | 97.73% | 93.18% | 0.28 |
Has commercially baked goods or pastries for breakfast (−1) | 36.36% | 18.18% | 43.18% | 6.82% * | 0.16 |
Takes two yoghurts and/or some cheese (40 g) daily (+1) | 18.18% | 27.27% | 52.27% | 65.91% | 0.31 |
Takes sweets and candy several times every day (−1) | 0% | 0% | 2.27% | 2.27% | 0.61 |
Control (n = 11) | ALINFA (n = 44) | Change between Groups (p-Value) b | |||||
---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | p-Value a | Pre-Intervention | Post-Intervention | p-Value a | ||
Kcal | 2326 ± 457.7 | 2272 ± 647.8 | 0.800 | 2157 ± 378.7 | 1981 ± 367.0 | 0.046 | 0.776 |
Total carbohydrates (g) | 251.5 ± 57.17 | 253.4 ± 100.6 | 0.917 | 219.6 ± 41.75 | 209.7 ± 47.33 | 0.389 | 0.776 |
Total lipids (g) | 106.9 ± 20.47 | 99.42 ± 20.06 | 0.709 | 95.85 ± 19.69 | 87.06 ± 17.59 | 0.016 | 0.776 |
- Saturated | 27.85 ± 5.37 | 24.41 ± 5.03 | 0.437 | 26.22 ± 7.38 | 22.51 ± 7.62 | 0.011 | 0.901 |
-Monounsaturated | 39.09 ± 7.89 | 40.48 ± 7.71 | 0.774 | 39.77 ± 10.24 | 36.08 ± 6.12 | 0.076 | 0.949 |
- Polyunsaturated | 12.43 ± 2.68 | 12.66 ± 3.56 | 0.904 | 11.66 ± 2.66 | 11.34 ± 2.57 | 0.670 | 0.404 |
Total protein (g) | 96.80 ± 27.94 | 91.10 ± 24.30 | 0.799 | 96.20 ± 31.73 | 89.63 ± 18.50 | 0.737 | 0.776 |
Fiber (g) | 21.93 ± 8.67 | 24.73 ± 6.71 | 0.662 | 20.84 ± 5.85 | 25.05 ± 6.30 | 0.001 | 0.868 |
Cholesterol (mg) | 261.22 ± 25.48 | 277.11 ± 57.13 | 0.75 | 288.41 ± 75.75 | 258.12 ± 81.81 | 0.121 | 0.776 |
Sodium (mg) | 4166 ± 1197 # | 3760 ± 973 | 0.638 | 3195 ± 793 # | 3015 ± 814 | 0.562 | 0.412 |
BMI z-Score | |||
---|---|---|---|
β | 95% CI | p-Value | |
Fast food | 0.0003 | −0.001–0.002 | 0.693 |
Pastries/confectionary | 0.001 | −0.002–0.004 | 0.557 |
Fast food X Pastries/confectionary | −0.0002 | −0.0003–−0.0001 | <0.001 |
Kcal | 0.0001 | −0.078–0.032 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andueza, N.; Martin-Calvo, N.; Navas-Carretero, S.; Cuervo, M. The ALINFA Intervention Improves Diet Quality and Nutritional Status in Children 6 to 12 Years Old. Nutrients 2023, 15, 2375. https://doi.org/10.3390/nu15102375
Andueza N, Martin-Calvo N, Navas-Carretero S, Cuervo M. The ALINFA Intervention Improves Diet Quality and Nutritional Status in Children 6 to 12 Years Old. Nutrients. 2023; 15(10):2375. https://doi.org/10.3390/nu15102375
Chicago/Turabian StyleAndueza, Naroa, Nerea Martin-Calvo, Santiago Navas-Carretero, and Marta Cuervo. 2023. "The ALINFA Intervention Improves Diet Quality and Nutritional Status in Children 6 to 12 Years Old" Nutrients 15, no. 10: 2375. https://doi.org/10.3390/nu15102375
APA StyleAndueza, N., Martin-Calvo, N., Navas-Carretero, S., & Cuervo, M. (2023). The ALINFA Intervention Improves Diet Quality and Nutritional Status in Children 6 to 12 Years Old. Nutrients, 15(10), 2375. https://doi.org/10.3390/nu15102375