Effect of a High Protein Diet at Breakfast on Postprandial Glucose Level at Dinner Time in Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Baseline Anthropometric and Physical Activity Measurements
2.3. Main Trials and Glucose Measurement
2.4. Test Meals
2.4.1. High Protein Breakfast
2.4.2. Normal Breakfast
2.4.3. Lunch
2.4.4. Dinner before the Trial Day
2.4.5. Dinner on the Trial Day
2.5. Statistical Analysis
3. Results
3.1. Physical Characteristics
3.2. h Changes in Glucose Pattern
3.3. h iAUC at Breakfast, Lunch, and Dinner
3.4. There Was No Difference between Genders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Vegt, F.; Dekker, J.M.; Ruhé, H.G.; Stehouwer, C.D.A.; Nijpels, G.; Bouter, L.; Heine, R.J. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: The Hoorn Study. Diabetologia 1999, 42, 926–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinnan, D.; Farr, G.; Fox, A.; Sweeney, L. The Role of Hyperglycemia and Insulin Resistance in the Development and Progression of Pulmonary Arterial Hypertension. J. Diabetes Res. 2016, 2016, 2481659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaak, E.E.; Antoine, J.-M.; Benton, D.; Björck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of postprandial glycaemia on health and prevention of disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz, D.; Wainstein, J.; Tsameret, S.; Landau, Z. Role of High Energy Breakfast “Big Breakfast Diet” in Clock Gene Regulation of Postprandial Hyperglycemia and Weight Loss in Type 2 Diabetes. Nutrients 2021, 13, 1558. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Thorne, M.J.; Camelon, K.; Jenkins, A.; Rao, A.V.; Taylor, R.H.; Thompson, L.U.; Kalmusky, J.; Reichert, R.; Francis, T. Effect of processing on digestibility and the blood glucose response: A study of lentils. Am. J. Clin. Nutr. 1982, 36, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, M.; Kim, H.-K.; Ozaki, M.; Nanba, T.; Chijiki, H.; Fukazawa, M.; Okubo, J.; Mineshita, Y.; Takahashi, M.; Shibata, S. Consumption of Biscuits with a Beverage of Mulberry or Barley Leaves in the Afternoon Prevents Dinner-Induced High, but Not Low, Increases in Blood Glucose among Young Adults. Nutrients 2020, 12, 1580. [Google Scholar] [CrossRef]
- Kim, H.-K.; Nanba, T.; Ozaki, M.; Chijiki, H.; Takahashi, M.; Fukazawa, M.; Okubo, J.; Shibata, S. Effect of the Intake of a Snack Containing Dietary Fiber on Postprandial Glucose Levels. Foods 2020, 9, 1500. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Overview of Dietary Reference Intakes for Japanese. 2020. Available online: https://www.mhlw.go.jp/content/10900000/000862500.pdf (accessed on 1 December 2022).
- Ando, T.; Nakae, S.; Usui, C.; Yoshimura, E.; Nishi, N.; Takimoto, H.; Tanaka, S. Effect of diurnal variations in the carbohydrate and fat composition of meals on postprandial glycemic response in healthy adults: A novel insight for the second-meal phenomenon. Am. J. Clin. Nutr. 2018, 108, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.J.; Jovanovic, A.; Taylor, R. Utilizing the Second-Meal Effect in Type 2 Diabetes: Practical Use of a Soya-Yogurt Snack. Diabetes Care 2010, 33, 2552–2554. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H. Effect of prior meal macronutrient composition on postprandial glycemic responses and glycemic index and glycemic load value determinations. Am. J. Clin. Nutr. 2017, 106, ajcn162727. [Google Scholar] [CrossRef]
- Kuwahara, M.; Kim, H.-K.; Furutani, A.; Mineshita, Y.; Nakaoka, T.; Shibata, S. Effect of lunch with different calorie and nutrient balances on dinner-induced postprandial glucose variability. Nutr. Metab. 2022, 19, 65. [Google Scholar] [CrossRef]
- van Elswyk, M.E.; Weatherford, C.A.; McNeill, S.H. A Systematic Review of Renal Health in Healthy Individuals Associated with Protein Intake above the US Recommended Daily Allowance in Randomized Controlled Trials and Observational Studies. Adv. Nutr. 2018, 9, 404–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendergast, F.J.; Livingstone, K.M.; Worsley, A.; McNaughton, S.A. Correlates of meal skipping in young adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijtzes, A.I.; Jansen, W.; Jaddoe, V.W.V.; Franco, O.; Hofman, A.; Van Lenthe, F.; Raat, H. Social Inequalities in Young Children’s Meal Skipping Behaviors: The Generation R Study. PLoS ONE 2015, 10, e0134487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCurley, J.L.; Levy, D.E.; Dashti, H.S.; Gelsomin, E.; Anderson, E.; Sonnenblick, R.; Rimm, E.B.; Thorndike, A.N. Association of Employees’ Meal Skipping Patterns with Workplace Food Purchases, Dietary Quality, and Cardiometabolic Risk: A Secondary Analysis from the ChooseWell 365 Trial. J. Acad. Nutr. Diet. 2021, 122, 110–120.e2. [Google Scholar] [CrossRef]
- Giovannini, M.; Agostoni, C.; Shamir, R. Symposium Overview: Do We All Eat Breakfast and is it Important? Crit. Rev. Food Sci. Nutr. 2010, 50, 97–99. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Q.; Pu, Y.; Guo, M.; Jiang, Z.; Huang, W.; Long, Y.; Xu, Y. Skipping breakfast is associated with overweight and obesity: A systematic review and meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 1–8. [Google Scholar] [CrossRef]
- Ballon, A.; Neuenschwander, M.; Schlesinger, S. Breakfast Skipping Is Associated with Increased Risk of Type 2 Diabetes among Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Nutr. 2018, 149, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Ofori-Asenso, R.; Owen, A.J.; Liew, D. Skipping Breakfast and the Risk of Cardiovascular Disease and Death: A Systematic Review of Prospective Cohort Studies in Primary Prevention Settings. J. Cardiovasc. Dev. Dis. 2019, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, R.; Tomi, R.; Shinzawa, M.; Yoshimura, R.; Ozaki, S.; Nakanishi, K.; Ide, S.; Nagatomo, I.; Nishida, M.; Yamauchi-Takihara, K.; et al. Associations of Skipping Breakfast, Lunch, and Dinner with Weight Gain and Overweight/Obesity in University Students: A Retrospective Cohort Study. Nutrients 2021, 13, 271. [Google Scholar] [CrossRef]
- Kaya, S.; Uzdil, Z.; Cakiroğlu, F.P. Evaluation of the effects of fear and anxiety on nutrition during the COVID-19 pandemic in Turkey. Public Health Nutr. 2020, 24, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Shinozawa, Y.; Tanaka, J.; Kato, E.; Kitamura, K.; et al. Validity of Short and Long Self-Administered Food Frequency Questionnaires in Ranking Dietary Intake in Middle-Aged and Elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) Protocol Area. J. Epidemiol. 2016, 26, 420–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Stevens, J.E.; Cukier, K.; Maddox, A.F.; Wishart, J.M.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Effects of a Protein Preload on Gastric Emptying, Glycemia, and Gut Hormones After a Carbohydrate Meal in Diet-Controlled Type 2 Diabetes. Diabetes Care 2009, 32, 1600–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-H.; Tura, A.; Mari, A.; Ko, S.-H.; Kwon, H.-S.; Song, K.-H.; Yoon, K.-H.; Lee, K.-W.; Ahn, Y.-B. Potentiation of the early-phase insulin response by a prior meal contributes to the second-meal phenomenon in type 2 diabetes. Am. J. Physiol. Metab. 2011, 301, E984–E990. [Google Scholar] [CrossRef] [Green Version]
- Fraze, E.; Donner, C.; Swislocki, A.; Chiou, Y.; Chen, Y.; Reaven, G. Ambient Plasma Free Fatty Acid Concentrations in Noninsulin-Dependent Diabetes Mellitus: Evidence for Insulin Resistance*. J. Clin. Endocrinol. Metab. 1985, 61, 807–811. [Google Scholar] [CrossRef]
- Ferrannini, E.; Barrett, E.J.; Bevilacqua, S.; De Fronzo, R.A. Effect of fatty acids on glucose production and utilization in man. J. Clin. Investig. 1983, 72, 1737–1747. [Google Scholar] [CrossRef] [Green Version]
- Tomita, T.; Yamasaki, Y.; Kubota, M.; Tohdo, R.; Katsura, M.; Ikeda, M.; Nakahara, I.; Shiba, Y.; Matsuhisa, M.; Hori, M. High Plasma Free Fatty Acids Decrease Splanchnic Glucose Uptake in Patients with Non-Insulin-Dependent Diabetes Mellitus. Endocr. J. 1998, 45, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Carey, P.E.; Halliday, J.; Snaar, J.E.M.; Morris, P.G.; Taylor, R. Direct assessment of muscle glycogen storage after mixed meals in normal and type 2 diabetic subjects. Am. J. Physiol. Metab. 2003, 284, E688–E694. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, A.; Gerrard, J.; Taylor, R. The Second-Meal Phenomenon in Type 2 Diabetes. Diabetes Care 2009, 32, 1199–1201. [Google Scholar] [CrossRef] [Green Version]
- ARaben, A.; Agerholm-Larsen, L.; Flint, A.; Holst, J.J.; Astrup, A. Meals with similar energy densities but rich in protein, fat, carbohydrate, or alcohol have different effects on energy expenditure and substrate metabolism but not on appetite and energy intake. Am. J. Clin. Nutr. 2003, 77, 91–100. [Google Scholar] [CrossRef]
- Chartrand, D.; Da Silva, M.S.; Julien, P.; Rudkowska, I. Influence of Amino Acids in Dairy Products on Glucose Homeostasis: The Clinical Evidence. Can. J. Diabetes 2017, 41, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Wajngot, A.; Grill, V.; Efendić, S.; Cerasi, E. The Staub-Traugott effect. Evidence for multifactorial regulation of a physiological function. Scand. J. Clin. Lab. Investig. 1982, 42, 307–313. [Google Scholar] [CrossRef]
Nutrients | Dinner before the Trial Day | High Protein Breakfast | Normal Breakfast | Lunch | Dinner on the Trial Day |
---|---|---|---|---|---|
Energy (kcal) | 992.5 | 653.0 | 691.3 | 197.5 | 971.5 |
Protein (g) | 33.5 (13%) | 98.3 (60%) | 32.4 (18%) | 9.3 (18%) | 29.6 (12%) |
Fat (g) | 28.4 (26%) | 12.1 (17%) | 28.9 (36%) | 8.3 (36%) | 29.0 (27%) |
Total Carbohydrate (g) | 150.8 (61%) | 37.4 (23%) | 81.0 (45%) | 23.2 (45%) | 148.0 (61%) |
Sugar (g) | 145.4 | 27.0 | 70.5 | 20.2 | 143.1 |
Dietary fiber (g) | 5.4 | 10.4 | 10.5 | 3.0 | 4.9 |
Salt (g) | 1.9 | 3.0 | 0.5~0.9 | 0.1~0.3 | 2.6 |
Nutrients | Dinner before the Trial Day | High Protein Breakfast | Normal Breakfast | Lunch | Dinner on the Trial Day |
---|---|---|---|---|---|
Energy (kcal) | 671.0 | 536.7 | 525.4 | 158.0 | 650.0 |
Protein (g) | 29.1 (17%) | 81.9 (60%) | 25.9 (18%) | 7.4 (18%) | 25.2 (16%) |
Fat (g) | 16.9 (23%) | 8.9 (15%) | 23.1 (36%) | 6.6 (36%) | 17.5 (24%) |
Total Carbohydrate (g) | 100.5 (60%) | 35.0 (26%) | 64.8 (45%) | 18.5 (45%) | 97.7 (60%) |
Sugar (g) | 95.9 | 26.8 | 56.4 | 16.1 | 93.6 |
Dietary fiber (g) | 4.6 | 8.2 | 8.4 | 2.4 | 4.1 |
Salt (g) | 1.6 | 2.3 | 0.4~0.7 | 0.1~0.2 | 2.3 |
Baseline | Average | SEM |
---|---|---|
Age (years) | 22.9 | 1.2 |
Height (cm) | 163.8 | 2.9 |
Body weight (kg) | 52.9 | 2.6 |
BMI (kg/m2) | 19.6 | 0.4 |
BMR | 1255.9 | 58.4 |
Energy intake (kcal/day) | 1810.2 | 154.0 |
Fat (%) | 22.9 | 1.9 |
Muscle mass (kg) | 22.4 | 1.7 |
Trials | NS | PS | NL | PL |
---|---|---|---|---|
Step count (steps/day) | 5632.8 ± 1061.6 | 6507.8 ± 1338.5 | 6745.5 ± 1119.6 | 7214.3 ± 1874.4 |
MVPA (min/day) | 64.9 ± 13.9 | 68.3 ± 15.7 | 74.5 ± 12.8 | 73.8 ± 15.9 |
Group | Average (n = 12) | Women (n = 9) | Men (n = 3) | FDR-Adjusted p Value | |
---|---|---|---|---|---|
3 h after breakfast | NS | 33.16 ± 5.67 | 31.17 ± 5.09 | 39.13 ± 19.29 | 0.7242 |
PS | 17.44 ± 4.02 | 16.61 ± 4.61 | 19.92 ± 9.85 | 0.7815 | |
NL | 45.38 ± 5.31 | 44.15 ± 5.76 | 49.04 ± 14.57 | 0.7778 | |
PL | 21.3 ± 3.57 | 22.53 ± 4.58 | 17.63 ± 4.49 | 0.4713 | |
3 h after lunch | NL | 39.2 ± 4.57 | 38.90 ± 5.21 | 40.08 ± 11.50 | 0.9349 |
PL | 33.57 ± 7.01 | 34.93 ± 9.17 | 29.50 ± 7.76 | 0.7076 | |
1.5 h after lunch | NL | 28.92 ± 2.75 | 29.50 ± 3.40 | 27.17 ± 5.15 | 0.7575 |
PL | 20.07 ± 3.41 | 20.50 ± 4.49 | 19.08 ± 3.21 | 0.8512 | |
3 h after dinner | NS | 137.38 ± 16.04 | 126.46 ± 18.42 | 170.13 ± 29.59 | 0.2834 |
PS | 137.52 ± 14.39 | 124.10 ± 14.21 | 177.79 ± 32.37 | 0.2317 | |
NL | 151.69 ± 9.26 | 140.03 ± 6.58 | 186.67 ± 23.51 | 0.1784 | |
PL | 129.18 ± 11.22 | 118.44 ± 12.24 | 161.38 ± 16.73 | 0.1008 | |
16 h after breakfast | NS | 234.98 ± 31.39 | 214.89 ± 31.35 | 295.25 ± 86.36 | 0.4563 |
PS | 216.32 ± 28.6 | 199.56 ± 27.44 | 266.63 ± 85.25 | 0.5197 | |
NL | 294.28 ± 23.95 | 278.02 ± 23.64 | 343.09 ± 65.79 | 0.4318 | |
PL | 237.19 ± 20.8 | 229.31 ± 24.90 | 260.83 ± 41.29 | 0.5526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, K.; Furutani, A.; Sasaki, H.; Takahashi, M.; Shibata, S. Effect of a High Protein Diet at Breakfast on Postprandial Glucose Level at Dinner Time in Healthy Adults. Nutrients 2023, 15, 85. https://doi.org/10.3390/nu15010085
Xiao K, Furutani A, Sasaki H, Takahashi M, Shibata S. Effect of a High Protein Diet at Breakfast on Postprandial Glucose Level at Dinner Time in Healthy Adults. Nutrients. 2023; 15(1):85. https://doi.org/10.3390/nu15010085
Chicago/Turabian StyleXiao, Keyi, Akiko Furutani, Hiroyuki Sasaki, Masaki Takahashi, and Shigenobu Shibata. 2023. "Effect of a High Protein Diet at Breakfast on Postprandial Glucose Level at Dinner Time in Healthy Adults" Nutrients 15, no. 1: 85. https://doi.org/10.3390/nu15010085
APA StyleXiao, K., Furutani, A., Sasaki, H., Takahashi, M., & Shibata, S. (2023). Effect of a High Protein Diet at Breakfast on Postprandial Glucose Level at Dinner Time in Healthy Adults. Nutrients, 15(1), 85. https://doi.org/10.3390/nu15010085