Circulating Extracellular Vesicles Are Increased in Newly Diagnosed Celiac Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Flow Cytometry Analysis
2.3. Gating Strategy for EV Detection and Sub-Typing by Polychromatic Flow Cytometry
2.4. Statistical Analysis
3. Results
Patient Characteristics and EV Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colombo, M.; Raposo, G.; Théry, C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and other Extracellular Vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [Google Scholar] [CrossRef] [PubMed]
- Romano, E.; Netti, P.A.; Torino, E. Exosomes in Gliomas: Biogenesis, Isolation, and Preliminary Applications in Nanomedicine. Pharmaceuticals 2020, 13, 319. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Patel, T.; Freedman, J.E. Circulating Extracellular Vesicles in Human Disease. N. Engl. J. Med. 2018, 379, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Revenfeld, A.L.S.; Bæk, R.; Nielsen, M.H.; Stensballe, A.; Varming, K.; Jørgensen, M. Diagnostic and Prognostic Potential of Extracellular Vesicles in Peripheral Blood. Clin. Ther. 2014, 36, 830–846. [Google Scholar] [CrossRef] [Green Version]
- Lawson, C.; Vicencio, J.M.; Yellon, D.M.; Davidson, S.M. Microvesicles and Exosomes: New Players in Metabolic and Cardiovascular Disease. J. Endocrinol. 2016, 228, R57–R71. [Google Scholar] [CrossRef]
- Raposo, G.; Stahl, P.D. Extracellular Vesicles: A New Communication Paradigm? Nat. Rev. Mol. Cell Biol. 2019, 20, 509–510. [Google Scholar] [CrossRef]
- Simeone, P.; Bologna, G.; Lanuti, P.; Pierdomenico, L.; Guagnano, M.T.; Pieragostino, D.; Del Boccio, P.; Vergara, D.; Marchisio, M.; Miscia, S.; et al. Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int. J. Mol. Sci. 2020, 21, 2514. [Google Scholar] [CrossRef] [Green Version]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Kao, Y.; Zhou, Q.; Wuethrich, A.; Stark, M.S.; Schaider, H.; Soyer, H.P.; Lin, L.L.; Trau, M. An Integrated Microfluidic-SERS Platform Enables Sensitive Phenotyping of Serum Extracellular Vesicles in Early Stage Melanomas. Adv. Funct. Mater. 2022, 32, 2010296. [Google Scholar] [CrossRef]
- Woollard, J.R.; Puranik, A.; Jordan, K.L.; Lerman, L.O. Using Imaging Flow Cytometry to Characterize Extracellular Vesicles Isolated from Cell Culture Media, Plasma or Urine. Biol. Protoc. 2019, 9, e3420. [Google Scholar] [CrossRef]
- Arntz, O.J.; Pieters, B.C.H.; Oliveira, M.C.; Broeren, M.G.A.; Bennink, M.B.; de Vries, M.; van Lent, P.L.E.M.; Koenders, M.I.; van den Berg, W.B.; van der Kraan, P.M.; et al. Oral Administration of Bovine Milk Derived Extracellular Vesicles Attenuates Arthritis in Two Mouse Models. Mol. Nutr. Food Res. 2015, 59, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Araújo-Filho, I.; Piffoux, M.; Nicolás-Boluda, A.; Grangier, A.; Boucenna, I.; Real, C.C.; Marques, F.L.N.; de Paula Faria, D.; do Rego, A.C.M.; et al. Local Administration of Stem Cell-Derived Extracellular Vesicles in a Thermoresponsive Hydrogel Promotes a pro-Healing Effect in a Rat Model of Colo-Cutaneous Post-Surgical Fistula. Nanoscale 2021, 13, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Lin, Q.; Huang, L.; Fu, Y.; Wang, L.; He, S.; Fu, Y.; Yang, S.; Zhang, Z.; Zhang, L.; et al. Dopamine-Loaded Blood Exosomes Targeted to Brain for Better Treatment of Parkinson’s Disease. J. Control. Release 2018, 287, 156–166. [Google Scholar] [CrossRef]
- Zadka, Ł.; Buzalewicz, I.; Ulatowska-Jarża, A.; Rusak, A.; Kochel, M.; Ceremuga, I.; Dzięgiel, P. Label-Free Quantitative Phase Imaging Reveals Spatial Heterogeneity of Extracellular Vesicles in Select Colon Disorders. Am. J. Pathol. 2021, 191, 2147–2171. [Google Scholar] [CrossRef] [PubMed]
- Dinh, P.-U.C.; Paudel, D.; Brochu, H.; Popowski, K.D.; Gracieux, M.C.; Cores, J.; Huang, K.; Hensley, M.T.; Harrell, E.; Vandergriff, A.C.; et al. Inhalation of Lung Spheroid Cell Secretome and Exosomes Promotes Lung Repair in Pulmonary Fibrosis. Nat. Commun. 2020, 11, 1064. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; LeClaire, M.; Gimzewski, J.K. Ascent of Atomic Force Microscopy as a Nanoanalytical Tool for Exosomes and other Extracellular Vesicles. Nanotechnology 2018, 29, 132001. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, V.; Lucchetti, D.; Gatto, I.; Maiorana, A.; Marcantoni, M.; Maulucci, G.; Papi, M.; Pola, R.; De Spirito, M.; Sgambato, A. Dynamic Light Scattering for the Characterization and Counting of Extracellular Vesicles: A Powerful Noninvasive Tool. J. Nanopart. Res. 2014, 16, 2583. [Google Scholar] [CrossRef]
- Marchisio, M.; Simeone, P.; Bologna, G.; Ercolino, E.; Pierdomenico, L.; Pieragostino, D.; Ventrella, A.; Antonini, F.; Del Zotto, G.; Vergara, D.; et al. Flow Cytometry Analysis of Circulating Extracellular Vesicle Subtypes from Fresh Peripheral Blood Samples. Int. J. Mol. Sci. 2021, 22, 48. [Google Scholar] [CrossRef]
- Simeone, P.; Celia, C.; Bologna, G.; Ercolino, E.; Pierdomenico, L.; Cilurzo, F.; Grande, R.; Diomede, F.; Vespa, S.; Canonico, B.; et al. Diameters and Fluorescence Calibration for Extracellular Vesicle Analyses by Flow Cytometry. Int. J. Mol. Sci. 2020, 21, 7885. [Google Scholar] [CrossRef]
- Santilli, F.; Marchisio, M.; Lanuti, P.; Boccatonda, A.; Miscia, S.; Davl, G. Microparticles as New Markers of Cardiovascular Risk in Diabetes and Beyond. Thromb. Haemost. 2016, 116, 220–234. [Google Scholar] [CrossRef]
- Badimon, L.; Suades, R.; Fuentes, E.; Palomo, I.; Padró, T. Role of Platelet-Derived Microvesicles as Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis. Front. Pharmacol. 2016, 07, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhter, A.J.; Sims, E.K. Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders. Mol. Endocrinol. 2015, 29, 1535–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puca, V.; Ercolino, E.; Celia, C.; Bologna, G.; Di Marzio, L.; Mincione, G.; Marchisio, M.; Miscia, S.; Muraro, R.; Lanuti, P.; et al. Detection and Quantification of EDNA-Associated Bacterial Membrane Vesicles by Flow Cytometry. Int. J. Mol. Sci. 2019, 20, 5307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccocioppo, F.; Lanuti, P.; Centonze, D.; Miscia, S.; Marchisio, M. The Link among Neurological Diseases: Extracellular Vesicles as a Possible Brain Injury Footprint. Neuro-Signals 2019, 27, 25–39. [Google Scholar] [CrossRef]
- Ciccocioppo, F.; Bologna, G.; Ercolino, E.; Pierdomenico, L.; Simeone, P.; Lanuti, P.; Pieragostino, D.; Del Boccio, P.; Marchisio, M.; Miscia, S. Neurodegenerative Diseases as Proteinopathies-Driven Immune Disorders. Neural Regen. Res. 2020, 15, 850. [Google Scholar] [CrossRef]
- Buca, D.; Bologna, G.; D’Amico, A.; Cugini, S.; Musca, F.; Febbo, M.; D’Arcangelo, D.; Buca, D.; Simeone, P.; Liberati, M.; et al. Extracellular Vesicles in Feto–Maternal Crosstalk and Pregnancy Disorders. IJMS 2020, 21, 2120. [Google Scholar] [CrossRef] [Green Version]
- Brocco, D.; Lanuti, P.; Simeone, P.; Bologna, G.; Pieragostino, D.; Cufaro, M.C.; Graziano, V.; Peri, M.; Di Marino, P.; De Tursi, M.; et al. Circulating Cancer Stem Cell-Derived Extracellular Vesicles as a Novel Biomarker for Clinical Outcome Evaluation. J. Oncol. 2019, 2019, 5879616. [Google Scholar] [CrossRef]
- Ciardiello, C.; Leone, A.; Lanuti, P.; Roca, M.S.; Moccia, T.; Minciacchi, V.R.; Minopoli, M.; Gigantino, V.; De Cecio, R.; Rippa, M.; et al. Large Oncosomes Overexpressing Integrin Alpha-V Promote Prostate Cancer Adhesion and Invasion via AKT Activation. J. Exp. Clin. Cancer Res. 2019, 38, 317. [Google Scholar] [CrossRef] [Green Version]
- Mezouar, S.; Mege, D.; Darbousset, R.; Farge, D.; Debourdeau, P.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Involvement of Platelet-Derived Microparticles in Tumor Progression and Thrombosis. Semin. Oncol. 2014, 41, 346–358. [Google Scholar] [CrossRef]
- Bernard, V.; Kim, D.U.; San Lucas, F.A.; Castillo, J.; Allenson, K.; Mulu, F.C.; Stephens, B.M.; Huang, J.; Semaan, A.; Guerrero, P.A.; et al. Circulating Nucleic Acids Are Associated with Outcomes of Patients with Pancreatic Cancer. Gastroenterology 2019, 156, 108–118.e4. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Guan, X.; Zhao, J.; Shen, L.; Liu, J. Exosomal Double-Stranded DNA as a Biomarker for the Diagnosis and Preoperative Assessment of Pheochromocytoma and Paraganglioma. Mol. Cancer 2018, 17, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsilioni, I.; Theoharides, T.C. Extracellular Vesicles Are Increased in the Serum of Children with Autism Spectrum Disorder, Contain Mitochondrial DNA, and Stimulate Human Microglia to Secrete IL-1β. J. Neuroinflamm. 2018, 15, 239. [Google Scholar] [CrossRef] [PubMed]
- Żmigrodzka, M.; Guzera, M.; Miśkiewicz, A.; Jagielski, D.; Winnicka, A. The Biology of Extracellular Vesicles with Focus on Platelet Microparticles and Their Role in Cancer Development and Progression. Tumor. Biol. 2016, 37, 14391–14401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonetti, D.; Reimund, J.-M.; Tesse, A.; Viennot, S.; Martinez, M.C.; Bretagne, A.-L.; Andriantsitohaina, R. Circulating Microparticles from Crohn’s Disease Patients Cause Endothelial and Vascular Dysfunctions. PLoS ONE 2013, 8, e73088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-Tapia, A.; Hill, I.D.; Kelly, C.P.; Calderwood, A.H.; Murray, J.A. ACG Clinical Guidelines: Diagnosis and Management of Celiac Disease. Am. J. Gastroenterol. 2013, 108, 656–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parzanese, I.; Qehajaj, D.; Patrinicola, F.; Aralica, M.; Chiriva-Internati, M.; Stifter, S.; Elli, L.; Grizzi, F. Celiac Disease: From Pathophysiology to Treatment. WJGP 2017, 8, 27. [Google Scholar] [CrossRef]
- Lemos, D.S.; Beckert, H.C.; Oliveira, L.C.; Berti, F.C.B.; Ozawa, P.M.M.; Souza, I.L.M.; Zanata, S.M.; Pankievicz, V.C.S.; Tuleski, T.R.; Souza, E.M.; et al. Extracellular Vesicle MicroRNAs in Celiac Disease Patients under a Gluten-Free Diet, and in Lactose Intolerant Individuals. BBA Adv. 2022, 2, 100053. [Google Scholar] [CrossRef]
- Corazza, G.R.; Villanacci, V.; Zambelli, C.; Milione, M.; Luinetti, O.; Vindigni, C.; Chioda, C.; Albarello, L.; Bartolini, D.; Donato, F. Comparison of the Interobserver Reproducibility with Different Histologic Criteria Used in Celiac Disease. Clin. Gastroenterol. Hepatol. 2007, 5, 838–843. [Google Scholar] [CrossRef]
- Rossi, C.; Cicalini, I.; Cufaro, M.C.; Agnifili, L.; Mastropasqua, L.; Lanuti, P.; Marchisio, M.; De Laurenzi, V.; Del Boccio, P.; Pieragostino, D. Multi-Omics Approach for Studying Tears in Treatment-Naïve Glaucoma Patients. Int. J. Mol. Sci. 2019, 20, 4029. [Google Scholar] [CrossRef] [Green Version]
- Pieragostino, D.; Lanuti, P.; Cicalini, I.; Cufaro, M.C.; Ciccocioppo, F.; Ronci, M.; Simeone, P.; Onofrj, M.; van der Pol, E.; Fontana, A.; et al. Proteomics Characterization of Extracellular Vesicles Sorted by Flow Cytometry Reveals a Disease-Specific Molecular Cross-Talk from Cerebrospinal Fluid and Tears in Multiple Sclerosis. J. Proteom. 2019, 204, 103403. [Google Scholar] [CrossRef]
- Cappellano, G.; Raineri, D.; Rolla, R.; Giordano, M.; Puricelli, C.; Vilardo, B.; Manfredi, M.; Cantaluppi, V.; Sainaghi, P.P.; Castello, L.; et al. Circulating Platelet-Derived Extracellular Vesicles Are a Hallmark of Sars-Cov-2 Infection. Cells 2021, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, E.; Sturk, A.; van Leeuwen, T.; Nieuwland, R.; Coumans, F.; ISTH-SSC-VB Working Group. Standardization of Extracellular Vesicle Measurements by Flow Cytometry through Vesicle Diameter Approximation. J. Thromb. Haemost. 2018, 16, 1236–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamouard, P.; Desprez, D.; Hugel, B.; Kunzelmann, C.; Gidon-Jeangirard, C.; Lessard, M.; Baumann, R.; Freyssinet, J.-M.; Grunebaum, L. Circulating Cell-Derived Microparticles in Crohn? S Disease. Dig. Dis. Sci. 2005, 50, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Tziatzios, G.; Polymeros, D.; Spathis, A.; Triantafyllou, M.; Gkolfakis, P.; Karakitsos, P.; Dimitriadis, G.; Triantafyllou, K. Increased Levels of Circulating Platelet Derived Microparticles in Crohn’s Disease Patients. Scand. J. Gastroenterol. 2016, 51, 1184–1192. [Google Scholar] [CrossRef]
- Jiang, L.; Shen, Y.; Guo, D.; Yang, D.; Liu, J.; Fei, X.; Yang, Y.; Zhang, B.; Lin, Z.; Yang, F.; et al. EpCAM-Dependent Extracellular Vesicles from Intestinal Epithelial Cells Maintain Intestinal Tract Immune Balance. Nat. Commun. 2016, 7, 13045. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Zhang, D.; Zhu, Z.; Dela Cruz, C.S.; Jin, Y. Epithelial Cell-Derived Microvesicles Activate Macrophages and Promote Inflammation via Microvesicle-Containing MicroRNAs. Sci. Rep. 2016, 6, 35250. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, A.M.F.; Arêas, E.P.G.; Schröder, A.; Fa, N. Gliadin Effect on Fluctuation Properties of Phospholipid Giant Vesicles. Colloids Surf. B Biointerfaces 2004, 34, 53–57. [Google Scholar] [CrossRef]
- Spadoni, I.; Zagato, E.; Bertocchi, A.; Paolinelli, R.; Hot, E.; Di Sabatino, A.; Caprioli, F.; Bottiglieri, L.; Oldani, A.; Viale, G.; et al. A Gut-Vascular Barrier Controls the Systemic Dissemination of Bacteria. Science 2015, 350, 830–834. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, B.; Li, X.; Ni, Y.; Luo, Y. Plasma Endothelial Microparticles and Their Correlation with the Presence of Hypertension and Arterial Stiffness in Patients with Type 2 Diabetes: Endothelial Microparticles and Diabetes-Associated Vascular Diseases. J. Clin. Hypertens. 2012, 14, 455–460. [Google Scholar] [CrossRef]
- Jansen, F.; Yang, X.; Hoelscher, M.; Cattelan, A.; Schmitz, T.; Proebsting, S.; Wenzel, D.; Vosen, S.; Franklin, B.S.; Fleischmann, B.K.; et al. Endothelial Microparticle–Mediated Transfer of MicroRNA-126 Promotes Vascular Endothelial Cell Repair via SPRED1 and Is Abrogated in Glucose-Damaged Endothelial Microparticles. Circulation 2013, 128, 2026–2038. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bañares, F.; Beltrán, B.; Salas, A.; Comino, I.; Ballester-Clau, R.; Ferrer, C.; Molina-Infante, J.; Rosinach, M.; Modolell, I.; Rodríguez-Moranta, F.; et al. Persistent Villous Atrophy in De Novo Adult Patients with Celiac Disease and Strict Control of Gluten-Free Diet Adherence: A Multicenter Prospective Study (CADER Study). Am. J. Gastroenterol. 2021, 116, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Ciacci, C.; Cirillo, M.; Cavallaro, R.; Mazzacca, G. Long-Term Follow-Up of Celiac Adults on Gluten-Free Diet: Prevalence and Correlates of Intestinal Damage. Digestion 2002, 66, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Lo, W.; Memeo, L.; Rotterdam, H.; Green, P.H.R. Duodenal Histology in Patients with Celiac Disease after Treatment with a Gluten-Free Diet. Gastrointest. Endosc. 2003, 57, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Marlicz, W.; Skonieczna-Żydecka, K.; Dabos, K.J.; Łoniewski, I.; Koulaouzidis, A. Emerging Concepts in Non-Invasive Monitoring of Crohn’s Disease. Therap. Adv. Gastroenterol. 2018, 11, 175628481876907. [Google Scholar] [CrossRef]
- Capuano, M.; Iaffaldano, L.; Tinto, N.; Montanaro, D.; Capobianco, V.; Izzo, V.; Tucci, F.; Troncone, G.; Greco, L.; Sacchetti, L. MicroRNA-449a Overexpression, Reduced NOTCH1 Signals and Scarce Goblet Cells Characterize the Small Intestine of Celiac Patients. PLoS ONE 2011, 6, e29094. [Google Scholar] [CrossRef] [Green Version]
- Clemente, E.; Efthymakis, K.; Carletti, E.; Capone, V.; Sperduti, S.; Bologna, G.; Marchisio, M.; Di Nicola, M.; Neri, M.; Sallese, M. An Explorative Study Identifies MiRNA Signatures for the Diagnosis of Non-Celiac Wheat Sensitivity. PLoS ONE 2019, 14, e0226478. [Google Scholar] [CrossRef] [Green Version]
- Felli, C.; Baldassarre, A.; Masotti, A. Intestinal and Circulating MicroRNAs in Coeliac Disease. Int. J. Mol. Sci. 2017, 18, 1907. [Google Scholar] [CrossRef]
Detection | Fluorochrome | Ab Clone | Catalog | Amount per Test |
---|---|---|---|---|
Phalloidin | FITC | 626267 (custom kit) | 0.5 µL | |
CD41a | PE | HIP8 | 626266 (custom kit) | 5 µL |
CD31 | PE-Cy7 | WM59 | 5 µL | |
CD45 | APC-H7 | 2D1 | 560178 | 2 µL |
EpCAM/ CD326 | PerCP-Cy5.5 | EBA-1 | 347199 | 5 µL |
Annexin V | V500 | 561501 | 1 µL |
Parameter | Healthy Controls (HD) n = 22 | Celiac Disease (CD) n = 22 | GFD n = 11 | Significance | |
---|---|---|---|---|---|
Histology grading | A | 9.0% | 37.5% | p < 0.049 vs. non-atrophy prevalence in GFD and severe atrophy prevalence in GFD | |
B1 | 50.0% | 50.0% | |||
B2 | 41.0% | 12.5% | |||
IEL × 100 enterocytes | 52 ± 18 | 35 ± 6 | p = 0.004 vs. GFD | ||
Anti-t-TG (×ULN) | 0.6 ± 0.8 | 13.7 ± 10.8 | 0.7 ± 0.7 | p = 0.01 vs. GFD, HC | |
Anti-deamidated gliadin IgA (×ULN) | 0.2 ± 0.2 | 2.5 ± 4.5 | 0.3 ± 0.3 | p = 0.039 vs. GFD, HC | |
Anti-deamidated gliadin IgG (×ULN) | 1 ± 0.1 | 8.3 ± 9.1 | 0.6 ± 0.8 | p = n.s. | |
Hemoglobin (×ULN) | 1.2 ± 0.06 | 1.03 ± 0.09 | 1.08 ± 0.08 | p = 0.026 vs. CD, GFD | |
MCV (fl) | 88.7 ± 2.6 | 82.5 ± 9.6 | 88.4 ± 5.5 | p = 0.037 vs. CD, GFD | |
Anemia | 4.5% | 33.3% | 11.3% | p < 0.04 | |
Serum ferritin (ng/mL) | 36.3 ± 45.2 | 21.7 ± 26.1 | 28.8 ± 23.5 | p = 0.031 vs. CD, GFD | |
Low serum ferritin | 4.5% | 77.8% | 25.0% | p < 0.04 vs. prevalence of low serum ferritin in GFD and controls | |
ESR (mm/hr) | 11.3 ± 5.6 | 10.6 ± 7.1 | 12.2 ± 4.1 | p = n.s. | |
CRP (×ULN) | 0.48 ± 0.19 | 0.56 ± 0.03 | 0.34 ± 0.28 | p = n.s. | |
Fecal elastase (μg/g) | 499.1 ± 187.4 | 180.6 ± 190.1 | 378.5 ± 108.2 | p = 0.036 vs. CD, GFD | |
BMI (kg/m2) | 26.1 ± 5.1 | 21.6 ± 3.5 | 22.5 ± 2.2 | p = 0.043 vs. CD, GFD | |
Overweight | 54.5% | 11.1% | 0% | p < 0.025 |
EV Type | Healthy Controls (HC) n = 22 | 95% Confidence Interval | Celiac Disease (CD) n = 22 | 95% Confidence Interval | GFD n = 11 | 95% Confidence Interval | Significance | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Lower Bound | Upper Bound | Mean | Lower Bound | Upper Bound | Mean | Lower Bound | Upper Bound | ||
Total | 3696 | 2895 | 4717 | 35944 | 23735 | 54432 | 25439 | 13766 | 47012 | p < 0.001 vs. HC |
Total annexin V+ | 153 | 66 | 357 | 5485 | 3293 | 9138 | 4878 | 2173 | 10950 | p < 0.001 vs. HC |
CD31+ (endothelium) | 83 | 39 | 176 | 293 | 179 | 481 | 209 | 108 | 403 | p < 0.01 vs. HC |
CD31+ annexin V+ | 27 | 16 | 80 | 91 | 53 | 158 | 36 | 16 | 85 | n.s. |
CD41a+ (platelet) | 964 | 624 | 1489 | 3729 | 2281 | 6096 | 2166 | 1132 | 4147 | p < 0.042 vs. HC |
CD41a+ annexin V+ | 86 | 44 | 155 | 1589 | 831 | 3041 | 933 | 361 | 2412 | p < 0.009 vs. HC |
CD45+ (leukocyte) | 56 | 27 | 116 | 394 | 211 | 737 | 164 | 116 | 338 | p < 0.043 vs. HC |
CD45+ annexin V+ | 26 | 10 | 72 | 95 | 50 | 182 | 41 | 11 | 155 | n.s. |
EpCAM (CD326)+ (mucosa) | 87 | 44 | 173 | 770 | 453 | 1307 | 257 | 158 | 417 | p < 0.03 vs. GFD, HC |
EpCAM (CD326)+ annexin V+ | 12 | 5 | 42 | 61 | 27 | 136 | 33 | 14 | 80 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efthymakis, K.; Bologna, G.; Simeone, P.; Pierdomenico, L.; Catitti, G.; Vespa, S.; Milano, A.; De Bellis, D.; Laterza, F.; Pandolfi, A.; et al. Circulating Extracellular Vesicles Are Increased in Newly Diagnosed Celiac Disease Patients. Nutrients 2023, 15, 71. https://doi.org/10.3390/nu15010071
Efthymakis K, Bologna G, Simeone P, Pierdomenico L, Catitti G, Vespa S, Milano A, De Bellis D, Laterza F, Pandolfi A, et al. Circulating Extracellular Vesicles Are Increased in Newly Diagnosed Celiac Disease Patients. Nutrients. 2023; 15(1):71. https://doi.org/10.3390/nu15010071
Chicago/Turabian StyleEfthymakis, Konstantinos, Giuseppina Bologna, Pasquale Simeone, Laura Pierdomenico, Giulia Catitti, Simone Vespa, Angelo Milano, Domenico De Bellis, Francesco Laterza, Assunta Pandolfi, and et al. 2023. "Circulating Extracellular Vesicles Are Increased in Newly Diagnosed Celiac Disease Patients" Nutrients 15, no. 1: 71. https://doi.org/10.3390/nu15010071
APA StyleEfthymakis, K., Bologna, G., Simeone, P., Pierdomenico, L., Catitti, G., Vespa, S., Milano, A., De Bellis, D., Laterza, F., Pandolfi, A., Pipino, C., Sallese, M., Marchisio, M., Miscia, S., Neri, M., & Lanuti, P. (2023). Circulating Extracellular Vesicles Are Increased in Newly Diagnosed Celiac Disease Patients. Nutrients, 15(1), 71. https://doi.org/10.3390/nu15010071