Five U.S. Dietary Patterns and Their Relationship to Land Use, Water Use, and Greenhouse Gas Emissions: Implications for Future Food Security
Abstract
:1. Introduction
1.1. Gaps in the Literature
1.2. Study Objective
2. Materials and Methods
2.1. Study Design
2.2. Independent Variables
2.3. Dependent Variables
Environmental Data
2.4. Data Sources
2.5. Combining Environmental & Diet Data
3. Results
3.1. Land Use
3.2. Water Use
3.3. GHG Emissions
4. Summary and Conclusions
4.1. Discussion
4.2. Limitations
4.3. Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalos, A.C. Encyclopedia of Quality of Life and Well-Being Research; Springer: Dordrecht, The Netherlands, 2014; ISBN 94-007-0753-3. [Google Scholar]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Fanzo, J.; Davis, C.; McLaren, R.; Choufani, J. The Effect of Climate Change across Food Systems: Implications for Nutrition Outcomes. Glob. Food Secur. 2018, 18, 12–19. [Google Scholar] [CrossRef]
- Gonzalez, C.G. Climate Change, Food Security, and Agrobiodiversity: Toward a Just, Resilient, and Sustainable Food System. Fordham Environ. Law Rev. 2011, 22, 493–522. [Google Scholar]
- Population Division, Department of Economic and Social Affairs, United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2017. [Google Scholar]
- Ericksen, P.J. Conceptualizing Food Systems for Global Environmental Change Research. Glob. Environ. Change 2008, 18, 234–245. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. The Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Clark, M.A.; Domingo, N.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global Food System Emissions Could Preclude Achieving the 1.5 and 2 C Climate Change Targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef]
- USDA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2022; USDA, Economic Research Service using data from U.S. Environmental Protection Agency; USDA: Washington, DC, USA, 2022. [Google Scholar]
- USDA. Economic Research Service and National Agricultural Statistics Service. In 2019 Survey of Irrigation Organizations; USDA: Washington, DC, USA, 2019. [Google Scholar]
- Nickerson, C.; Borchers, A. How Is Land in the United States Used? A Focus on Agricultural Land. Amber Waves ERS Publications, 1 March 2012. [Google Scholar]
- D’Odorico, P.; Carr, J.A.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding Humanity through Global Food Trade. Earths Future 2014, 2, 458–469. [Google Scholar] [CrossRef]
- Bojnec, Š.; Fertő, I. The Duration of Global Agri-Food Export Competitiveness. Br. Food J. 2017, 119, 1378–1393. [Google Scholar] [CrossRef] [Green Version]
- Melillo, J.M.; Richmond, T.; Yohe, G.W. Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2014. [Google Scholar]
- United Nations and Food and Agriculture Organization. The State of the World’s Land and Water Resources for Food and Agriculture; Routledge: London, UK, 2013; ISBN 978-1-136-49888-6. [Google Scholar]
- US Census Bureau. U.S. Population Projections 2015–2060; US Census Bureau: Suitland, MD, USA, 2014. [Google Scholar]
- Allen, T.; Prosperi, P. Modeling Sustainable Food Systems. Environ. Manage. 2016, 57, 956–975. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrowicz, L.; Green, R.; Joy, E.; Smith, P.; Haines, A. The Impacts of Adopting Environmentally Sustainable and Healthy Diets on Greenhouse Gas Emissions, Land Use, and Water Use: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef]
- Soret, S.; Mejia, A.; Batech, M.; Jaceldo-Siegl, K.; Harwatt, H.; Sabaté, J. Climate Change Mitigation and Health Effects of Varied Dietary Patterns in Real-Life Settings throughout North America. Am. J. Clin. Nutr. 2014, 100, 490S–495S. [Google Scholar] [CrossRef] [Green Version]
- Garnett, T. Where Are the Best Opportunities for Reducing Greenhouse Gas Emissions in the Food System (Including the Food Chain)? Food Policy 2011, 36, S23–S32. [Google Scholar] [CrossRef]
- World Health Organization. Sustainable Healthy Diets: Guiding Principles; Food & Agriculture Organization: Rome, Italy, 2019; ISBN 92-5-131875-1. [Google Scholar]
- Meier, T.; Christen, O. Environmental Impacts of Dietary Recommendations and Dietary Styles: Germany as an Example. Environ. Sci. Technol. 2013, 47, 877–888. [Google Scholar] [CrossRef]
- Reinhardt, S.L.; Boehm, R.; Blackstone, N.T.; El-Abbadi, N.H.; McNally Brandow, J.S.; Taylor, S.F.; DeLonge, M.S. Systematic Review of Dietary Patterns and Sustainability in the United States. Adv. Nutr. 2020, 11, 1016–1031. [Google Scholar] [CrossRef] [Green Version]
- Tom, M.S.; Fischbeck, P.S.; Hendrickson, C.T. Energy Use, Blue Water Footprint, and Greenhouse Gas Emissions for Current Food Consumption Patterns and Dietary Recommendations in the US. Environ. Syst. Decis. 2016, 36, 92–103. [Google Scholar] [CrossRef]
- Gephart, J.A.; Davis, K.F.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; Pace, M.L. The Environmental Cost of Subsistence: Optimizing Diets to Minimize Footprints. Sci. Total Environ. 2016, 553, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Boden, T.; Andres, R.; Marland, G. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751–2014) (V. 2017). 2017. Available online: https://www.osti.gov/servlets/purl/1389331/ (accessed on 15 November 2022).
- Fanzo, J.; Bellows, A.L.; Spiker, M.L.; Thorne-Lyman, A.L.; Bloem, M.W. The Importance of Food Systems and the Environment for Nutrition. Am. J. Clin. Nutr. 2021, 113, 7–16. [Google Scholar] [CrossRef]
- Sallis, J.F.; Owen, N. Ecological Models of Health Behavior. In Health Behavior: Theory, Research, and Practice; Glanz, K., Rimer, B.K., Viswanath, K., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 978-1-118-62900-0. [Google Scholar]
- Ballew, M.T.; Leiserowitz, A.; Roser-Renouf, C.; Rosenthal, S.A.; Kotcher, J.E.; Marlon, J.R.; Lyon, E.; Goldberg, M.H.; Maibach, E.W. Climate Change in the American Mind: Data, Tools, and Trends. Environ. Sci. Policy Sustain. Dev. 2019, 61, 4–18. [Google Scholar] [CrossRef]
- Hathaway, J.; Maibach, E.W. Health Implications of Climate Change: A Review of the Literature About the Perception of the Public and Health Professionals. Curr. Environ. Health Rep. 2018, 5, 197–204. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; Skyhorse Publishing, Inc.: New York, NY, USA, 2015. [Google Scholar]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; USDA: Washington, DC, USA, 2020. [Google Scholar]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020. [Google Scholar]
- USDA. WWEIA (What We Eat in America) Data Tables. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweia-data-tables/ (accessed on 20 April 2021).
- USDA. ARS. Food Patterns Equivalents Intakes from Food: Mean Amounts Consumed per Individual, by Gender and Age, What We Eat in America, NHANES 2017–2018; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020. [Google Scholar]
- Center for Food Safety and Applied Calories on the New Nutrition Facts Label. FDA. 2022. Available online: https://www.fda.gov/food/new-nutrition-facts-label/calories-new-nutrition-facts-label (accessed on 15 November 2022).
- U.S. Department of Agriculture, Agricultural Research Service. Energy Intakes: Percentages of Energy from Protein, Carbohydrate, Fat, and Alcohol, by Gender and Age, What We Eat in America, NHANES 2017–2018; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020. [Google Scholar]
- USDA. NASS. USDA/NASS—2007 Census of Agriculture: Volume 1—Geographic Area Series, Part 51; United States Department of Agriculture: Washington, DC, USA, 2009. [Google Scholar]
- Pfister, S.; Bayer, P. Monthly Water Stress: Spatially and Temporally Explicit Consumptive Water Footprint of Global Crop Production. J. Clean. Prod. 2014, 73, 52–62. [Google Scholar] [CrossRef]
- USDA. NASS. Farm and Ranch Irrigation Survey: Volume 3—Special Studies, Part 1; 2007 Census of Agriculture; United States Department of Agriculture: Washington, DC, USA, 2010; p. 268. [Google Scholar]
- FAO. CROPWAT for Windows; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999. [Google Scholar]
- FAO. Global Livestock Environmental Assessment Model (GLEAM); Version 2.0; Food and Agricultural Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Roesch, A.; Faist-Emmenegger, M.; Rossi, V.; Humbert, S. World Food LCA Database: Methodological Guidelines for the Life Cycle Inventory of Agricultural Products; Quantis: Lausanne, Switzerland, 2019; p. 88. [Google Scholar]
- USDA. ERS Loss-Adjusted Food Availability, LAFA. Available online: https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/loss-adjusted-food-availability-documentation/ (accessed on 11 May 2022).
- Heller, M.C.; Willits-Smith, A.; Meyer, R.; Keoleian, G.A.; Rose, D. Greenhouse Gas Emissions and Energy Use Associated with Production of Individual Self-Selected US Diets. Environ. Res. Lett. 2018, 13, 044004. [Google Scholar] [CrossRef]
- Thoma, G.; Popp, J.; Shonnard, D.; Nutter, D.; Matlock, M.; Ulrich, R.; Kellogg, W.; Kim, D.S.; Neiderman, Z.; Kemper, N.; et al. Regional Analysis of Greenhouse Gas Emissions from USA Dairy Farms: A Cradle to Farm-Gate Assessment of the American Dairy Industry circa 2008. Int. Dairy J. 2013, 31, S29–S40. [Google Scholar] [CrossRef] [Green Version]
- Baldini, C.; Gardoni, D.; Guarino, M. A Critical Review of the Recent Evolution of Life Cycle Assessment Applied to Milk Production. J. Clean. Prod. 2017, 140, 421–435. [Google Scholar] [CrossRef]
- USDA. Item Clusters, Percent of Consumption, and Representative Foods for USDA Food Pattern Food Groups and Subgroups; United States Department of Agriculture, Center for Nutrition Policy and Promotion: Washington, DC, USA, 2017. [Google Scholar]
- USDA. ARS. Food Patterns Equivalents Database. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-databases/ (accessed on 28 April 2021).
- Bowman, S.A.; Martin, C.L.; Carlson, J.L.; Clemens, J.C.; Lin, B.-H.; Moshfegh, A.J. Food Intakes Converted to Retail Commodities Databases 2003-08: Methodology and User Guide; US Department of Agriculture, Agricultural Research Service and Economic Research Service: Beltsville, MD, USA, 2013. [Google Scholar]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental Impact of Dietary Change: A Systematic Review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Chai, B.C.; van der Voort, J.R.; Grofelnik, K.; Eliasdottir, H.G.; Klöss, I.; Perez-Cueto, F.J. Which Diet Has the Least Environmental Impact on Our Planet? A Systematic Review of Vegan, Vegetarian and Omnivorous Diets. Sustainability 2019, 11, 4110. [Google Scholar] [CrossRef] [Green Version]
- Garnett, T. Livestock-Related Greenhouse Gas Emissions: Impacts and Options for Policy Makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 92-5-107920-X. [Google Scholar]
- Perignon, M.; Vieux, F.; Soler, L.-G.; Masset, G.; Darmon, N. Improving Diet Sustainability through Evolution of Food Choices: Review of Epidemiological Studies on the Environmental Impact of Diets. Nutr. Rev. 2017, 75, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C.N. The Relative Greenhouse Gas Impacts of Realistic Dietary Choices. Energy Policy 2012, 43, 184–190. [Google Scholar] [CrossRef]
- Eshel, G.; Martin, P.A. Diet, Energy, and Global Warming. Earth Interact. 2006, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bassi, C.; Maysels, R.; Anex, R. Declining Greenhouse Gas Emissions in the US Diet (2003–2018): Drivers and Demographic Trends. J. Clean. Prod. 2022, 351, 131465. [Google Scholar] [CrossRef]
- Blackstone, N.T.; El-Abbadi, N.H.; McCabe, M.S.; Griffin, T.S.; Nelson, M.E. Linking Sustainability to the Healthy Eating Patterns of the Dietary Guidelines for Americans: A Modelling Study. Lancet Planet. Health 2018, 2, e344–e352. [Google Scholar] [CrossRef] [Green Version]
- Birney, C.I.; Franklin, K.F.; Davidson, F.T.; Webber, M.E. An Assessment of Individual Foodprints Attributed to Diets and Food Waste in the United States. Environ. Res. Lett. 2017, 12, 105008. [Google Scholar] [CrossRef]
- Magkos, F.; Tetens, I.; Bügel, S.G.; Felby, C.; Schacht, S.R.; Hill, J.O.; Ravussin, E.; Astrup, A. A Perspective on the Transition to Plant-Based Diets: A Diet Change May Attenuate Climate Change, but Can It Also Attenuate Obesity and Chronic Disease Risk? Adv. Nutr. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat Consumption, Health, and the Environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [Green Version]
- Musicus, A.A.; Wang, D.D.; Janiszewski, M.; Eshel, G.; Blondin, S.A.; Willett, W.; Stampfer, M.J. Health and Environmental Impacts of Plant-Rich Dietary Patterns: A US Prospective Cohort Study. Lancet Planet. Health 2022, 6, e892–e900. [Google Scholar] [CrossRef]
- Trolle, E.; Nordman, M.; Lassen, A.D.; Colley, T.A.; Mogensen, L. Carbon Footprint Reduction by Transitioning to a Diet Consistent with the Danish Climate-Friendly Dietary Guidelines: A Comparison of Different Carbon Footprint Databases. Foods 2022, 11, 1119. [Google Scholar] [CrossRef]
- Bell, B.M. The Climate Crisis Is Here: A Primer and Call to Action for Public Health Nutrition Researchers and Practitioners in High-Income Countries. Public Health Nutr. 2022, 1–21. [Google Scholar] [CrossRef]
- García, E.L.; Lesmes, I.B.; Perales, A.D.; Moreno, V.; del Arribas, M.P.P.B.; Velasco, A.M.R.; Salvo, U.F.; Tejedor, L.; Chillerón, Á.C. Informe Del Comité Científico de La Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) Sobre Recomendaciones Dietéticas Sostenibles y Recomendaciones de Actividad Física Para La Población Española; AESAN: Madrid, Spain, 2022. [Google Scholar]
- Hyland, J.J.; Henchion, M.; McCarthy, M.; McCarthy, S.N. The Role of Meat in Strategies to Achieve a Sustainable Diet Lower in Greenhouse Gas Emissions: A Review. Meat Sci. 2017, 132, 189–195. [Google Scholar] [CrossRef]
- Tummers, L. Public Policy and Behavior Change. Public Adm. Rev. 2019, 79, 925–930. [Google Scholar] [CrossRef]
- James-Martin, G.; Baird, D.L.; Hendrie, G.A.; Bogard, J.; Anastasiou, K.; Brooker, P.G.; Wiggins, B.; Williams, G.; Herrero, M.; Lawrence, M.; et al. Environmental Sustainability in National Food-Based Dietary Guidelines: A Global Review. Lancet Planet. Health 2022, 6, e977–e986. [Google Scholar] [CrossRef]
- Corrin, T.; Papadopoulos, A. Understanding the Attitudes and Perceptions of Vegetarian and Plant-Based Diets to Shape Future Health Promotion Programs. Appetite 2017, 109, 40–47. [Google Scholar] [CrossRef]
- Twine, R. Materially Constituting a Sustainable Food Transition: The Case of Vegan Eating Practice. Sociology 2018, 52, 166–181. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.D.; Hoey, L.; Blesh, J.; Miller, L.; Green, A.; Shapiro, L.F. A Systematic Review of the Measurement of Sustainable Diets. Adv. Nutr. 2016, 7, 641–664. [Google Scholar] [CrossRef]
- USDA. Economic Research Service USDA ERS—Documentation, Organic Production. Available online: https://www.ers.usda.gov/data-products/organic-production/documentation/ (accessed on 1 December 2022).
- Food and Agriculture Organization (FAO). Sustainable Diets and Biodiversity; FAO: Rome, Italy, 2010. [Google Scholar]
Pattern | Current U.S. | Healthy U.S. | Mediterranean | Vegetarian | Vegan |
---|---|---|---|---|---|
Source | NHANES (2017–2018) | DGA 2020–2025 | DGA 2020–2025 | DGA 2020–2025 | DGA 2010–2015 |
Includes mean consumption for American adults >20 years old. Characterized by high meat and refined grains intake, and low in dairy, fruits, vegetables, whole grains, nuts, seeds, and seafood. | Omnivore diet that includes more fruits, vegetables, whole grains, dairy, nuts, and seafood and less refined grains and meat than the current U.S. diet pattern. | Omnivore diet that includes slightly more seafood and less dairy than the U.S. Healthy Diet pattern. | Vegetarian diet pattern that excludes meat, poultry, and seafood, and includes more eggs, legumes, nuts, seeds, and soy than the U.S. Healthy Diet pattern. | Vegetarian diet pattern that excludes all animal protein and includes more legumes, nuts, seeds, and soy than the Vegetarian Pattern. Milk and milk products group includes non-dairy (soy milk). | |
Vegetables: total (c) | 1.55 | 2.52 | 2.52 | 2.74 * | 4.40 * |
Dark green (c) | 0.16 | 0.21 | 0.21 | 0.21 | 0.21 |
Beans and peas (c) | 0.12 | 0.21 | 0.21 | 0.43 | 0.68 |
Red and orange (c) | 0.38 | 0.79 | 0.79 | 0.79 | 0.79 |
Other (c) | 0.56 | 0.57 | 0.57 | 0.57 | 0.57 |
Starchy (c) | 0.45 | 0.71 | 0.71 | 0.71 | 0.71 |
Fruit and juices (c) | 0.84 | 2.00 | 2.00 | 2.00 | 2.00 |
Grains: total (oz) | 6.64 | 6.00 | 6.50 | 6.00 | 6.00 |
Refined grains (oz) | 5.76 | 3.00 | 3.00 | 3.00 | 3.00 |
Whole grains (oz) | 0.84 | 3.00 | 3.50 | 3.00 | 3.00 |
Milk and milk products (dairy products): total (c) | 1.44 ** | 3.00 | 2.00 | 3.00 | 3.00 ** |
Protein foods: total (oz) | 6.33 | 5.61 | 6.55 | 3.43 | 5.43 |
Meat (oz) | 2.60 | 1.80 | 1.80 | 0.00 | 0.00 |
Poultry (oz) | 1.58 | 1.50 | 1.50 | 0.00 | 0.00 |
Eggs (oz) | 0.62 | 0.40 | 0.40 | 0.43 | 0.00 |
Fish/seafood (oz) | 0.62 | 1.20 | 2.14 | 0.00 | 0.00 |
Legumes (beans/peas) (oz) | 0.48 | -- | -- | 0.86 * | 1.86 * |
Nuts, seeds, and soy products (oz) | 0.91 | 0.71 | 0.71 | 2.14 | 3.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jennings, R.; Henderson, A.D.; Phelps, A.; Janda, K.M.; van den Berg, A.E. Five U.S. Dietary Patterns and Their Relationship to Land Use, Water Use, and Greenhouse Gas Emissions: Implications for Future Food Security. Nutrients 2023, 15, 215. https://doi.org/10.3390/nu15010215
Jennings R, Henderson AD, Phelps A, Janda KM, van den Berg AE. Five U.S. Dietary Patterns and Their Relationship to Land Use, Water Use, and Greenhouse Gas Emissions: Implications for Future Food Security. Nutrients. 2023; 15(1):215. https://doi.org/10.3390/nu15010215
Chicago/Turabian StyleJennings, Rose, Andrew D. Henderson, Alexis Phelps, Kathryn M. Janda, and Alexandra E. van den Berg. 2023. "Five U.S. Dietary Patterns and Their Relationship to Land Use, Water Use, and Greenhouse Gas Emissions: Implications for Future Food Security" Nutrients 15, no. 1: 215. https://doi.org/10.3390/nu15010215
APA StyleJennings, R., Henderson, A. D., Phelps, A., Janda, K. M., & van den Berg, A. E. (2023). Five U.S. Dietary Patterns and Their Relationship to Land Use, Water Use, and Greenhouse Gas Emissions: Implications for Future Food Security. Nutrients, 15(1), 215. https://doi.org/10.3390/nu15010215