Acute Effects of Caffeine on Overall Performance in Basketball Players—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Quality Assessment of the Experimental Studies
3. Results
4. Discussion
4.1. Acute Effects of Caffeine on Physical Performance of Basketball Players
4.2. Acute Effects of Caffeine on Specific Basketball Performance
4.3. Dosing, Timing and Individual Responses to Caffeine
4.4. Study Limitations
5. Conclusions and Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hůlka, K.; Cuberek, R.; Bělka, J.J.A.G. Heart rate and time-motion analyses in top junior players during basketball matches. Acta Gymnica 2013, 43, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The activity demands and physiological responses encountered during basketball match-play: A systematic review. Sports Med. 2018, 48, 111–135. [Google Scholar] [CrossRef] [PubMed]
- Arendt, E.; Dick, R. Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am. J. Sports Med. 1995, 23, 694–701. [Google Scholar] [CrossRef]
- Piasecki, D.P.; Spindler, K.P.; Warren, T.A.; Andrish, J.T.; Parker, R.D. Intraarticular injuries associated with anterior cruciate ligament tear: Findings at ligament reconstruction in high school and recreational athletes: An analysis of sex-based differences. Am. J. Sports Med. 2003, 31, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Nunes, H.; Iglelias, X.; Daza, G.; Irurtia, A.; Caparrós, T.; Anguera, M. The influence of pick and roll in attacking play in top-level basketball. Cuad. Psicol. Deporte 2016, 16, 129–142. [Google Scholar]
- Gómez, M.-Á.; Battaglia, O.; Lorenzo, A.; Lorenzo, J.; Jimenez, S.L.; Sampaio, J. Effectiveness during ball screens in elite basketball games. J. Sports Sci. 2015, 33, 1844–1852. [Google Scholar] [CrossRef]
- Montgomery, P.G.; Pyne, D.B.; Minahan, C.L. The physical and physiological demands of basketball training and competition. Int. J. Sports Physiol. Perform. 2010, 5, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Abdelkrim, N.B.; Castagna, C.; El Fazaa, S.; Tabka, Z.; El Ati, J. Blood metabolites during basketball competitions. J. Strength Cond. Res. 2009, 23, 765–773. [Google Scholar] [CrossRef]
- Crisafulli, A.; Melis, F.; Tocco, F.; Laconi, P.; Lai, C.; Concu, A. External mechanical work versus oxidative energy consumption ratio during a basketball field test. J. Sports Med. Phys. Fit. 2002, 42, 409. [Google Scholar]
- Rojas-Valverde, D.; Montoya-Rodríguez, J.; Azofeifa-Mora, C.; Sanchez-Urena, B. Effectiveness of beetroot juice derived nitrates supplementation on fatigue resistance during repeated-sprints: A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3395–3406. [Google Scholar] [CrossRef]
- Mulazimoglu, O.; Yanar, S.; Tunca Evcil, A.; Duvan, A. Examining the effect of fatigue on shooting accuracy in young basketball players. Anthropologist 2017, 27, 77–80. [Google Scholar] [CrossRef]
- Slater, G.J.; Sygo, J.; Jorgensen, M. SPRINTING... Dietary approaches to optimize training adaptation and performance. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Desbrow, B.; Leveritt, M. Well-trained endurance athletes’ knowledge, insight, and experience of caffeine use. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.G.; McLellan, T.M. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J. Appl. Physiol. 2002, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Graham, T.; Hibbert, E.; Sathasivam, P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J. Appl. Physiol. 1998, 85, 883–889. [Google Scholar] [CrossRef]
- Jenkins, N.T.; Trilk, J.L.; Singhal, A.; O’Connor, P.J.; Cureton, K. Ergogenic effects of low doses of caffeine on cycling performance. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 328–342. [Google Scholar] [CrossRef]
- Meyers, B.; Cafarelli, E. Caffeine increases time to fatigue by maintaining force and not by altering firing rates during submaximal isometric contractions. J. Appl. Physiol. 2005, 99, 1056–1063. [Google Scholar] [CrossRef]
- Wiles, J.D.; Coleman, D.; Tegerdine, M.; Swaine, I.L. The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. J. Sports Sci. 2006, 24, 1165–1171. [Google Scholar] [CrossRef]
- Gliottoni, R.C.; Meyers, J.R.; Arngrímsson, S.Á.; Broglio, S.P.; Motl, R.W. Effect of caffeine on quadriceps muscle pain during acute cycling exercise in low versus high caffeine consumers. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Woolf, K.; Bidwell, W.K.; Carlson, A.G. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 412–429. [Google Scholar] [CrossRef] [PubMed]
- Barreto, G.; Grecco, B.; Merola, P.; Reis, C.E.G.; Gualano, B.; Saunders, B. Novel insights on caffeine supplementation, CYP1A2 genotype, physiological responses and exercise performance. Eur. J. Appl. Physiol. 2021, 121, 749–769. [Google Scholar] [CrossRef] [PubMed]
- Chia, J.S.; Barrett, L.A.; Chow, J.Y.; Burns, S.F. Effects of caffeine supplementation on performance in ball games. Sports Med. 2017, 47, 2453–2471. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sports Med. 2019, 27, 238–256. [Google Scholar] [CrossRef]
- Zbinden-Foncea, H.; Rada, I.; Gomez, J.; Kokaly, M.; Stellingwerff, T.; Deldicque, L.; Peñailillo, L. Effects of caffeine on countermovement-jump performance variables in elite male volleyball players. Int. J. Sports Physiol. Perform. 2018, 13, 145–150. [Google Scholar] [CrossRef]
- Munoz, A.; López-Samanes, Á.; Pérez-López, A.; Aguilar-Navarro, M.; Moreno-Heredero, B.; Rivilla-García, J.; González-Frutos, P.; Pino-Ortega, J.; Morencos, E.; Del Coso, J. Effects of caffeine ingestion on physical performance in elite women handball players: A randomized, controlled study. Int. J. Sports Physiol. Perform. 2020, 15, 1406–1413. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Reprint—Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Tucker, M.A.; Hargreaves, J.M.; Clarke, J.C.; Dale, D.L.; Blackwell, G.J. The effect of caffeine on maximal oxygen uptake and vertical jump performance in male basketball players. J. Strength Cond. Res. 2013, 27, 382–387. [Google Scholar] [CrossRef]
- Abian-Vicen, J.; Puente, C.; Salinero, J.J.; González-Millán, C.; Areces, F.; Muñoz, G.; Muñoz-Guerra, J.; Del Coso, J. A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids 2014, 46, 1333–1341. [Google Scholar] [CrossRef]
- Puente, C.; Abián-Vicén, J.; Salinero, J.J.; Lara, B.; Areces, F.; Del Coso, J. Caffeine improves basketball performance in experienced basketball players. Nutrients 2017, 9, 1033. [Google Scholar] [CrossRef] [Green Version]
- Puente, C.; Abián-Vicén, J.; Del Coso, J.; Lara, B.; Salinero, J.J. The CYP1A2-163C> A polymorphism does not alter the effects of caffeine on basketball performance. PLoS ONE 2018, 13, e0195943. [Google Scholar] [CrossRef] [Green Version]
- Scanlan, A.T.; Dalbo, V.J.; Conte, D.; Stojanović, E.; Stojiljković, N.; Stanković, R.; Antić, V.; Milanović, Z. No effect of caffeine supplementation on dribbling speed in elite basketball players. Int. J. Sports Physiol. Perform. 2019, 14, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Stanković, R.; Antić, V.; Milanović, Z. Acute caffeine supplementation promotes small to moderate improvements in performance tests indicative of in-game success in professional female basketball players. Appl. Physiol. Nutr. Metab. 2019, 44, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.S.; Burns, S.F.; Pan, J.W.; Kong, P.W. Effect of caffeine ingestion on free-throw performance in college basketball players. J. Exerc. Sci. Fit. 2020, 18, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, E.; Scanlan, A.T.; Milanović, Z.; Fox, J.L.; Stanković, R.; Dalbo, V.J. Acute caffeine supplementation improves jumping, sprinting, and change-of-direction performance in basketball players when ingested in the morning but not evening. Eur. J. Sport Sci. 2021, 22, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Ziv, G.; Lidor, R. Vertical jump in female and male basketball players—A review of observational and experimental studies. J. Sci. Med. Sport 2010, 13, 332–339. [Google Scholar] [CrossRef]
- Abian, P.; Del Coso, J.; José Salinero, J.; Gallo-Salazar, C. The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. J. Sports Sci. 2015, 33, 1042–1050. [Google Scholar] [CrossRef]
- Perez-Lopez, A.; Salinero, J.J.; Abián-Vicén, J.; Valadés, D.; Lara, B.; Hernandez, C.; Areces, F.; González, C.; Del Coso, J. Caffeinated energy drinks improve volleyball performance in elite female players. Med. Sci. Sports Exerc. 2015, 47, 850–856. [Google Scholar] [CrossRef]
- Del Coso, J.; Pérez-López, A.; Abián-Vicén, J.; Salinero, J.J.; Lara, B.; Valadés, D. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int. J. Sports Physiol. Perform. 2014, 9, 1013–1018. [Google Scholar] [CrossRef]
- Souza, D.B.; Del Coso, J.; Casonatto, J.; Polito, M.D. Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. Eur. J. Nutr. 2017, 56, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.K.; Green, J.M. Caffeine and Anaerobic Performance. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef] [PubMed]
- Delextrat, A.; Badiella, A.; Saavedra, V.; Matthew, D.; Schelling, X.; Torres-Ronda, L. Match activity demands of elite Spanish female basketball players by playing position. Int. J. Perform. Anal. Sport 2015, 15, 687–703. [Google Scholar] [CrossRef]
- Hogervorst, E.; Bandelow, S.; Schmitt, J.; Jentjens, R.; Oliveira, M.; Allgrove, J.; Carter, T.; Gleeson, M. Caffeine improves physical and cognitive performance during exhaustive exercise. Med. Sci. Sports Exerc. 2008, 40, 1841–1851. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, V.H.; Rodacki, A.; Satern, M.N. A review on the basketball jump shot. Sports Biomech. 2015, 14, 190–205. [Google Scholar] [CrossRef]
- Kasabova, L. Study of Side Factors with Negative Impact on the Accuracy of Shooting in Basketball. Гoдишник УНСС 2018, 1, 247–253. [Google Scholar]
- Sökmen, B.; Armstrong, L.E.; Kraemer, W.J.; Casa, D.J.; Dias, J.C.; Judelson, D.A.; Maresh, C.M. Caffeine use in sports: Considerations for the athlete. J. Strength Cond. Res. 2008, 22, 978–986. [Google Scholar] [CrossRef] [Green Version]
- Pallarés, J.G.; Fernández-Elías, V.E.; Ortega, J.F.; Muñoz, G.; Munoz-Guerra, J.; Mora-Rodríguez, R. Neuromuscular responses to incremental caffeine doses: Performance and side effects. Med. Sci. Sports Exerc. 2013, 45, 2184–2192. [Google Scholar] [CrossRef]
- Salinero, J.J.; Lara, B.; Abián-Vicén, J.; González-Millán, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Magkos, F.; Kavouras, S.A. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med. Sci. Sports Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: A randomized, double-blind, placebo-controlled, crossover study. Ir. J. Med. Sci. 2019, 188, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Ruiz-Vicente, D.; Areces, F.; Puente-Torres, C.; Gallo-Salazar, C.; Pascual, T.; Del Coso, J. CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: A pilot study. Nutrients 2017, 9, 269. [Google Scholar] [CrossRef]
- Algrain, H.A.; Thomas, R.M.; Carrillo, A.E.; Ryan, E.J.; Kim, C.-H.; Lettan, R.B.; Ryan, E.J. The effects of a polymorphism in the cytochrome P450 CYP1A2 gene on performance enhancement with caffeine in recreational cyclists. J. Caffeine Res. 2016, 6, 34–39. [Google Scholar] [CrossRef]
Study | Participants | Level of Playing | Daily Caffeine Intake (mg/day, week) | PEDro Score | ||
---|---|---|---|---|---|---|
M/F | N | Age (Years) | ||||
Tucker et al. [28] | M | 5 | 22 ± 1 | professional | <500 | 8 |
Abian-Vicen et al. [29] | M | 16 | 14.9 ± 0.8 | professional | <60 | 9 |
Puente et al. [30] | M/F | 10/10 | 27.1 ± 4.0/27.9 ± 6.1 | professional | <100 | 9 |
Puente et al. [31] | M/F (AA/CC) | 10/9 | 26.5 ± 2.4/27.0 ± 5.3 | professional | <100 | 10 |
Scanlan et al. [32] | M/F | 11/10 | 18.3 ± 3.3 | professional | <100 | 10 |
Stojanović et al. [33] | F | 10 | 20.2 ± 3.9 | professional | <100 | 10 |
Tan et al. [34] | M/F | 12/6 | 23.1 ± 1.9/22.0 ± 1.3 | college | <200 | 10 |
Stojanović et al. [35] | M | 11 | 16.5 ± 1.0 | juniors | 310 ± 76 | 10 |
Study | Form of Caffeine | Dose (mg/kg) | Timing (min) | Variables (Unit) | Placebo | Caffeine | Results |
---|---|---|---|---|---|---|---|
Tucker et al. [28] | Capsule | 3 | 60 | VO2max (rep) 10VJ (cm) | 118/126/109/122/83 ± 13/14/6/14/4 | 124/117/119/111/87 ± 5/13/9/9/4 | ↔ ↔ |
Abian-Vicen et al. [29] | Energy drink | 3 | 60 | FTA (%) TPA (%) CMJ (cm) 15—RJ (cm) YoYo IR 1 (m) UE (μg/mL) | 70.7 ± 11.8 39.9 ± 11.8 37.5 ± 4.4 28.8 ± 3.4 1.925 ± 702 0.1± 0.1 | 70.3 ± 11.0 38.1 ± 12.8 38.3 ± 4.4 30.2 ± 3.6 2.000 ± 706 1.2 ± 0.7 | ↔ ↔ ↑ ↑ ↔ ↑ |
Puente et al. [30] | Capsule | 3 | 60 | VJ (cm) CODAT (s) CODATwb (s) FTA (%) FT (n) Reb (n) Ass (n) Imp (imp/min) PIR (%) POI (%) | 37.3 ± 6.8 5.96 ± 0.29 6.20 ± 0.29 15.4 ± 1.6 0.6 ± 0.8 2.5 ± 2.0 1.1 ± 0.9 396 ± 43 7.2 ± 8.6 19.0 | 38.2 ± 7.4 5.95 ± 0.3 6.14 ± 0.32 15.6 ± 2.3 1.1 ± 1.1 3.7 ± 2.6 2.1 ± 1.6 410 ± 41 10.6 ± 7.1 54.4 | ↑ ↔ ↔ ↔ ↑ ↑ ↑ ↑ ↑ ↑ |
Puente et al. [31] | Capsule | 3 | 60 | VJ (cm) CODAT (s) CODATwb (s) Mhr (bpm) Phr (bpm) Imp (imp/min) | 39.6 ± 7.2/36.3 ± 5.9 5.91 ± 0.25/5.95 ± 0.33 6.19 ± 0.21/6.14 ± 0.35 158 ± 9/161 ± 13 187 ± 12/182 ± 7 385 ± 48/401 ± 36 | 40.7 ± 7.3/37.2 ± 6.9 5.88 ± 0.27/5.97 ± 0.38 6.09 ± 0.24/5.97 ± 0.38 160 ± 10/163 ± 9 188 ± 13/185 ± 6 401 ± 36/415 ± 35 | ↑/↔ ↔ ↔ ↔ ↔ ↑/↑ |
Scanlan et al. [32] | Capsule | 3 | 60 | TDT20m (s) DD20m (s) | 3.560 ± 0.184 0.145 ± 0.138 | 3.528 ± 0.208 0.150 ± 0.129 | ↔ ↔ |
Stojanović et al. [33] | Capsule | 3 | 60 | CMJ (cm) CMJa (cm) SJ (cm) LAT (s) 5 m sprint (s) 10 m sprint (s) 20 m sprint (s) 5 m sprint wb (s) 10 m sprint wb (s) 20 m sprint wb (s) RSA (s) RPE (AU) PP (AU) | 27.92 ± 4.24 33.85 ± 3.92 25.97 ± 3.16 13.22 ± 0.87 1.24 ± 0.15 2.11 ± 0.18 3.59 ± 0.25 1.22 ± 0.08 2.07 ± 0.11 3.65 ± 0.15 32.20 ± 1.74 7.8 ± 1.2 3.6 ± 2.8 | 29.20 ± 4.39 35.14 ± 5.08 27.22 ± 4.37 12.99 ± 0.86 1.18 ± 0.11 2.01 ± 0.13 3.49 ± 0.23 1.20 ± 0.05 2.05 ± 0.12 3.56 ± 0.25 31.80 ± 1.62 5.6 ± 2.5 3.6 ± 2.8 | ↑ ↑ ↑ ↔ ↔ ↑ ↑ ↔ ↔ ↔ ↔ ↓ ↔ |
Tan et al. [34] | Capsule | 6 | 60 | FTA (%) HR (bpm) RPE (AU) | 5.5 ± 2.0 163 ± 12.1 15.7 ± 2.1 | 6.1 ± 1.7 166 ± 9.2 15.8 ± 2.1 | ↔ ↑ ↔ |
Stojanović et al. [35] | Capsule | 3 | 60 | CMJ am/pm (cm) CMJa am/pm (cm) SJ am/pm (cm) LAT am/pm (s) 20 m sprint (s) RSA (s) RSAwb (s) | 31.03 ± 4.98 (am) 39.98 ± 5.23 (am) 30.55 ± 4.89 (am) 12.61 ± 0.84 (pmc) X 29.91 ± 1.31 X | 33.90 ± 5.38 (am) 42.32 ± 5.69 (am) 33.20 ± 4.71(am) 11.98 ± 0.70 (amc) X 26.49 ± 1.62 (amc) X | ↑ ↑ ↑ ↑ ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazić, A.; Kocić, M.; Trajković, N.; Popa, C.; Peyré-Tartaruga, L.A.; Padulo, J. Acute Effects of Caffeine on Overall Performance in Basketball Players—A Systematic Review. Nutrients 2022, 14, 1930. https://doi.org/10.3390/nu14091930
Lazić A, Kocić M, Trajković N, Popa C, Peyré-Tartaruga LA, Padulo J. Acute Effects of Caffeine on Overall Performance in Basketball Players—A Systematic Review. Nutrients. 2022; 14(9):1930. https://doi.org/10.3390/nu14091930
Chicago/Turabian StyleLazić, Anja, Miodrag Kocić, Nebojša Trajković, Cristian Popa, Leonardo Alexandre Peyré-Tartaruga, and Johnny Padulo. 2022. "Acute Effects of Caffeine on Overall Performance in Basketball Players—A Systematic Review" Nutrients 14, no. 9: 1930. https://doi.org/10.3390/nu14091930
APA StyleLazić, A., Kocić, M., Trajković, N., Popa, C., Peyré-Tartaruga, L. A., & Padulo, J. (2022). Acute Effects of Caffeine on Overall Performance in Basketball Players—A Systematic Review. Nutrients, 14(9), 1930. https://doi.org/10.3390/nu14091930