Effect of Caffeine Ingestion on Indirect Markers of Exercise-Induced Muscle Damage: A Systematic Review of Human Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Procedure
2.3. Coding and Classifying Variables
3. Results
3.1. Studies Search and Selection Process
3.2. Studies and Participant Characteristics
3.3. Methodological Quality of Studies
3.4. Effect of Caffeine Supplementation on Indirect Markers of Muscle Damage
4. Discussion
4.1. Muscle Soreness
4.2. Muscle Strength Assessment
4.3. Blood Markers of Muscle Damage
4.4. Methodological Considerations
4.5. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doherty, M.; Smith, P.M. Effects of Caffeine Ingestion on Exercise Testing: A Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 626–646. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Caffeine ingestion enhances Wingate performance: A meta-analysis. Eur. J. Sport Sci. 2018, 18, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Chvasta, T.E.; Cooke, A.R. Emptying and absorption of caffeine from the human stomach. Gastroenterology 1971, 61, 838–843. [Google Scholar] [CrossRef]
- Graham, T.E.; Spriet, L.L. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J. Appl. Physiol. 1995, 78, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Mumford, G.K.; Benowitz, N.L.; Evans, S.M.; Kaminski, B.J.; Preston, K.L.; Sannerud, C.A.; Silverman, K.; Griffiths, R.R. Absorption rate of methylxanthines following capsules, cola and chocolate. Eur. J. Clin. Pharmacol. 1996, 51, 319–325. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Keane, K.M.; Salicki, R.; Goodall, S.; Thomas, K.; Howatson, G. Muscle Damage Response in Female Collegiate Athletes After Repeated Sprint Activity. J. Strength Cond. Res. 2015, 29, 2802–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeder, J.D.C.; van Someren, K.A.; Gaze, D.; Jewell, A.; Deshmukh, N.I.K.; Shah, I.; Barker, J.; Howatson, G. Recovery and adaptation from repeated intermittent-sprint exercise. Int. J. Sports Physiol. Perform. 2014, 9, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Twist, C.; Eston, R.G. The effect of exercise-induced muscle damage on perceived exertion and cycling endurance performance. Eur. J. Appl. Physiol. 2009, 105, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Harty, P.S.; Cottet, M.L.; Malloy, J.K.; Kerksick, C.M. Nutritional and Supplementation Strategies to Prevent and Attenuate Exercise-Induced Muscle Damage: A Brief Review. Sport. Med.-Open 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Hyldahl, R.D.; Hubal, M.J. Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve 2014, 49, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, J.A.; Brooks, S.V.; Opiteck, J.A. Injury to Skeletal Muscle Fibers during Contractions: Conditions of Occurrence and Prevention. Phys. Ther. 1993, 73, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Pokora, I.; Kempa, K.; Chrapusta, S.; Langfort, J. Effects of downhill and uphill exercises of equivalent submaximal intensities on selected blood cytokine levels and blood creatine kinase activity. Biol. Sport 2014, 31, 173–178. [Google Scholar] [CrossRef]
- Nosaka, K.; Newton, M.; Sacco, P. Muscle damage and soreness after endurance exercise of the elbow flexors. Med. Sci. Sports Exerc. 2002, 34, 920–927. [Google Scholar] [CrossRef]
- Vijayan, K.; Thompson, J.L.; Norenberg, K.M.; Fitts, R.H.; Riley, D.A. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles. J. Appl. Physiol. 2001, 90, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.; Newton, M.; Sacco, P.; Nosaka, K. Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int. J. Sports Med. 2006, 27, 591–598. [Google Scholar] [CrossRef]
- Child, R.B.; Saxton, J.M.; Donnelly, A.E. Comparison of eccentric knee extensor muscle actions at two muscle lengths on indices of damage and angle-specific force production in humans. J. Sports Sci. 1998, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, K.; Sakamoto, K. Effect of elbow joint angle on the magnitude of muscle damage to the elbow flexors. Med. Sci. Sports Exerc. 2001, 33, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Damas, F.; Nosaka, K.; Libardi, C.; Chen, T.; Ugrinowitsch, C. Susceptibility to Exercise-Induced Muscle Damage: A Cluster Analysis with a Large Sample. Int. J. Sports Med. 2016, 37, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Howatson, G.; van Someren, K.A. The Prevention and Treatment of Exercise-Induced Muscle Damage. Sports Med. 2008, 38, 483–503. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, A.R.; Tucker, M.A.; Butts, C.L.; McDermott, B.P.; Vingren, J.L.; Kunces, L.J.; Lee, E.C.; Munoz, C.X.; Williamson, K.H.; Armstrong, L.E.; et al. Effect of Caffeine on Perceived Soreness and Functionality Following an Endurance Cycling Event. J. Strength Cond. Res. 2017, 31, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J. A review of nutritional intervention on delayed onset muscle soreness. Part I. J. Exerc. Rehabil. 2014, 10, 349–356. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Chen, Y.-C.; Tung, K.; Chao, H.-H.; Wang, H.-S. Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage: A double-blind randomized trial. J. Appl. Physiol. 2019, 127, 798–805. [Google Scholar] [CrossRef]
- Ferreira, G.A.; Felippe, L.C.; Bertuzzi, R.; Bishop, D.J.; Barreto, E.; De-Oliveira, F.R.; Lima-Silva, A.E. The Effects of Acute and Chronic Sprint-Interval Training on Cytokine Responses Are Independent of Prior Caffeine Intake. Front. Physiol. 2018, 9, 671. [Google Scholar] [CrossRef] [Green Version]
- Park, N.D.; Maresca, R.D.; McKibans, K.I.; Morgan, D.R.; Allen, T.S.; Warren, G.L. Caffeine’s beneficial effect on maximal voluntary strength and activation in uninjured but not injured muscle. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 639–652. [Google Scholar] [CrossRef]
- Maridakis, V.; O’Connor, P.J.; Dudley, G.A.; McCully, K.K. Caffeine Attenuates Delayed-Onset Muscle Pain and Force Loss Following Eccentric Exercise. J. Pain 2007, 8, 237–243. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions 4.2.6; Higgins, J.P.T., Green, S., Eds.; The Cochrane Library: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bassini-Cameron, A.; Sweet, E.; Bottino, A.; Bittar, C.; Veiga, C.; Cameron, L.-C. Effect of caffeine supplementation on haematological and biochemical variables in elite soccer players under physical stress conditions. Br. J. Sports Med. 2007, 41, 523–530; discussion 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, M.S.; Martin, T.D.; Corona, B.T. Effect of Caffeine Supplementation on Quadriceps Performance after Eccentric Exercise. J. Strength Cond. Res. 2018, 32, 2863–2871. [Google Scholar] [CrossRef] [PubMed]
- Hurley, C.F.; Hatfield, D.L.; Riebe, D.A. The effect of caffeine ingestion on delayed onset muscle soreness. J. Strength Cond. Res. 2013, 27, 3101–3109. [Google Scholar] [CrossRef]
- Kazman, J.B.; Attipoe, S.; Kupchak, B.R.; Deuster, P.A. Caffeine and heat have additive but not interactive effects on physiologic strain: A factorial experiment. J. Therm. Biol. 2020, 89, 102563. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Koch, A.J.; Willardson, J.M.; dos Santos, F.C.; Curty, V.M.; Pereira, L.N. Caffeine Does Not Augment Markers of Muscle Damage or Leukocytosis Following Resistance Exercise. Int. J. Sports Physiol. Perform. 2010, 5, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdavi, R.; Daneghian, S.; Homayouni, A.; Jafari, A. Effects of caffeine supplementation on oxidative stress, exercise-induced muscle damage and leukocytosis. Pharm. Sci. 2012, 18, 177–182. [Google Scholar]
- Ribeiro, B.G.; Morales, A.P.; Sampaio-Jorge, F.; Barth, T.; De Oliveira, M.B.C.; Coelho, G.M.D.O.; Leite, T.C. Caffeine Attenuates Decreases in Leg Power Without Increased Muscle Damage. J. Strength Cond. Res. 2016, 30, 2354–2360. [Google Scholar] [CrossRef] [PubMed]
- Stadheim, H.K.; Spencer, M.; Olsen, R.; Jensen, J. Caffeine and performance over consecutive days of simulated competition. Med. Sci. Sports Exerc. 2014, 46, 1787–1796. [Google Scholar] [CrossRef] [Green Version]
- Vimercatti, N.S.; Zovico, P.V.C.; Carvalho, A.S.; Barreto, J.G.; Machado, M. Two doses of caffeine do not increase the risk of exercise-induced muscle damage or leukocytosis. Phys. Educ. Sport 2008, 52, 96–99. [Google Scholar] [CrossRef]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tooth, L.; McCluskey, A.; Hoffmann, T.; McKenna, K.; Lovarini, M. Appraising the quality of randomized controlled trials: Inter-rater reliability for the OTseeker evidence database. J. Eval. Clin. Pract. 2005, 11, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Del Coso, J.; Urdampilleta, A.; León-Guereño, P.; Fernández-Lázaro, D. Caffeine supplementation and physical performance, muscle damage and perception of fatigue in soccer players: A systematic review. Nutrients 2019, 11, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, J.S.; Barrett, L.A.; Chow, J.Y.; Burns, S.F. Effects of Caffeine Supplementation on Performance in Ball Games. Sports Med. 2017, 47, 2453–2471. [Google Scholar] [CrossRef]
- Astorino, T.A.; Roberson, D.W. Efficacy of Acute Caffeine Ingestion for Short-term High-Intensity Exercise Performance: A Systematic Review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of Caffeine on Sport-Specific Endurance Performance: A Systematic Review. J. Strength Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef]
- Machado, M.; Zovico, P.V.C.; Paulúcio, D.; Pereira, L.N.; Barreto, J.G.; Pereira, R. Caffeine does not increase resistance exercise-induced microdamage. J. Exerc. Sci. Fit. 2008, 6, 115–120. [Google Scholar]
- Filip, A.; Wilk, M.; Krzysztofik, M.; Del Coso, J. Inconsistency in the Ergogenic Effect of Caffeine in Athletes Who Regularly Consume Caffeine: Is It Due to the Disparity in the Criteria That Defines Habitual Caffeine Intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Warren, G.L.; Lowe, D.A.; Armstrong, R.B. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999, 27, 43–59. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Nosaka, K.; Newton, M.; Sacco, P. Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand. J. Med. Sci. Sports 2002, 12, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, G.; Mikkelsen, U.R.; Raastad, T.; Peake, J.M. Leucocytes, cytokines and satellite cells: What role do they play in muscle damage and regeneration following eccentric exercise? Exerc. Immunol. Rev. 2012, 18, 42–97. [Google Scholar] [PubMed]
- Hody, S.; Croisier, J.-L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Sawynok, J. Adenosine receptor targets for pain. Neuroscience 2016, 338, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, T.; Genovesi, F.; Nemmer, M.; Carling, C.; Alberti, G.; Howatson, G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: Current knowledge, practical application and future perspectives. Eur. J. Appl. Physiol. 2020, 120, 1965–1996. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Hume, P.; Maxwell, L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef]
- Mizumura, K.; Taguchi, T. Delayed onset muscle soreness: Involvement of neurotrophic factors. J. Physiol. Sci. 2016, 66, 43–52. [Google Scholar] [CrossRef]
- Sonkodi, B. Delayed Onset Muscle Soreness (DOMS): The Repeated Bout Effect and Chemotherapy-Induced Axonopathy May Help Explain the Dying-Back Mechanism in Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Brain Sci. 2021, 11, 108. [Google Scholar] [CrossRef]
- Sonkodi, B.; Berkes, I.; Koltai, E. Have we looked in the wrong direction for more than 100 years? Delayed onset muscle soreness is, in fact, neural microdamage rather than muscle damage. Antioxidants 2020, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Latini, S.; Pedata, F. Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. J. Neurochem. 2001, 79, 463–484. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-W.; Hubal, M.J.; Hoffman, E.P.; Thompson, P.D.; Clarkson, P.M. Molecular responses of human muscle to eccentric exercise. J. Appl. Physiol. 2003, 95, 2485–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, J.A.; Sebastião, A.M.; de Mendonça, A. Adenosine receptors in the nervous system: Pathophysiological implications. Prog. Neurobiol. 2002, 68, 377–392. [Google Scholar] [CrossRef]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sport. Med. 2019, 49, 17–30. [Google Scholar] [CrossRef]
- Morgan, D.L.; Allen, D.G. Early events in stretch-induced muscle damage. J. Appl. Physiol. 1999, 87, 2007–2015. [Google Scholar] [CrossRef] [Green Version]
- Tallis, J.; Duncan, M.J.; James, R.S. What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance? Br. J. Pharmacol. 2015, 172, 3703–3713. [Google Scholar] [CrossRef] [Green Version]
- Lamb, G.D.; Cellini, M.A.; Stephenson, D.G. Different Ca2+ releasing action of caffeine and depolarisation in skeletal muscle fibres of the rat. J. Physiol. 2001, 531, 715–728. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Ergogenic Value and Mechanisms of Action. Sport. Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and exercise: Metabolism, endurance and performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Proske, U.; Weerakkody, N.; Percival, P.; Morgan, D.; Gregory, J.; Canny, B. Force-matching errors after eccentric exercise attributed to muscle soreness. Clin. Exp. Pharmacol. Physiol. 2003, 30, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Newham, D.J.; Jones, D.A.; Clarkson, P.M. Repeated high-force eccentric exercise: Effects on muscle pain and damage. J. Appl. Physiol. 1987, 63, 1381–1386. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M.; Sayers, S.P. Etiology of Exercise-Induced Muscle Damage. Can. J. Appl. Physiol. 1999, 24, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Fielding, R.A.; Violan, M.A.; Svetkey, L.; Abad, L.W.; MManfredi, T.J.; Cosmas, A.; Bean, J. Effects of prior exercise on eccentric exercise-induced neutrophilia and enzyme release. Med. Sci. Sports Exerc. 2000, 32, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Baird, M.F. Creatine-Kinase-and Exercise-Related Muscle Damage Implications for Muscle Performance and Recovery. J. Nutr. Metab. 2012, 2012, 960363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatfield, S.; Belikoff, B.; Lukashev, D.; Sitkovsky, M.; Ohta, A. The antihypoxia-adenosinergic pathogenesis as a result of collateral damage by overactive immune cells. J. Leukoc. Biol. 2009, 86, 545–548. [Google Scholar] [CrossRef]
- Tauler, P.; Martínez, S.; Moreno, C.; Monjo, M.; Martínez, P.; Aguiló, A. Effects of caffeine on the inflammatory response induced by a 15-km run competition. Med. Sci. Sports Exerc. 2013, 45, 1269–1276. [Google Scholar] [CrossRef]
- Lapointe, B.M.; Frenette, J.; Côté, C.H. Lengthening contraction-induced inflammation is linked to secondary damage but devoid of neutrophil invasion. J. Appl. Physiol. 2002, 92, 1995–2004. [Google Scholar] [CrossRef]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med. Sci. Sports Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef]
- Laumonier, T.; Menetrey, J. Muscle injuries and strategies for improving their repair. J. Exp. Orthop. 2016, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Margaritis, I.; Tessier, F.; Verdera, F.; Bermon, S.; Marconnet, P. Muscle enzyme release does not predict muscle function impairment after triathlon. J. Sports Med. Phys. Fit. 1999, 39, 133–139. [Google Scholar]
- Koch, A.J.; Pereira, R.; Machado, M. The creatine kinase response to resistance exercise. J. Musculoskelet. Neuronal Interact. 2014, 14, 68–77. [Google Scholar] [PubMed]
- Santos, V.B.C.; Ruiz, R.J.; Vettorato, E.D.; Nakamura, F.Y.; Juliani, L.C.; Polito, M.D.; Siqueira, C.C.M.; Ramos, S.P. Effects of chronic caffeine intake and low-intensityexercise on skeletal muscle of Wistar rats. Exp. Physiol. 2011, 96, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Niu, K.; Okazaki, T.; Wu, H.; Yoshikawa, T.; Ohrui, T.; Furukawa, K.; Ichinose, M.; Yanai, K.; Arai, H.; et al. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp. Gerontol. 2014, 50, 1–8. [Google Scholar] [CrossRef] [PubMed]
Study | Training Status | Sample | Age | Caffeine Consumption | Study Design | Muscle Damage Protocol | Supplementation Protocol | Findings |
---|---|---|---|---|---|---|---|---|
(Caf × Pla) | ||||||||
Caldwell et al. [25] | Recreational cyclists | n = 30; | 46 ± 11 | ~230 mg/day | 2 parallel groups | 164 km of cycling | 2 daily doses for 4 days after (8 doses of 3 mg/kg) | ↓DOMS in Caffeine group 24 h after EIMD. |
(25M; 5F) | (Caf; Pla) | |||||||
Cameron et al. [32] | Soccer athletes | n = 22M | 26–31 | Non described | 3 parallel groups | VDR + Yo-Yo IRT | pre-exercise | ↑∆CK in Caffeine group; No difference between groups for CKMB and LDH. |
(Caf; Pla; Con) | (1 dose of 5 mg/kg) | |||||||
Chen et al. [27] | College athletes | n = 20; | M = 21.1 ± 1.1; F = 20.4 ± 1.2 | <200 mg/wk | Crossover | Downhill running | 24 h or 48 h post-exercise | ↑recovery of MVIC and ↓ DOMS in Caffeine group 48 h after EIMD. |
(10M; 10F) | (After 24 h) | (30-min) | (1 dose of 6 mg/kg) | |||||
Ferreira et al. [28] | Physically active | n = 20M | 25.2–26.2 | ±72 mg/day | 2 parallel groups | 13 × 30 s sprint standard bicycle | Pre-exercise | ↑CK 24 and 48 h after EIMD in Placebo group. |
(Caf; Pla) | (1 dose of 5 mg/kg) | |||||||
Green et al. [33] | Physically active | n = 16 | 24.3 ± 4.3 | Usual consumers | Crossover | Eccentric contraction | Pre, 24 h post-exercise | ↑MVDC in Caffeine group; No difference between groups for DOMS and MVIC. |
(8M; 8F) | (After 1 week) | (Quadriceps) | (2 doses of 6 mg/kg) | |||||
Hurley et al. [34] | Resistance-trained | n = 12M | 20 ± 1 | Low consumers | Crossover | Eccentric contraction | Pre, 24–120 h post-exercise | ↓DOMS on the 2–3 day in Caffeine group; No difference between groups for CK. |
(After 1 week) | (Elbow flexors) | (6 doses of 5 mg/kg) | ||||||
Kazman et al. [35] | Non described | n = 35 | 27,2 ± 8 | Non described | Crossover | 60-min walking and | Pre-exercise | No difference between groups for CK. |
(29M; 6F) | (After 1 week) | 5-min step/squat | (1 dose of 7.5 mg/kg) | |||||
Machado et al. [36] | Soccer athletes | n = 15M | 18.4 ± 0.8 | <100 mg/day | Crossover | Full body strength session | Pre-exercise | No difference between groups for CK and LDH. |
(After 1 week) | (1 dose of 4.5 mg/kg) | |||||||
Mahdavi et al. [37] | Basketball athletes | n = 26F | 24.22 ± 2.65 | 116.88 mg/day | Crossover | Wingate test | Pre-exercise | No difference between groups for CK, MDA, and TAC |
(After 1 week) | (30-sec) | (1 dose of 5 mg/kg) | ||||||
Maridakis et al. [30] | No experience Strength training | n = 10F | 21.3 ± 1.6 | 55.1 ± 30.9 mg/day | Cross-over | Eccentric contraction (Quadriceps) | Pre, 24 h or 48 h post-exercise | ↓DOMS in Caffeine group; No difference between groups for MVIC. |
(After 24 h or 48 h) | (2 doses of 5 mg/kg) | |||||||
Ribeiro et al. [38] | Handball athletes | n = 6M | 21.6 ± 2.9 | ~60 mg/day | Cross-over | Vertical jumps | Pre-exercise | ↑vertical jump in Caffeine group; no difference between groups for CK and LDH. |
(After 1 week) | (4 sets of 30-sec) | (1 dose of 6 mg/kg) | ||||||
Stadheim et al. [39] | Elite cross-country skiers | n = 8M | 20,0 ± 1,0 | <150 mg/day | Cross-over | Double poling ergometer (10-min) | 1 dose pre-exercise | ↑test performance, ↑CK, ↑DOMS in Caffeine groups (3 mg/kg–4.5 mg/kg) |
(After 6 days) | (3 mg/kg or 4.5 mg/kg) | |||||||
Park et al. [29] | Non described | n = 13 | 25.5 ± 3.3 | 213 ± 151 mg/day | Cross-over | Eccentric contraction (Quadriceps) | 24–48 h post-exercise | No difference between groups for MVIC. |
(4M; 9F) | (After 2 week) | (2 doses of 6 mg/kg) | ||||||
Vimercatt et al. [40] | Physically active | n = 15M | 19 ± 1 | Non described | Cross-over | Treadmill running | 1 dose pre-exercise | No difference between groups for CK, LDH, ALT, and AST. |
(After 2 week) | (60-min) | (4.4 mg/kg or 5.5 mg/kg) |
Study | Criteria | PEDro Score | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1* | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Caldwell et al. [25] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Cameron et al. [32] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 8 |
Chen et al. [27] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Ferreira et al. [28] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Green et al. [33] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Hurley et al. [34] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Kazman et al. [35] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Machado et al. [36] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Mahdavi et al. [37] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Maridakis et al. [30] | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 |
Ribeiro et al. [38] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Stadheim et al. [39] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Park et al. [29] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Vimercatt et al. [40] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldas, L.C.; Salgueiro, R.B.; Clarke, N.D.; Tallis, J.; Barauna, V.G.; Guimaraes-Ferreira, L. Effect of Caffeine Ingestion on Indirect Markers of Exercise-Induced Muscle Damage: A Systematic Review of Human Trials. Nutrients 2022, 14, 1769. https://doi.org/10.3390/nu14091769
Caldas LC, Salgueiro RB, Clarke ND, Tallis J, Barauna VG, Guimaraes-Ferreira L. Effect of Caffeine Ingestion on Indirect Markers of Exercise-Induced Muscle Damage: A Systematic Review of Human Trials. Nutrients. 2022; 14(9):1769. https://doi.org/10.3390/nu14091769
Chicago/Turabian StyleCaldas, Leonardo Carvalho, Rafael Barreira Salgueiro, Neil David Clarke, Jason Tallis, Valerio Garrone Barauna, and Lucas Guimaraes-Ferreira. 2022. "Effect of Caffeine Ingestion on Indirect Markers of Exercise-Induced Muscle Damage: A Systematic Review of Human Trials" Nutrients 14, no. 9: 1769. https://doi.org/10.3390/nu14091769
APA StyleCaldas, L. C., Salgueiro, R. B., Clarke, N. D., Tallis, J., Barauna, V. G., & Guimaraes-Ferreira, L. (2022). Effect of Caffeine Ingestion on Indirect Markers of Exercise-Induced Muscle Damage: A Systematic Review of Human Trials. Nutrients, 14(9), 1769. https://doi.org/10.3390/nu14091769