Iron Bioavailability from Ferrous Ammonium Phosphate, Ferrous Sulfate, and Ferric Pyrophosphate in an Instant Milk Drink—A Stable Isotope Study in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Isotopic Labels
2.4. Test Drink
2.5. Test Drink Administration
2.6. Blood Sampling and Analysis
2.7. Calculation of Iron Absorption
2.8. Food Analysis
2.9. Statistical Analysis
3. Results
3.1. Subjects
3.2. Tested Drink
3.3. Iron Absorption
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M.; on behalf of Nutrition Impact Model Study Group (Anaemia). Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob. Health 2013, 1, E16–E25. [Google Scholar] [CrossRef] [Green Version]
- Kassebaum, N.J. The Global Burden of Anemia. Hematol. Oncol. Clin. North Am. 2016, 30, 247–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petry, N.; Olofin, I.; Hurrell, R.F.; Boy, E.; Wirth, J.P.; Moursi, M.; Angel, M.D.; Rohner, F. The Proportion of Anemia Associated with Iron Deficiency in Low, Medium, and High Human Development Index Countries: A Systematic Analysis of National Surveys. Nutrients 2016, 8, 693. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.; Pfeiffer, C.M.; Georgieff, M.K.; Brittenham, G.; Fairweather-Tait, S.; Hurrell, R.F.; McArdle, H.J.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Iron Review. J. Nutr. 2018, 148, 1001S–1067S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO; FAO. Guidelines on Food Fortification with Micronutrients; World Health Organization/Food and Agricultural Organization of the United Nations: Geneva, Switzerland, 2006. [Google Scholar]
- Hurrell, R. Linking the bioavailability of iron compounds to the efficacy of iron-fortified foods. Int. J. Vitam. Nutr. Res. 2007, 77, 166–173. [Google Scholar] [CrossRef]
- Davidsson, L.; Kastenmayer, P.; Szajewska, H.; Hurrell, R.F.; Barclay, D. Iron bioavailability in infants from an infant cereal fortified with ferric pyrophosphate or ferrous fumarate. Am. J. Clin. Nutr. 2000, 71, 1597–1602. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, R.F. Fortification: Overcoming technical and practical barriers. J. Nutr. 2002, 132, 806S–812S. [Google Scholar] [CrossRef]
- Pauline, M.; Verghese, S.T.; Srinivasu, B.Y.; Bose, B.; Thomas, T.; Mandal, A.K.; Thankachan, P.; Kurpad, A.V. Effect of ascorbic acid rich, micro-nutrient fortified supplement on the iron bioavailability of ferric pyrophosphate from a milk based beverage in Indian school children. Asia Pac. J. Clin. Nutr. 2018, 27, 792–796. [Google Scholar]
- Walczyk, T.; Kastenmayer, P.; Bonsmann, S.S.G.; Zeder, C.; Grathwohl, D.; Hurrell, R.F. Ferrous ammonium phosphate (FeNH4PO4) as a new food fortificant: Iron bioavailability compared to ferrous sulfate and ferric pyrophosphate from an instant milk drink. Eur. J. Nutr. 2013, 52, 1361–1368. [Google Scholar] [CrossRef]
- Harrington, M.; Hotz, C.; Zeder, C.; Polvo, G.O.; Villalpando, S.; Zimmermann, M.B.; Walczyk, T.; Rivera, J.A.; Hurrell, R.F. A comparison of the bioavailability of ferrous fumarate and ferrous sulfate in non-anemic Mexican women and children consuming a sweetened maize and milk drink. Eur. J. Clin. Nutr. 2011, 65, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrell, R. Use of ferrous fumarate to fortify foods for infants and young children. Nutr. Rev. 2010, 68, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R.F.; Furniss, D.E.; Burri, J.; Whittaker, P.; Lynch, S.R.; Cook, J.D. Iron fortification of infant cereals: A proposal for the use of ferrous fumarate or ferrous succinate. Am. J. Clin. Nutr. 1989, 49, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Uyoga, M.A.; Mzembe, G.; Stoffel, N.U.; Moretti, D.; Zeder, C.; Phiri, K.; Sabatier, M.; Hays, N.P.; Zimmermann, M.B.; Mwangi, M.N. Iron Bioavailability from Infant Cereals Containing Whole Grains and Pulses: A Stable Isotope Study in Malawian Children. J. Nutr. 2021, 152, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R. Efficacy and Safety of Iron Fortification. In Food Fortification in a Globalized World; Mannar, M.G.V., Hurrell, R., Eds.; Academic Press: London, UK, 2018; pp. 195–212. [Google Scholar]
- García-Casal, M.N.; Layrisse, M. The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds. Arch. Latinoam. Nutr. 2001, 51, 35–36. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of Certain Food Additives. Seventy-First Report of the Joint FAO/WHO Expert Committee on Food Additives; JECFA: Geneva, Switzerland, 2009; pp. 22–27. [Google Scholar]
- EFSA. Panel on Food Additives and Nutrient Sources Added to Food. Scientific Opinion on the Safety of Ferrous Ammonium Phosphate as a Source of Iron Added for Nutritional Purposes to Foods for the General Population (Including Food Supplements) and to Foods for Particular Nutritional Uses; EFSA: Parma, Italy, 2010; p. 1584.
- Walczyk, T. Iron isotope ratio measurements by negative thermal ionisation mass spectrometry using FeF4− molecular ions. Int. J. Mass Spectrom. Ion Process. 1997, 161, 217–227. [Google Scholar] [CrossRef]
- Walczyk, T.; Davidsson, L.; Zavaleta, N.; Hurrell, R.F. Stable isotope labels as a tool to determine the iron absorption by Peruvian school children from a breakfast meal. Fresenius J. Anal. Bioanal. Chem. 1997, 359, 445–449. [Google Scholar] [CrossRef]
- Kastenmayer, P.; Davidsson, L.; Galanz, P.; Cherouvrier, F.; Hercberg, S.; Hurrell, R.F. A double stable isotope technique for measuring iron absorption in infants. Br. J. Nutr. 1994, 71, 411–424. [Google Scholar] [CrossRef]
- Linderkamp, O.; Versmold, H.T.; Riegel, K.P.; Betke, K. Estimation and prediction of blood volume in infants and children. Eur. J. Pediatr. 1977, 125, 227–234. [Google Scholar] [CrossRef]
- Pérez-Expósito, A.B.; Villalpando, S.; Rivera, J.A.; Griffin, I.J.; Abrams, S.A. Ferrous Sulfate Is More Bioavailable among Preschoolers than Other Forms of Iron in a Milk-Based Weaning Food Distributed by PROGRESA, a National Program in Mexico. J. Nutr. 2005, 135, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Sarker, S.A.; Davidsson, L.; Mahmud, H.; Walczyk, T.; Hurrell, R.F.; Gyr, N.; Fuchs, G.J. Helicobacter pylori infection, iron absorption, and gastric acid secretion in Bangladeshi children. Am. J. Clin. Nutr. 2004, 80, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, D.; Zimmermann, M.B.; Wegmüller, R.; Walczyk, T.; Zeder, C.; Hurrell, R.F. Iron status and food matrix strongly affect the relative bioavailability of ferric pyrophosphate in humans. Am. J. Clin. Nutr. 2006, 83, 632–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, M.B.; Biebinger, R.; Egli, I.; Zeder, C.; Hurrell, R.F. Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals. Br. J. Nutr. 2011, 105, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L.; Rossander-Hultén, L.; Brune, M.; Gleerup, A.; Rossander-Hult, L. Bioavailability in Man of Iron in Human Milk and Cow’s Milk in Relation to Their Calcium Contents. Pediatr. Res. 1992, 31, 524–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrell, R.F.; Davidsson, L.; Reddy, M.; Kastenmayer, P.; Cook, J.D. A comparison of iron absorption in adults and infants consuming identical infant formulas. Br. J. Nutr. 1998, 79, 31–36. [Google Scholar] [CrossRef]
- Stekel, A.; Olivares, M.; Pizarro, F.; Chadud, P.; Lopez, I.; Amar, M. Absorption of fortification iron from milk formulas in infants. Am. J. Clin. Nutr. 1986, 43, 917–922. [Google Scholar] [CrossRef]
- Walczyk, T.; Muthayya, S.; Wegmüller, R.; Thankachan, P.; Sierksma, A.; Frenken, L.G.J.; Thomas, T.; Kurpad, A.; Hurrell, R.F. Inhibition of Iron Absorption by Calcium Is Modest in an Iron-Fortified, Casein- and Whey-Based Drink in Indian Children and Is Easily Compensated for by Addition of Ascorbic Acid. J. Nutr. 2014, 144, 1703–1709. [Google Scholar] [CrossRef]
- FAO/WHO. Vitamin and Mineral Requirements in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation; FAO/WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Eichler, K.; Hess, S.; Twerenbold, C.; Sabatier, M.; Meier, F.; Wieser, S. Health effects of micronutrient fortified dairy products and cereal food for children and adolescents: A systematic review. PLoS ONE 2019, 14, e0210899. [Google Scholar] [CrossRef] [Green Version]
- Kuriyan, R.; Thankachan, P.; Selvam, S.; Pauline, M.; Srinivasan, K.; Kamath-Jha, S.; Vinoy, S.; Misra, S.; Finnegan, Y.; Kurpad, A.V. The effects of regular consumption of a multiple micronutrient fortified milk beverage on the micronutrient status of school children and on their mental and physical performance. Clin. Nutr. 2016, 35, 190–198. [Google Scholar] [CrossRef]
- Martorell, R.; Ascencio, M.; Tacsan, L.; Alfaro, T.; Young, M.F.; Addo, O.Y.; Dary, O.; Flores-Ayala, R. Effectiveness evaluation of the food fortification program of Costa Rica: Impact on anemia prevalence and hemoglobin concentrations in women and children. Am. J. Clin. Nutr. 2015, 101, 210–217. [Google Scholar] [CrossRef] [Green Version]
- Hertrampf, E.; Olivares, M. Iron Amino Acid Chelates. Int. J. Vitam. Nutr. Res. 2004, 74, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Bovell-Benjamin, A.C.; Viteri, F.E.; Allen, L.H. Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. Am. J. Clin. Nutr. 2000, 71, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Henare, S.J.; Singh, N.N.; Ellis, A.M.; Moughan, P.J.; Thompson, A.K.; Walczyk, T. Iron bioavailability of a casein-based iron fortificant compared with that of ferrous sulfate in whole milk: A randomized trial with a crossover design in adult women. Am. J. Clin. Nutr. 2019, 110, 1362–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatier, M.; Rytz, A.; Husny, J.; Dubascoux, S.; Nicolas, M.; Dave, A.; Singh, H.; Bodis, M.; Glahn, R.P. Impact of Ascorbic Acid on the In Vitro Iron Bioavailability of a Casein-Based Iron Fortificant. Nutrients 2020, 12, 2776. [Google Scholar] [CrossRef]
Arm 1 | Arm 2 | |
---|---|---|
Number of subjects (n) | 20 | 19 |
Age (month) | 69.7 ± 3.4 | 68.1 ± 3.2 |
Gender 1 | 6F-14M | 7F-12M |
Weight (kg) | 18.2 ± 1.5 | 17.7 ± 2.2 |
Height (cm) | 109.3 ± 4.1 | 109.3 ± 4.5 |
BMI (kg/cm2) | 15.2 ± 0.6 | 14.8 ± 0.9 |
Hemoglobin (g/L) | 130.2 ± 5.5 | 127.9 ± 8.8 |
Plasma ferritin (µg/L) 2 | 59 (33; 107) | 57 (37; 90) |
CRP (mg/L) 2 | 0.89 (0.32; 2.44) | 0.70 (0.22; 5.71) |
Geometric Mean% (−SD; +SD) | Log10 (Mean) (log% ± SD) | p-Value | ||
---|---|---|---|---|
Arm 1 | FAP | 8.31 (4.36, 15.84) | 0.92 ± 0.28 | |
FeSO4 | 7.58 (3.93, 14.68) | 0.88 ± 0.29 | ||
FAP-FeSO4 | +0.73 | +0.04 ± 0.11 | 0.199 | |
Arm 2 | FePP | 2.09 (1.08, 4.05) | 0.32 ± 0.29 | |
FeSO4 | 6.24 (3.25, 11.96) | 0.79 ± 0.28 | ||
FePP-FeSO4 | −4.15 | −0.48 ± 0.14 | <0.001 | |
FAP-FePP | (FAP-FeSO4) | |||
−(FePP-FeSO4) | +4.88 | +0.52 | <0.001 |
Subjects | n | Plasma Ferritin Concentration | Compound | Fe Dose (mg) | AA | RBV% | Ref. |
---|---|---|---|---|---|---|---|
Young women | 19 | 17.8 µg/L | FAP | 2.5 1 | ✓ | 71 * | [11] |
19 | 16.8 µg/L | FePP | 2.5 | ✓ | 32 | ||
Children | 20 | 59 µg/L | FAP | 2 2 | ✓ | 110 | Present study |
19 | 57 µg/L | FePP | 2 | ✓ | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurrell, R.F.; Trinidad, T.P.; Mallillin, A.C.; Sagum, R.S.; Foman, J.T.; Li, Q.; Zeder, C.; Kastenmayer, P.; Rytz, A.; Sabatier, M.; et al. Iron Bioavailability from Ferrous Ammonium Phosphate, Ferrous Sulfate, and Ferric Pyrophosphate in an Instant Milk Drink—A Stable Isotope Study in Children. Nutrients 2022, 14, 1640. https://doi.org/10.3390/nu14081640
Hurrell RF, Trinidad TP, Mallillin AC, Sagum RS, Foman JT, Li Q, Zeder C, Kastenmayer P, Rytz A, Sabatier M, et al. Iron Bioavailability from Ferrous Ammonium Phosphate, Ferrous Sulfate, and Ferric Pyrophosphate in an Instant Milk Drink—A Stable Isotope Study in Children. Nutrients. 2022; 14(8):1640. https://doi.org/10.3390/nu14081640
Chicago/Turabian StyleHurrell, Richard F., Trinidad P. Trinidad, Aida C. Mallillin, Rosario S. Sagum, Jasmin Tajeri Foman, Qiaoji Li, Christophe Zeder, Peter Kastenmayer, Andreas Rytz, Magalie Sabatier, and et al. 2022. "Iron Bioavailability from Ferrous Ammonium Phosphate, Ferrous Sulfate, and Ferric Pyrophosphate in an Instant Milk Drink—A Stable Isotope Study in Children" Nutrients 14, no. 8: 1640. https://doi.org/10.3390/nu14081640
APA StyleHurrell, R. F., Trinidad, T. P., Mallillin, A. C., Sagum, R. S., Foman, J. T., Li, Q., Zeder, C., Kastenmayer, P., Rytz, A., Sabatier, M., & Egli, I. (2022). Iron Bioavailability from Ferrous Ammonium Phosphate, Ferrous Sulfate, and Ferric Pyrophosphate in an Instant Milk Drink—A Stable Isotope Study in Children. Nutrients, 14(8), 1640. https://doi.org/10.3390/nu14081640