Diets with Higher Vegetable Intake and Lower Environmental Impact: Evidence from a Large Australian Population Health Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background Data
2.2. Higher Diet Quality and Lower Environmental Impact Subgroup
2.3. Analysis of Vegetable Intake
2.4. Nutrient Profiling
2.5. Statistical Analyses
3. Results
3.1. Characteristics of the HQLI Subgroup
3.2. Vegetable Intake and Variety
3.3. Dietary Patterns
3.4. Nutrient Adequacy
4. Discussion
4.1. Higher-Quality Diets with Lower Environmental Impacts
4.2. Addressing Barriers to Higher Vegetable Intake
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Health Survey: First Results. Available online: https://www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/latest-release#health-risk-factors (accessed on 31 January 2022).
- Ridoutt, B.; Baird, D.; Bastiaans, K.; Hendrie, G.; Riley, M.; Sanguansri, P.; Syrette, J.; Noakes, M. Changes in food intake in Australia: Comparing the 1995 and 2011 National Nutrition Survey results disaggregated into basic foods. Foods 2016, 5, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Increasing Fruit and Vegetable Consumption to Reduce the Risk of Noncommunicable Diseases. Available online: https://www.who.int/elena/titles/fruit_vegetables_ncds/en/ (accessed on 31 January 2022).
- Baars, A.E.; Rubio-Valverde, J.R.; Hu, Y.; Bopp, M.; Brønnum-Hansen, H.; Kalediene, R.; Leinsalu, M.; Martikainen, P.; Regidor, E.; White, C.; et al. Fruit and vegetable consumption and its contribution to inequalities in life expectancy and disability-free life expectancy in ten European countries. Int. J. Public Health 2019, 64, 861–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, B.; Bauman, A.; Gale, J.; Banks, E.; Kritharides, L.; Ding, D. Fruit and vegetable consumption and all-cause mortality: Evidence from a large Australian cohort study. Int. J. Behav. Nutr. 2016, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of all-cause mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.M.; McNaughton, S.A. Association between diet quality, dietary patterns and cardiometabolic health in Australian adults: A cross-sectional study. Nutr. J. 2018, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Miller, V.; Mente, A.; Dehghan, M.; Rangarajan, S.; Zhang, X.; Swaminathan, S.; Dagenais, G.; Gupta, R.; Mohan, V.; Lear, S.; et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. Lancet 2017, 390, 2037–2049. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, B.; Berthon, B.S.; Saedisomeolia, A.; Starkey, M.R.; Collison, A.; Wark, P.A.B.; Wood, L.G. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: A systematic literature review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 136–155. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, B.; Berthon, B.S.; Wark, P.; Wood, L.G. Effects of fruit and vegetable consumption on risk of asthma, wheezing and immune responses: A systematic review and meta-analysis. Nutrients 2017, 9, 341. [Google Scholar] [CrossRef]
- Charlton, K.; Kowal, P.; Soriano, M.M.; Williams, S.; Banks, E.; Vo, K.; Byles, J. Fruit and vegetable intake and body mass index in a large sample of middle-aged Australian men and women. Nutrients 2014, 6, 2305–2319. [Google Scholar] [CrossRef] [Green Version]
- Dreher, M.L.; Ford, N.A. A comprehensive critical assessment of increased fruit and vegetable intake on weight loss in women. Nutrients 2020, 12, 1919. [Google Scholar] [CrossRef]
- Mansouri, M.; Sharifi, F.; Varmaghani, M.; Shokri, A.; Rahdar, H.; Keshtkar, A.; Sadeghi, O. Fruit and vegetable consumption in relation to primary headaches: The MEPHASOUS study. Eat. Weight Disord.—Stud. Anorex. Bulim. Obes. 2021, 26, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.A. Fruit and vegetable intake and telomere length in a random sample of 5448 U.S. adults. Nutrients 2021, 13, 1415. [Google Scholar] [CrossRef] [PubMed]
- Dharmayani, P.N.A.; Juergens, M.; Allman-Farinelli, M.; Mihrshahi, S. Association between fruit and vegetable consumption and depression symptoms in young people and adults aged 15–45: A systematic review of cohort studies. Int. J. Environ. Res. Public Health 2021, 18, 780. [Google Scholar] [CrossRef] [PubMed]
- Guzek, D.; Głąbska, D.; Groele, B.; Gutkowska, K. Fruit and vegetable dietary patterns and mental health in women: A systematic review. Nutr. Rev. 2021, nuab007. [Google Scholar] [CrossRef]
- Mihrshahi, S.; Dobson, A.J.; Mishra, G.D. Fruit and vegetable consumption and prevalence and incidence of depressive symptoms in mid-age women: Results from the Australian longitudinal study on women’s health. Eur. J. Clin. Nutr. 2015, 69, 585–591. [Google Scholar] [CrossRef]
- Rees, J.; Bagatini, S.R.; Lo, J.; Hodgson, J.M.; Christophersen, C.T.; Daly, R.M.; Magliano, D.J.; Shaw, J.E.; Sim, M.; Bondonno, C.P.; et al. Association between fruit and vegetable intakes and mental health in the Australian Diabetes Obesity and Lifestyle cohort. Nutrients 2021, 13, 1447. [Google Scholar] [CrossRef]
- Fleig, L.; Küper, C.; Lippke, S.; Schwarzer, R.; Wiedemann, A.U. Cross-behavior associations and multiple health behavior change: A longitudinal study on physical activity and fruit and vegetable intake. J. Health Psychol. 2015, 20, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Boffetta, P. Health risk factors associated with meat, fruit and vegetable consumption in cohort studies: A comprehensive meta-analysis. PLoS ONE 2017, 12, e0183787. [Google Scholar] [CrossRef]
- Baldwin, J.N.; Ashton, L.M.; Forder, P.M.; Haslam, R.L.; Hure, A.J.; Loxton, D.J.; Patterson, A.J.; Collins, C.E. Increasing fruit and vegetable variety over time is associated with lower 15-year healthcare costs: Results from the Australian Longitudinal Study on Women’s Health. Nutrients 2021, 13, 2829. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Australian Dietary Guidelines Summary; National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Australian Bureau of Statistics. 4364.0.55.007—Australian Health Survey: Nutrition First Results—Foods and Nutrients, 2011–2012; Australian Bureau of Statistics: Canberra, Australia, 2014. [Google Scholar]
- Webb, P.; Benton, T.G.; Beddington, J. The urgency of food system transformation is now irrefutable. Nat. Food 2020, 1, 584–585. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Drewnowski, A.; Finley, J.; Hess, J.M.; Ingram, J.; Miller, G.; Peters, C. Towards healthy diets from sustainable food systems. Curr. Dev. Nutr. 2020, 4, nzaa083. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B.G.; Hendrie, G.A.; Noakes, M. Dietary strategies to reduce environmental impact: A critical review of the evidence base. Adv. Nutr. 2017, 8, 933–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Scheelbeek, P.; Green, R.; Papier, K.; Knuppel, A.; Alae-Carew, C.; Balkwill, A.; Key, T.J.; Beral, V.; Dangour, A.D. Health impacts and environmental footprints of diets that meet the Eatwell Guide recommendations: Analyses of multiple UK studies. BMJ Open 2020, 10, e037554. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; Vries, W.D.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Garnett, T. Plating up solutions. Science 2016, 353, 1202–1204. [Google Scholar] [CrossRef]
- Blackstone, N.T.; El-Abbadi, N.H.; McCabe, M.S.; Griffin, T.S.; Nelson, M.E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: A modelling study. Lancet Planet. Health 2018, 2, E344–E352. [Google Scholar] [CrossRef] [Green Version]
- Tukker, A.; Goldbohm, R.A.; de Koning, A.; Verheijden, M.; Kleijn, R.; Wolf, O.; Dominguez, I.P.; Rueda-Cantuche, J.M. Environmental impacts of changes to healthier diets in Europe. Ecol. Econ. 2011, 70, 1776–1788. [Google Scholar] [CrossRef]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, N.; Cleghorn, C.L.; Cobiac, L.J.; Mizdrak, A.; Nghiem, N. Achieving sustainable and healthy diets: A review of the results of recent mathematical optimization studies. Adv. Nutr. 2019, 10, S389–S403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabès, A.; Seconda, L.; Langevin, B.; Allès, B.; Touvier, M.; Hercberg, S.; Lairon, D.; Baudry, J.; Pointereau, P.; Kesse-Guyot, E. Greenhouse gas emissions, energy demand and land use associated with omnivorous, pesco-vegetarian, vegetarian, and vegan diets accounting for farming practices. Sustain. Prod. Consump. 2020, 22, 138–146. [Google Scholar] [CrossRef]
- Macdiarmid, J.I.; Whybrow, S. Nutrition from a climate change perspective. Proc. Nutr. Soc. 2019, 78, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenson, S.; Buttriss, J.L. The challenges of defining a healthy and ‘sustainable’ diet. Nutr. Bull. 2020, 45, 206–222. [Google Scholar] [CrossRef]
- Bruins, M.J.; Létinois, U. Adequate vitamin D intake cannot be achieved within carbon emission limits unless food is fortified: A simulation study. Nutrients 2021, 13, 592. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Cobiac, L. Do low-carbon-emission diets lead to higher nutritional quality and positive health outcomes? A systematic review of the literature. Public Health Nutr. 2016, 19, 2654–2661. [Google Scholar] [CrossRef]
- Magkos, F.; Tetens, I.; Bügel, S.G.; Felby, C.; Schacht, S.R.; Hill, J.O.; Ravussin, E.; Astrup, A. A Perspective on the transition to plant-based diets: A diet change may attenuate climate change, but can it also attenuate obesity and chronic disease risk? Adv. Nutr. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Baird, D.; Hendrie, G.A. The role of dairy foods in lower greenhouse gas emission and higher diet quality dietary patterns. Eur. J. Nutr. 2021, 60, 275–285. [Google Scholar] [CrossRef]
- Tonini, D.; Albizzati, P.F.; Astrup, T.F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 2018, 76, 744–766. [Google Scholar] [CrossRef] [PubMed]
- Brancoli, P.; Rousta, K.; Bolton, K. Life cycle assessment of supermarket food waste. Resour. Conserv. Recycl. 2017, 118, 39–46. [Google Scholar] [CrossRef]
- Perignon, M.; Sinfort, C.; El Ati, J.; Traissac, P.; Drogué, S.; Darmon, N.; Amiot, M.-J.; Amiot, M.J.; Achir, N.; Alouane, L.; et al. How to meet nutritional recommendations and reduce diet environmental impact in the Mediterranean region? An optimization study to identify more sustainable diets in Tunisia. Glob. Food Sec. 2019, 23, 227–235. [Google Scholar] [CrossRef]
- Hallström, E.; Håkansson, N.; Åkesson, A.; Wolk, A.; Sonesson, U. Climate impact of alcohol consumption in Sweden. J. Clean. Prod. 2018, 201, 287–294. [Google Scholar] [CrossRef]
- Hendrie, G.A.; Baird, D.; Ridoutt, B.; Hadjikakou, M.; Noakes, M. Overconsumption of energy and excessive discretionary food intake inflates dietary greenhouse gas emissions in Australia. Nutrients 2016, 8, 690. [Google Scholar] [CrossRef] [Green Version]
- Marchese, L.; Livingstone, K.M.; Woods, J.L.; Wingrove, K.; Machado, P. Ultra-processed food consumption, socio-demographics and diet quality in Australian adults. Pub. Health Nutr. 2021, 25, 94–104. [Google Scholar] [CrossRef]
- Sui, Z.; Wong, W.K.; Louie, J.C.Y.; Rangan, A. Discretionary food and beverage consumption and its association with demographic characteristics, weight status, and fruit and vegetable intakes in Australian adults. Pub. Health Nutr. 2016, 20, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Ridoutt, B.G.; Baird, D.; Anastasiou, K.; Hendrie, G.A. Diet quality and water scarcity: Evidence from a large Australian population health survey. Nutrients 2019, 11, 1846. [Google Scholar] [CrossRef] [Green Version]
- Ridoutt, B.; Anastasiou, K.; Baird, D.; Navarro Garcia, J.; Hendrie, G. Cropland footprints of Australian dietary choices. Nutrients 2020, 12, 1212. [Google Scholar] [CrossRef]
- Ridoutt, B.; Baird, D.; Hendrie, G.A. Diets within environmental limits: The climate impact of current and recommended Australian diets. Nutrients 2021, 13, 1122. [Google Scholar] [CrossRef]
- Ridoutt, B.; Baird, D.; Navarro, J.; Hendrie, G.A. Pesticide toxicity footprints of Australian dietary choices. Nutrients 2021, 13, 4314. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. 4363.0—National Health Survey: Users’ Guide, 2014–2015; Australian Bureau of Statistics: Canberra, Australia, 2017. [Google Scholar]
- Ridoutt, B.G.; Baird, D.; Anastasiou, K.; Hendrie, G.A. An assessment of the water use associated with Australian diets using a planetary boundary framework. Public Health Nutr. 2021, 24, 1570–1575. [Google Scholar] [CrossRef] [PubMed]
- Golley, R.K.; Hendrie, G.A. The Dietary Guidelines Index for children and adolescents: What is the impact of the new dietary guidelines? Nutr. Diet. 2014, 71, 210–212. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Baird, D.; Hendrie, G.A. Diets within planetary boundaries: What is the potential of dietary change alone? Sustain. Prod. Consum. 2021, 28, 802–810. [Google Scholar] [CrossRef]
- Pizzol, M.; Laurent, A.; Sala, S.; Weidema, B.; Verones, F.; Koffler, C. Normalisation and weighting in life cycle assessment: Quo vadis? Int. J. Life Cycle Assess. 2017, 22, 853–866. [Google Scholar] [CrossRef] [Green Version]
- Nutrient Reference Values for Australia and New Zealand. Available online: https://www.nrv.gov.au/introduction (accessed on 4 September 2019).
- Vieux, F.; Darmon, N.; Touazi, D.; Soler, L.G. Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less? Ecol. Econ. 2012, 75, 91–101. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand. Australian Food Composition Database. Available online: https://www.foodstandards.gov.au/science/monitoringnutrients/afcd/pages/default.aspx (accessed on 15 February 2021).
- FAO; WHO. Sustainable Healthy Diets—Guiding Principles; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Ashton, L.; Williams, R.; Wood, L.; Schumacher, T.; Burrows, T.; Rollo, M.; Pezdirc, K.; Callister, R.; Collins, C.E. The comparative validity of a brief diet screening tool for adults: The Fruit and Vegetable VAriety index (FAVVA). Clin. Nutr. 2019, 29, 189–197. [Google Scholar] [CrossRef]
- Hoy, M.K.; Clemens, J.C.; Martin, C.L.; Moshfegh, A.J. Fruit and vegetable consumption of US adults by level of variety, What we eat in America, NHANES 2013–2016. Curr. Dev. Nutr. 2020, 4, nzaa014. [Google Scholar] [CrossRef] [Green Version]
- López-González, L.; Becerra-Tomás, N.; Babio, N.; Martínez-González, M.A.; Díaz-López, A.; Díaz-López, A.; Corella, D.; Goday, A.; Romagueraci, D.; Vioque, J.; et al. Variety in fruits and vegetables, diet quality and lifestyle in an older adult mediterranean population. Clin. Nutr. 2021, 40, 1510–1518. [Google Scholar] [CrossRef]
- Jenkins, L.; McEvoy, M.; Patterson, A.; Sibbritt, D. Higher unprocessed red meat, chicken and fish intake is associated with a higher vegetable intake in mid-age non-vegetarian women. Nutr. Diet. 2012, 69, 293–299. [Google Scholar] [CrossRef]
- Dogbe, W.; Revoredo-Giha, C. Nutritional and environmental assessment of increasing the content of fruit and vegetables in the UK Diet. Sustainability 2021, 13, 1076. [Google Scholar] [CrossRef]
- Colombo, P.E.; Milner, J.; Scheelbeek, P.F.D.; Taylor, A.; Parlesak, A.; Kastner, T.; Nicholas, O.; Elinder, L.S.; Dangour, A.D.; Green, R. Pathways to “5-a-day”: Modeling the health impacts and environmental footprints of meeting the target for fruit and vegetable intake in the United Kingdom. Am. J. Clin. Nutr. 2021, 114, 530–539. [Google Scholar]
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Animal and plant-sourced nutrition: Complementary not competitive. Anim. Prod. Sci. 2021. [Google Scholar] [CrossRef]
- Chapman, K.; Havill, M.; Watson, W.; Wellard-Cole, L.; Hughes, C.; Bauman, A.; Allman-Farinelli, M. Time to address continued poor vegetable intake in Australia for prevention of chronic disease. Appetite 2016, 107, 295–302. [Google Scholar] [CrossRef]
- Lim, S.; Beauchamp, A.; Dodson, S.; O’Hara, J.; McPhee, C.; Fulton, A.; Wildey, C.; Osborne, R.H. Health literacy and fruit and vegetable intake in rural Australia. Public Health Nutr. 2017, 20, 2680–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, K.; Goldsbury, D.; Watson, W.; Havill, M.; Wellard, L.; Hughes, C.; Bauman, A.; Allman-Farinelli, M. Exploring perceptions and beliefs about the cost of fruit and vegetables and whether they are barriers to higher consumption. Appetite 2017, 113, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.; McNaughton, S.A.; Rychetnik, L.; Chatfield, M.D.; Lee, A.J. Dietary intake, cost, and affordability by socioeconomic group in Australia. Int. J. Environ. Res. Public Health 2021, 18, 13315. [Google Scholar] [CrossRef]
- Mihrshahi, S.; Partridge, S.R.; Zheng, X.; Ramachandran, D.; Chia, D.; Boylan, S.; Chau, J.Y. Food co-operatives: A potential community-based strategy to improve fruit and vegetable intake in Australia. Int. J. Environ. Res. Public Health 2020, 17, 4154. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Burton, M.; Brown, A.K.; McNaughton, S.A. Exploring barriers to meeting recommendations for fruit and vegetable intake among adults in regional areas: A mixed-methods analysis of variations across socio-demographics. Appetite 2020, 153, 104750. [Google Scholar] [CrossRef]
- Rebuli, M.A.; Williams, G.; James-Martin, G.; Hendrie, G.A. Food group intake at self-reported eating occasions across the day: Secondary analysis of the Australian National Nutrition Survey 2011–2012. Public Health Nutr. 2020, 23, 3067–3080. [Google Scholar] [CrossRef]
- Fayet-Moore, F.; McConnell, A.; Cassettari, T.; Tuck, K.; Petocz, P.; Kim, J. Vegetable intake in Australian children and adolescents: The importance of consumption frequency, eating occasion and its association with dietary and sociodemographic factors. Public Health Nutr. 2019, 23, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Grech, A.; Hasick, M.; Gemming, L.; Rangan, A. Energy misreporting is more prevalent for those of lower socio-economic status and is associated with lower reported intake of discretionary foods. Br. J. Nutr. 2020, 125, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Guo, J.; Dore, M.; Chow, C.C. The progressive increase of food waste in America and its environmental impact. PLoS ONE 2009, 4, e7940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | HQLI Subgroup | Population Estimate | p-Value |
---|---|---|---|
Diet-quality score (out of 100) | 59.2 | 42.6 | <0.001 |
Climate footprint (kg CO2-e day-1) | 1.55 | 3.33 | <0.001 |
Water-scarcity footprint (L-e day-1) | 301 | 394 | <0.001 |
Cropland-scarcity footprint (m2y-e day-1) | 4.90 | 6.89 | <0.001 |
Pesticide-toxicity footprint (points day-1) | 16.5 | 25.1 | <0.001 |
BMI category (%) | 0.091 | ||
Underweight | 1.3 | 1.5 | |
Normal range | 32.3 | 30.7 | |
Overweight | 29.7 | 31.3 | |
Obese | 20.8 | 21.9 | |
Dairy avoidance (%) | 5.9 | 4.7 | 0.029 |
Activity level (past week) (%) | <0.001 | ||
Inactive | 16.8 | 20.4 | |
Insufficiently active | 28.3 | 26.4 | |
Sufficiently active | 54.2 | 52.5 | |
Smoking status (%) | <0.001 | ||
Current daily smoker | 9.8 | 15.8 | |
Current occasional smoker | 0.9 | 1.9 | |
Ex-smoker | 29.3 | 30.8 | |
Never smoked | 60.1 | 51.6 | |
Level of highest education (%) | <0.001 | ||
Postgraduate | 11.3 | 8.8 | |
Bachelor | 19.3 | 18.2 | |
Certificate/Diploma | 32.0 | 35.0 | |
Without post-school qualification | 35.8 | 36.7 | |
SEIFA quintile (%) 1 | 0.186 | ||
Lowest 20% | 17.6 | 17.9 | |
Second quintile | 21.0 | 20.4 | |
Third quintile | 20.5 | 20.0 | |
Fourth quintile | 20.0 | 19.3 | |
Highest 20% | 20.9 | 22.3 |
Nutrient | HQLI Subgroup | Population Estimate | Difference (%) 1 |
---|---|---|---|
LCn3 (mg MJ−1) | 52.1 | 34.6 | 50.5 ** |
Retinol equivalents (μg MJ−1) | 134.0 | 100.8 | 32.9 ** |
Dietary fiber (g MJ−1) | 3.6 | 2.7 | 30.7 ** |
Dietary folate equivalents (μg MJ−1) | 91.6 | 74.4 | 23.2 ** |
Thiamin (B1) (mg MJ−1) | 0.2 | 0.2 | 19.6 ** |
Magnesium (mg MJ−1) | 47.4 | 40.5 | 17.1 ** |
Vitamin E (mg MJ−1) | 1.4 | 1.2 | 15.9 ** |
Potassium (mg MJ−1) | 395.7 | 345.7 | 14.5 ** |
Riboflavin (B2) (mg MJ−1) | 0.3 | 0.2 | 14.4 ** |
Selenium (μg MJ−1) | 12.3 | 10.8 | 13.9 ** |
Iron (mg MJ−1) | 1.5 | 1.3 | 12.8** |
Iodine (μg MJ−1) | 23.3 | 20.8 | 12.0 ** |
Calcium (mg MJ−1) | 107.5 | 96.1 | 11.9 ** |
Vitamin C (mg MJ−1) | 14.0 | 12.5 | 11.9 ** |
Niacin (B3) equivalents (mg MJ−1) | 5.5 | 4.9 | 11.9 ** |
Vitamin B6 (mg MJ−1) | 0.2 | 0.2 | 9.7 ** |
Alpha-linolenic acid (g MJ−1) | 0.2 | 0.2 | 8.9 ** |
Protein (g MJ−1) | 11.6 | 10.7 | 7.7 ** |
Phosphorus (mg MJ−1) | 185.7 | 172.8 | 7.5 ** |
Polyunsaturated fatty acids (g MJ−1) | 1.4 | 1.3 | 6.9 ** |
Caffeine (mg MJ−1) | 23.1 | 21.7 | 6.2 * |
Linoleic acid (g MJ−1) | 1.1 | 1.1 | 5.2 ** |
Total carbohydrates (g MJ−1) | 27.5 | 26.2 | 5.0 ** |
Vitamin B12 (μg MJ−1) | 0.5 | 0.5 | 1.5 |
Zinc (mg MJ−1) | 1.3 | 1.3 | −0.3 |
Sodium (mg MJ−1) | 276.4 | 287.1 | −3.7 ** |
Monounsaturated fatty acids (g MJ−1) | 3.1 | 3.2 | −3.8 ** |
Total fats (g MJ−1) | 7.9 | 8.3 | −5.6 ** |
Saturated fatty acids (g MJ−1) | 2.7 | 3.1 | −14.5 ** |
Trans-fatty acids (mg MJ−1) | 126.1 | 156.1 | −19.2 ** |
Free sugars (g MJ−1) | 4.4 | 6.6 | −32.4 ** |
Alcohol (g MJ−1) | 0.6 | 1.6 | −64.0 ** |
Group | Number | Servings/Day 1 | Variety Score 2 |
---|---|---|---|
Low vegetable intake tertile | 550 | 0.29 | 1.6 |
Medium vegetable intake tertile | 523 | 2.21 | 2.6 |
High vegetable intake tertile | 627 | 7.53 | 3.3 |
Diets achieving recommended vegetable intake | 412 | 8.91 | 3.4 |
Diets below recommended vegetable intake | 1288 | 1.69 | 2.2 |
All HQLI diets | 1700 | 3.34 | 2.5 |
Food Group | Servings per Person 1 | ||||
---|---|---|---|---|---|
Tertiles of Vegetable Intake | Recommended Vegetable Intake | ||||
Low | Medium | High | Achieved | Below | |
Fruit | 1.61 | 1.64 | 1.59 | 1.52 | 1.64 |
Vegetables | 0.29 | 2.21 | 7.53 | 8.91 | 1.69 |
Bread and cereal foods | 5.60 | 5.11 | 4.32 | 4.37 | 5.20 |
Meats and alternatives | 2.08 | 2.40 | 2.41 | 2.45 | 2.25 |
Fish | 0.35 | 0.37 | 0.29 | 0.31 | 0.35 |
Beef and lamb | 0.28 | 0.53 | 0.69 | 0.73 | 0.43 |
Poultry | 0.77 | 0.76 | 0.62 | 0.60 | 0.75 |
Pork | 0.08 | 0.20 | 0.19 | 0.18 | 0.15 |
Eggs, nuts, etc. | 0.60 | 0.56 | 0.60 | 0.61 | 0.58 |
Reptiles, offal, etc. | <0.01 | <0.01 | 0.02 | 0.03 | <0.01 |
Dairy and alternatives | 1.31 | 1.15 | 1.18 | 1.14 | 1.23 |
Discretionary choices | 2.15 | 2.22 | 2.55 | 2.70 | 2.19 |
Nutrient | Percent Meeting EAR 1 | ||||
---|---|---|---|---|---|
Tertiles of Vegetable Intake | Recommended Vegetable Intake | ||||
Low | Medium | High | Achieved | Below | |
Niacin (B3) 2 | 99.6 | 99.9 | 99.9 | 99.8 | 99.8 |
Phosphorus | 96.7 | 99.2 | 99.5 | 99.5 | 98.2 |
Vitamin C | 68.4 | 90.4 | 96.3 | 97.1 | 81.5 |
Protein | 90.0 | 96.5 | 95.3 | 95.7 | 93.4 |
Folate 3 | 84.8 | 84.9 | 90.5 | 88.3 | 86.3 |
Iron | 75.7 | 84.2 | 90.1 | 90.7 | 81.2 |
Riboflavin (B2) | 79.0 | 83.1 | 85.0 | 85.4 | 81.5 |
Selenium | 75.4 | 86.0 | 82.0 | 81.5 | 81.0 |
Magnesium | 56.2 | 59.4 | 78.8 | 79.5 | 60.4 |
Thiamin (B1) | 64.1 | 75.2 | 78.5 | 77.0 | 71.3 |
Vitamin B12 | 83.4 | 81.3 | 78.0 | 76.4 | 82.3 |
Iodine | 84.3 | 82.5 | 77.7 | 76.7 | 82.9 |
Vitamin A 4 | 38.6 | 60.4 | 76.0 | 75.0 | 53.4 |
Vitamin B6 | 44.7 | 53.5 | 72.0 | 75.0 | 51.3 |
Zinc | 43.3 | 56.0 | 67.9 | 68.5 | 51.9 |
Calcium | 37.9 | 35.5 | 37.2 | 39.9 | 35.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridoutt, B.; Baird, D.; Hendrie, G.A. Diets with Higher Vegetable Intake and Lower Environmental Impact: Evidence from a Large Australian Population Health Survey. Nutrients 2022, 14, 1517. https://doi.org/10.3390/nu14071517
Ridoutt B, Baird D, Hendrie GA. Diets with Higher Vegetable Intake and Lower Environmental Impact: Evidence from a Large Australian Population Health Survey. Nutrients. 2022; 14(7):1517. https://doi.org/10.3390/nu14071517
Chicago/Turabian StyleRidoutt, Bradley, Danielle Baird, and Gilly A. Hendrie. 2022. "Diets with Higher Vegetable Intake and Lower Environmental Impact: Evidence from a Large Australian Population Health Survey" Nutrients 14, no. 7: 1517. https://doi.org/10.3390/nu14071517
APA StyleRidoutt, B., Baird, D., & Hendrie, G. A. (2022). Diets with Higher Vegetable Intake and Lower Environmental Impact: Evidence from a Large Australian Population Health Survey. Nutrients, 14(7), 1517. https://doi.org/10.3390/nu14071517