Relationship between Habitual Intake of Vitamins and New-Onset Prediabetes/Diabetes after Acute Pancreatitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Groups
2.3. Ascertainment of Vitamin Intake
2.4. Laboratory Assays
2.5. Covariates
2.6. Statistical Analyses
3. Results
3.1. Study Cohort
3.2. Fat-Soluble Vitamin Intake and Markers of Glucose Metabolism in the Study Groups
3.2.1. Fasting Plasma Glucose
3.2.2. HOMA-β
3.2.3. HOMA-IR
3.3. Water-Soluble Vitamin Intake and Markers of Glucose Metabolism in the Study Groups
3.3.1. Fasting Plasma Glucose
3.3.2. HOMA-β
3.3.3. HOMA-IR
4. Discussion
4.1. Fat-Soluble Vitamins
4.2. Water-Soluble Vitamins
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Zhang, M.; Li, C.; Jiang, X.; Su, Y.; Zhang, Y. Benefits of Vitamins in the Treatment of Parkinson’s Disease. Oxid. Med. Cell. Longev. 2019, 2019, 9426867. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council (Australia); New Zealand Ministry of Health; Australian Department of Health and Ageing. Nutrient Reference Values for Australia and New Zealand; National Health and Medical Research Council: Canberra, Australia, 2006; ISBN 978-1-86496-237-6.
- Ofoedu, C.E.; Iwouno, J.O.; Ofoedu, E.O.; Ogueke, C.C.; Igwe, V.S.; Agunwah, I.M.; Ofoedum, A.F.; Chacha, J.S.; Muobike, O.P.; Agunbiade, A.O.; et al. Revisiting Food-Sourced Vitamins for Consumer Diet and Health Needs: A Perspective Review, from Vitamin Classification, Metabolic Functions, Absorption, Utilization, to Balancing Nutritional Requirements. PeerJ 2021, 9, e11940. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Méndez, A.; Boone-Villa, D.; Nieto-Aguilar, R.; Villafaña-Rauda, S.; Molina, A.S.; Sobrevilla, J.V. Role of Vitamins in the Metabolic Syndrome and Cardiovascular Disease. Pflugers Arch. Eur. J. Physiol. 2021, 474, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.T.; Rodionov, D.A.; Osterman, A.L.; Peterson, S.N. B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020, 12, 3380. [Google Scholar] [CrossRef] [PubMed]
- Frei, B. Efficacy of Dietary Antioxidants to Prevent Oxidative Damage and Inhibit Chronic Disease. J. Nutr. 2004, 134, 3196S–3198S. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Golzarand, M.; Mirmiran, P.; Shiva, N.; Azizi, F. Dietary Total Antioxidant Capacity and the Occurrence of Metabolic Syndrome and Its Components after a 3-Year Follow-up in Adults: Tehran Lipid and Glucose Study. Nutr. Metab. 2012, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Zeng, C.; Gong, Q.; Li, X.; Lei, G.; Yang, T. Associations between Dietary Antioxidant Intake and Metabolic Syndrome. PLoS ONE 2015, 10, e0130876. [Google Scholar] [CrossRef]
- Cigerli, O. Vitamin Deficiency and Insulin Resistance in Nondiabetic Obese Patients. Acta Endocrinol. 2016, 12, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Setola, E.; Monti, L.; Galluccio, E.; Palloshi, A.; Fragasso, G.; Paroni, R.; Magni, F.; Sandoli, E.; Lucotti, P.; Costa, S.; et al. Insulin Resistance and Endothelial Function Are Improved after Folate and Vitamin B12 Therapy in Patients with Metabolic Syndrome: Relationship between Homocysteine Levels and Hyperinsulinemia. Eur. J. Endocrinol. 2004, 151, 483–489. [Google Scholar] [CrossRef]
- Kayaniyil, S.; Retnakaran, R.; Harris, S.B.; Vieth, R.; Knight, J.A.; Gerstein, H.C.; Perkins, B.A.; Zinman, B.; Hanley, A.J. Prospective Associations of Vitamin D With β-Cell Function and Glycemia: The PROspective Metabolism and ISlet Cell Evaluation (PROMISE) Cohort Study. Diabetes 2011, 60, 2947–2953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, S.; Gao, Y.; Zhang, M.; Wang, X.; Liu, W.; Zhang, D.; Huang, G. Dietary Nutrient Intake and Metabolic Syndrome Risk in Chinese Adults: A Case–Control Study. Nutr. J. 2013, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Eshak, E.S.; Iso, H.; Muraki, I.; Tamakoshi, A. Fat-Soluble Vitamins from Diet in Relation to Risk of Type 2 Diabetes Mellitus in Japanese Population. Br. J. Nutr. 2019, 121, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Eshak, E.S.; Iso, H.; Muraki, I.; Tamakoshi, A. Among the Water-Soluble Vitamins, Dietary Intakes of Vitamins C, B2 and Folate Are Associated with the Reduced Risk of Diabetes in Japanese Women but Not Men. Br. J. Nutr. 2019, 121, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Na, L.; Shan, R.; Cheng, Y.; Li, Y.; Wu, X.; Sun, C. Dietary Vitamin C Intake Reduces the Risk of Type 2 Diabetes in Chinese Adults: HOMA-IR and T-AOC as Potential Mediators. PLoS ONE 2016, 11, e0163571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankisch, P.G.; Apte, M.; Banks, P.A. Acute Pancreatitis. Lancet 2015, 386, 85–96. [Google Scholar] [CrossRef]
- Das, S.L.; Singh, P.P.; Phillips, A.R.; Murphy, R.; Windsor, J.A.; Petrov, M.S. Newly Diagnosed Diabetes Mellitus after Acute Pancreatitis: A Systematic Review and Meta-Analysis. Gut 2014, 63, 818. [Google Scholar] [CrossRef]
- Das, S.L.; Kennedy, J.I.; Murphy, R.; Phillips, A.R.; Windsor, J.A.; Petrov, M.S. Relationship between the Exocrine and Endocrine Pancreas after Acute Pancreatitis. World J. Gastroenterol. 2014, 20, 17196. [Google Scholar] [CrossRef]
- Berry, A.J. Pancreatic Enzyme Replacement Therapy During Pancreatic Insufficiency. Nutr. Clin. Pract. 2014, 29, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Scragg, R.; Pandol, S.J.; Petrov, M.S. Exocrine Pancreatic Dysfunction Increases the Risk of New-Onset Diabetes Mellitus: Results of a Nationwide Cohort Study. Clin. Transl. Sci. 2021, 14, 170–178. [Google Scholar] [CrossRef]
- Woodmansey, C.; McGovern, A.P.; McCullough, K.A.; Whyte, M.B.; Munro, N.M.; Correa, A.C.; Gatenby, P.A.C.; Jones, S.A.; de Lusignan, S. Incidence, Demographics, and Clinical Characteristics of Diabetes of the Exocrine Pancreas (Type 3c): A Retrospective Cohort Study. Diabetes Care 2017, 40, 1486–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, M.S. Post-Pancreatitis Diabetes Mellitus: Prime Time for Secondary Disease. Eur. J. Endocrinol. 2021, 184, R137–R149. [Google Scholar] [CrossRef]
- Xiao, A.Y.; Tan, M.L.; Wu, L.M.; Asrani, V.M.; Windsor, J.A.; Yadav, D.; Petrov, M.S. Global Incidence and Mortality of Pancreatic Diseases: A Systematic Review, Meta-Analysis, and Meta-Regression of Population-Based Cohort Studies. Lancet Gastroenterol. Hepatol. 2016, 1, 45–55. [Google Scholar] [CrossRef]
- Cho, J.; Petrov, M.S. Pancreatitis, Pancreatic Cancer, and Their Metabolic Sequelae: Projected Burden to 2050. Clin. Transl. Gastroenterol. 2020, 11, e00251. [Google Scholar] [CrossRef]
- Cho, J.; Scragg, R.; Petrov, M.S. Postpancreatitis Diabetes Confers Higher Risk for Pancreatic Cancer Than Type 2 Diabetes: Results from a Nationwide Cancer Registry. Diabetes Care 2020, 43, 2106–2112. [Google Scholar] [CrossRef]
- Cho, J.; Scragg, R.; Petrov, M.S. Risk of Mortality and Hospitalization After Post-Pancreatitis Diabetes Mellitus vs Type 2 Diabetes Mellitus: A Population-Based Matched Cohort Study. Am. J. Gastroenterol. 2019, 114, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and Management of Type 2 Diabetes: Dietary Components and Nutritional Strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P.; et al. Nutrition Therapy Recommendations for the Management of Adults with Diabetes. Diabetes Care 2014, 37, S120–S143. [Google Scholar] [CrossRef] [Green Version]
- Norbitt, C.F.; Kimita, W.; Ko, J.; Bharmal, S.H.; Petrov, M.S. Associations of Habitual Mineral Intake with New-Onset Prediabetes/Diabetes after Acute Pancreatitis. Nutrients 2021, 13, 3978. [Google Scholar] [CrossRef]
- Kimita, W.; Li, X.; Ko, J.; Bharmal, S.H.; Cameron-Smith, D.; Petrov, M.S. Association between Habitual Dietary Iron Intake and Glucose Metabolism in Individuals after Acute Pancreatitis. Nutrients 2020, 12, 3579. [Google Scholar] [CrossRef]
- Petrov, M.S.; Windsor, J.A.; Lévy, P. New International Classification of Acute Pancreatitis: More Than Just 4 Categories of Severity. Pancreas 2013, 42, 389–391. [Google Scholar] [CrossRef]
- Petrov, M.S.; Basina, M. Diagnosing and Classifying Diabetes in Diseases of the Exocrine Pancreas. Eur. J. Endocrinol. 2021, 184, R151–R163. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, A.A.; Luben, R.N.; Bhaniani, A.; Parry-Smith, D.J.; O’Connor, L.; Khawaja, A.P.; Forouhi, N.G.; Khaw, K.-T. A New Tool for Converting Food Frequency Questionnaire Data into Nutrient and Food Group Values: FETA Research Methods and Availability. BMJ Open 2014, 4, e004503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.G.; Cervantes, A.; Kim, J.U.; Nguyen, N.N.; DeSouza, S.V.; Dokpuang, D.; Lu, J.; Petrov, M.S. Intrapancreatic Fat Deposition and Visceral Fat Volume Are Associated with the Presence of Diabetes after Acute Pancreatitis. Am. J. Physiol.-Gastrointest. Liver Physiol. 2019, 316, G806–G815. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.G.; Nguyen, N.N.; DeSouza, S.V.; Pendharkar, S.A.; Petrov, M.S. Comprehensive Analysis of Body Composition and Insulin Traits Associated with Intra-Pancreatic Fat Deposition in Healthy Individuals and People with New-Onset Prediabetes/Diabetes after Acute Pancreatitis. Diabetes Obes. Metab. 2019, 21, 417–423. [Google Scholar] [CrossRef]
- Cervantes, A.; Singh, R.G.; Kim, J.U.; DeSouza, S.V.; Petrov, M.S. Relationship of Anthropometric Indices to Abdominal Body Composition: A Multi-Ethnic New Zealand Magnetic Resonance Imaging Study. J. Clin. Med. Res. 2019, 11, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Stuart, C.E.; Singh, R.G.; Alarcon Ramos, G.C.; Priya, S.; Ko, J.; DeSouza, S.V.; Cho, J.; Petrov, M.S. Relationship of Pancreas Volume to Tobacco Smoking and Alcohol Consumption Following Pancreatitis. Pancreatology 2020, 20, 60–67. [Google Scholar] [CrossRef]
- Jenab, M.; Salvini, S.; van Gils, C.H.; Brustad, M.; Shakya-Shrestha, S.; Buijsse, B.; Verhagen, H.; Touvier, M.; Biessy, C.; Wallström, P.; et al. Dietary Intakes of Retinol, β-Carotene, Vitamin D and Vitamin E in the European Prospective Investigation into Cancer and Nutrition Cohort. Eur. J. Clin. Nutr. 2009, 63, S150–S178. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S. Metabolic Trifecta After Pancreatitis: Exocrine Pancreatic Dysfunction, Altered Gut Microbiota, and New-Onset Diabetes. Clin. Transl. Gastroenterol. 2019, 10, e00086. [Google Scholar] [CrossRef]
- Ko, J.; Skudder-Hill, L.; Priya, S.; Kimita, W.; Bharmal, S.H.; Petrov, M.S. Associations between Intra-Pancreatic Fat Deposition, Pancreas Size, and Pancreatic Enzymes in Health and after an Attack of Acute Pancreatitis. Obes. Facts 2022, 15, 70–82. [Google Scholar] [CrossRef]
- Moltedo, A.; Álvarez-Sánchez, C.; Grande, F.; Charrondiere, U.R. The Complexity of Producing and Interpreting Dietary Vitamin A Statistics. J. Food Compos. Anal. 2021, 100, 103926. [Google Scholar] [CrossRef]
- Rao, A.; Rao, L. Carotenoids and Human Health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Quansah, D.; Ha, K.; Jun, S.; Kim, S.-A.; Shin, S.; Wie, G.-A.; Joung, H. Associations of Dietary Antioxidants and Risk of Type 2 Diabetes: Data from the 2007–2012 Korea National Health and Nutrition Examination Survey. Molecules 2017, 22, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sluijs, I.; Cadier, E.; Beulens, J.W.J.; van der A, D.L.; Spijkerman, A.M.W.; van der Schouw, Y.T. Dietary Intake of Carotenoids and Risk of Type 2 Diabetes. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Ärnlöv, J.; Zethelius, B.; Risérus, U.; Basu, S.; Berne, C.; Vessby, B.; Alfthan, G.; Helmersson, J. Serum and Dietary β-Carotene and α-Tocopherol and Incidence of Type 2 Diabetes Mellitus in a Community-Based Study of Swedish Men: Report from the Uppsala Longitudinal Study of Adult Men (ULSAM) Study. Diabetologia 2009, 52, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harari, A.; Coster, A.C.F.; Jenkins, A.; Xu, A.; Greenfield, J.R.; Harats, D.; Shaish, A.; Samocha-Bonet, D. Obesity and Insulin Resistance Are Inversely Associated with Serum and Adipose Tissue Carotenoid Concentrations in Adults. J. Nutr. 2020, 150, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Khalili Moghadam, S.; Bahadoran, Z.; Tohidi, M.; Azizi, F. Association of Dietary Carotenoids and the Incidence of Insulin Resistance in Adults: Tehran Lipid and Glucose Study: Carotenoids and Insulin Resistance. Nutr. Diet 2016, 73, 162–168. [Google Scholar] [CrossRef]
- Higuchi, K.; Saito, I.; Maruyama, K.; Eguchi, E.; Mori, H.; Tanno, S.; Sakurai, S.; Kishida, T.; Nishida, W.; Osawa, H.; et al. Associations of Serum β-Carotene and Retinol Concentrations with Insulin Resistance: The Toon Health Study. Nutrition 2015, 31, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.E.; Mohn, E.S.; Hason, N.; Erdman, J.W.; Johnson, E.J. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv. Nutr. 2018, 9, 465–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, J.; Skudder-Hill, L.; Cho, J.; Bharmal, S.H.; Petrov, M.S. Pancreatic Enzymes and Abdominal Adipose Tissue Distribution in New-Onset Prediabetes/Diabetes after Acute Pancreatitis. World J. Gastroenterol. 2021, 27, 3357–3371. [Google Scholar] [CrossRef] [PubMed]
- Lindkvist, B.; Phillips, M.E.; Domínguez-Muñoz, J.E. Clinical, Anthropometric and Laboratory Nutritional Markers of Pancreatic Exocrine Insufficiency: Prevalence and Diagnostic Use. Pancreatology 2015, 15, 589–597. [Google Scholar] [CrossRef]
- Ko, J.; Cho, J.; Petrov, M.S. Low Serum Amylase, Lipase, and Trypsin as Biomarkers of Metabolic Disorders: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2020, 159, 107974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lips, P. Vitamin D Physiology. Prog. Biophys. Mol. Biol. 2006, 92, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- Hossein-nezhad, A.; Holick, M.F. Vitamin D for Health: A Global Perspective. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2013; Volume 88, pp. 720–755. [Google Scholar]
- Hossein-nezhad, A.; Holick, M.F. Optimize Dietary Intake of Vitamin D: An Epigenetic Perspective. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Lips, P. Worldwide Status of Vitamin D Nutrition. J. Steroid Biochem. Mol. Biol. 2010, 121, 297–300. [Google Scholar] [CrossRef]
- Abbas, S.; Linseisen, J.; Rohrmann, S.; Beulens, J.W.J.; Buijsse, B.; Amiano, P.; Ardanaz, E.; Balkau, B.; Boeing, H.; Clavel-Chapelon, F.; et al. Dietary Vitamin D Intake and Risk of Type 2 Diabetes in the European Prospective Investigation into Cancer and Nutrition: The EPIC-InterAct Study. Eur. J. Clin. Nutr. 2014, 68, 196–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittas, A.G.; Dawson-Hughes, B.; Li, T.; Van Dam, R.M.; Willett, W.C.; Manson, J.E.; Hu, F.B. Vitamin D and Calcium Intake in Relation to Type 2 Diabetes in Women. Diabetes Care 2006, 29, 650–656. [Google Scholar] [CrossRef] [Green Version]
- Mitri, J.; Dawson-Hughes, B.; Hu, F.B.; Pittas, A.G. Effects of Vitamin D and Calcium Supplementation on Pancreatic β Cell Function, Insulin Sensitivity, and Glycemia in Adults at High Risk of Diabetes: The Calcium and Vitamin D for Diabetes Mellitus (CaDDM) Randomized Controlled Trial. Am. J. Clin. Nutr. 2011, 94, 486–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnon, C.; Daly, R.M.; Carpentier, A.; Lu, Z.X.; Shore-Lorenti, C.; Sikaris, K.; Jean, S.; Ebeling, P.R. Effects of Combined Calcium and Vitamin D Supplementation on Insulin Secretion, Insulin Sensitivity and β-Cell Function in Multi-Ethnic Vitamin D-Deficient Adults at Risk for Type 2 Diabetes: A Pilot Randomized, Placebo-Controlled Trial. PLoS ONE 2014, 9, e109607. [Google Scholar] [CrossRef] [PubMed]
- Oosterwerff, M.M.; Eekhoff, E.M.; Van Schoor, N.M.; Boeke, A.J.P.; Nanayakkara, P.; Meijnen, R.; Knol, D.L.; Kramer, M.H.; Lips, P. Effect of Moderate-Dose Vitamin D Supplementation on Insulin Sensitivity in Vitamin D–Deficient Non-Western Immigrants in the Netherlands: A Randomized Placebo-Controlled Trial. Am. J. Clin. Nutr. 2014, 100, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naderpoor, N.; de Courten, M.P.; Teede, H.; Kellow, N.; Walker, K.; Scragg, R.; de Courten, B. Vitamin D Supplementation Has No Effect on Insulin Sensitivity or Secretion in Vitamin D–Deficient, Overweight or Obese Adults: A Randomized Placebo-Controlled Trial. Am. J. Clin. Nutr. 2017, 105, 1372–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Wang, L.; Pittas, A.G.; Del Gobbo, L.C.; Zhang, C.; Manson, J.E.; Hu, F.B. Blood 25-Hydroxy Vitamin D Levels and Incident Type 2 Diabetes: A Meta-Analysis of Prospective Studies. Diabetes Care 2013, 36, 1422–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Wu, X.; Fu, Q.; Li, Y.; Yang, T.; Tang, W. The Relationship between Serum 25-Hydroxy Vitamin D and Insulin Sensitivity and β-Cell Function in Newly Diagnosed Type 2 Diabetes. J. Diabetes Res. 2015, 2015, 636891. [Google Scholar] [CrossRef] [PubMed]
- Bang, U.C.; Novovic, S.; Andersen, A.M.; Fenger, M.; Hansen, M.B.; Jensen, J.-E.B. Variations in Serum 25-Hydroxyvitamin D during Acute Pancreatitis: An Exploratory Longitudinal Study. Endocr. Res. 2011, 36, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.H.; Kim, J.W.; Lee, K.J. Vitamin D Deficiency Predicts Severe Acute Pancreatitis. United Eur. Gastroenterol. J. 2019, 7, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Petrov, M.S. Panorama of Mediators in Postpancreatitis Diabetes Mellitus. Curr. Opin. Gastroenterol. 2020, 36, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Inui, N.; Murayama, A.; Sasaki, S.; Suda, T.; Chida, K.; Kato, S.; Nakamura, H. Correlation between 25-Hydroxyvitamin D3 1α-Hydroxylase Gene Expression in Alveolar Macrophages and the Activity of Sarcoidosis. Am. J. Med. 2001, 110, 687–693. [Google Scholar] [CrossRef]
- Said, H.M. Intestinal Absorption of Water-Soluble Vitamins in Health and Disease. Biochem. J. 2011, 437, 357–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricker, R.A.; Green, E.L.; Jenkins, S.I.; Griffin, S.M. The Influence of Nicotinamide on Health and Disease in the Central Nervous System. Int. J. Tryptophan Res. 2018, 11, 117864691877665. [Google Scholar] [CrossRef] [Green Version]
- Yoshii, K.; Hosomi, K.; Sawane, K.; Kunisawa, J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front. Nutr. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sechi, G.; Sechi, E.; Fois, C.; Kumar, N. Advances in Clinical Determinants and Neurological Manifestations of B Vitamin Deficiency in Adults. Nutr. Rev. 2016, 74, 281–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, K.; Hoey, L.; Hughes, C.; Ward, M.; McNulty, H. Causes, Consequences and Public Health Implications of Low B-Vitamin Status in Ageing. Nutrients 2016, 8, 725. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.V.; Prabhakar, B.; Kulkarni, Y.A. Water Soluble Vitamins and Their Role in Diabetes and Its Complications. Curr. Diabetes Rev. 2020, 16, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Sauve, A.A. NAD+ and Vitamin B3: From Metabolism to Therapies. J. Pharmacol. Exp. Ther. 2008, 324, 883–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrubša, M.; Siatka, T.; Nejmanová, I.; Vopršalová, M.; Kujovská Krčmová, L.; Matoušová, K.; Javorská, L.; Macáková, K.; Mercolini, L.; Remião, F.; et al. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients 2022, 14, 484. [Google Scholar] [CrossRef]
- Lipszyc, P.S.; Cremaschi, G.A.; Zubilete, M.Z.; Bertolino, M.L.A.; Capani, F.; Genaro, A.M.; Wald, M.R. Niacin Modulates Pro-Inflammatory Cytokine Secretion. A Potential Mechanism Involved in Its Anti-Atherosclerotic Effect. Open Cardiovasc. Med. J. 2013, 7, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, F.R.; Dow, C.; Affret, A.; Rajaobelina, K.; Dartois, L.; Balkau, B.; Bonnet, F.; Boutron-Ruault, M.-C.; Fagherazzi, G. Micronutrient Dietary Patterns Associated with Type 2 Diabetes Mellitus among Women of the E3N-EPIC (Etude Epidémiologique Auprès de Femmes de l’Education Nationale) Cohort Study. J. Diabetes 2018, 10, 665–674. [Google Scholar] [CrossRef]
- Goldberg, R.B.; Jacobson, T.A. Effects of Niacin on Glucose Control in Patients with Dyslipidemia. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2008; Volume 83, pp. 470–478. [Google Scholar]
- Goldie, C.; Taylor, A.J.; Nguyen, P.; McCoy, C.; Zhao, X.-Q.; Preiss, D. Niacin Therapy and the Risk of New-Onset Diabetes: A Meta-Analysis of Randomised Controlled Trials. Heart 2016, 102, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Landray, M.J.; Haynes, R.; Hopewell, J.C.; Parish, S.; Aung, T.; Tomson, J.; Wallendszus, K.; Craig, M.; Jiang, L.; Collins, R.; et al. Effects of Extended-Release Niacin with Laropiprant in High-Risk Patients. N. Engl. J. Med. 2014, 371, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Julius, U.; Fischer, S. Nicotinic Acid as a Lipid-Modifying Drug—A Review. Atheroscler. Suppl. 2013, 14, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Savinova, O.V.; Fillaus, K.; Harris, W.S.; Shearer, G.C. Effects of Niacin and Omega-3 Fatty Acids on the Apolipoproteins in Overweight Patients with Elevated Triglycerides and Reduced HDL Cholesterol. Atherosclerosis 2015, 240, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Ramos, R.; Laura, G.-L.; Elina, M.-C.; Donaji, B.-A. Vitamins and Type 2 Diabetes Mellitus. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elam, M.B.; Hunninghake, D.B.; Davis, K.B.; Garg, R.; Johnson, C.; Egan, D.; Kostis, J.B.; Sheps, D.S.; Brinton, E.A.; for the ADMIT Investigators. Effect of Niacin on Lipid and Lipoprotein Levels and Glycemic Control in Patients with Diabetes and Peripheral Arterial Disease: The ADMIT Study: A Randomized Trial. JAMA 2000, 284, 1263. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Efficacy, Safety, and Tolerability of Once-Daily Niacin for the Treatment of Dyslipidemia Associated with Type 2 DiabetesResults of the Assessment of Diabetes Control and Evaluation of the Efficacy of Niaspan Trial. Arch. Intern. Med. 2002, 162, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardini, G.; Dicembrini, I.; Rotella, C.M.; Giannini, S. Correlation between HDL Cholesterol Levels and Beta-Cell Function in Subjects with Various Degree of Glucose Tolerance. Acta Diabetol. 2013, 50, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.H.; Bae, J.C.; Park, S.E.; Rhee, E.J.; Park, C.Y.; Oh, K.W.; Park, S.W.; Kim, S.W.; Lee, W.-Y. Association of Lipid and Lipoprotein Profiles with Future Development of Type 2 Diabetes in Nondiabetic Korean Subjects: A 4-Year Retrospective, Longitudinal Study. J. Clin. Endocrinol. Metab. 2011, 96, E2050–E2054. [Google Scholar] [CrossRef] [Green Version]
- Ying, X.; Qian, Y.; Jiang, Y.; Jiang, Z.; Song, Z.; Zhao, C. Association of the Apolipoprotein B/Apolipoprotein A-I Ratio and Low-Density Lipoprotein Cholesterol with Insulin Resistance in a Chinese Population with Abdominal Obesity. Acta Diabetol. 2012, 49, 465–472. [Google Scholar] [CrossRef]
- Morakinyo, A.O.; Samuel, T.A.; Adekunbi, D.A.; Adegoke, O.A. Niacin Improves Adiponectin Secretion, Glucose Tolerance and Insulin Sensitivity in Diet-Induced Obese Rats. Egypt. J. Basic Appl. Sci. 2015, 2, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Gillies, N.A.; Pendharkar, S.A.; Singh, R.G.; Asrani, V.M.; Petrov, M.S. Lipid Metabolism in Patients with Chronic Hyperglycemia after an Episode of Acute Pancreatitis. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S233–S241. [Google Scholar] [CrossRef]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary Assessment Methods in Epidemiological Research: Current State of the Art and Future Prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalkowska, J.; Slowinska, M.; Slowinski, D.; Dlugosz, A.; Niedzwiedzka, E.; Wadolowska, L. Comparison of a Full Food-Frequency Questionnaire with the Three-Day Unweighted Food Records in Young Polish Adult Women: Implications for Dietary Assessment. Nutrients 2013, 5, 2747–2776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, J.; Kimita, W.; Skudder-Hill, L.; Li, X.; Priya, S.; Bharmal, S.H.; Cho, J.; Petrov, M.S. Dietary Carbohydrate Intake and Insulin Traits in Individuals after Acute Pancreatitis: Effect Modification by Intra-Pancreatic Fat Deposition. Pancreatology 2021, 21, 353–362. [Google Scholar] [CrossRef]
- Ko, J.; Skudder-Hill, L.; Tarrant, C.; Kimita, W.; Bharmal, S.H.; Petrov, M.S. Intra-Pancreatic Fat Deposition as a Modifier of the Relationship between Habitual Dietary Fat Intake and Insulin Resistance. Clin. Nutr. 2021, 40, 4730–4737. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kimita, W.; Cho, J.; Ko, J.; Bharmal, S.H.; Petrov, M.S. Dietary Fibre Intake in Type 2 and New-Onset Prediabetes/Diabetes after Acute Pancreatitis: A Nested Cross-Sectional Study. Nutrients 2021, 13, 1112. [Google Scholar] [CrossRef] [PubMed]
- Kaess, B.M.; Pedley, A.; Massaro, J.M.; Murabito, J.; Hoffmann, U.; Fox, C.S. The Ratio of Visceral to Subcutaneous Fat, a Metric of Body Fat Distribution, is a Unique Correlate of Cardiometabolic Risk. Diabetologia 2012, 55, 2622–2630. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.; Skudder-Hill, L.; Cho, J.; Bharmal, S.H.; Petrov, M.S. The Relationship between Abdominal Fat Phenotypes and Insulin Resistance in Non-Obese Individuals after Acute Pancreatitis. Nutrients 2020, 12, 2883. [Google Scholar] [CrossRef] [PubMed]
- Goodger, R.; Singaram, K.; Petrov, M.S. Prevalence of Chronic Metabolic Comorbidities in Acute Pancreatitis and Its Impact on Early Gastrointestinal Symptoms during Hospitalization: A Prospective Cohort Study. Biomed. Hub 2021, 6, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Bharmal, S.H.; Kimita, W.; Ko, J.; Petrov, M.S. Cytokine Signature for Predicting New-Onset Prediabetes after Acute Pancreatitis: A Prospective Longitudinal Cohort Study. Cytokine 2022, 150, 155768. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S.; Taylor, R. Intra-Pancreatic Fat Deposition: Bringing Hidden Fat to the Fore. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 153–168. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Singh, R.G.; Petrov, M.S. Association between Intrapancreatic Fat Deposition and the Leptin/Ghrelin Ratio in the Fasted and Postprandial States. Ann. Nutr. Metab. 2022, 78, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Singaram, K.; Gold-Smith, F.D.; Petrov, M.S. Motilin: A Panoply of Communications between the Gut, Brain, and Pancreas. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S. Post-Pancreatitis Diabetes Mellitus: Investigational Drugs in Preclinical and Clinical Development and Therapeutic Implications. Expert Opin. Investig. Drugs 2021, 30, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Pendharkar, S.A.; Mathew, J.; Petrov, M.S. Age- and Sex-Specific Prevalence of Diabetes Associated with Diseases of the Exocrine Pancreas: A Population-Based Study. Dig. Liver Dis. 2017, 49, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Targher, G.; Alberiche, M.; Bonadonna, R.C.; Saggiani, F.; Zenere, M.B.; Monauni, T.; Muggeo, M. Homeostasis Model Assessment Closely Mirrors the Glucose Clamp Technique in the Assessment of Insulin Sensitivity: Studies in Subjects with Various Degrees of Glucose Tolerance. Diabetes Care 2000, 23, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, E.S.; Yun, Y.S.; Park, S.W.; Kim, H.J.; Ahn, C.W.; Song, Y.D.; Cha, B.S.; Lim, S.K.; Kim, K.R.; Lee, H.C. Limitation of the Validity of the Homeostasis Model Assessment as an Index of Insulin Resistance in Korea. Metabolism 2005, 54, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Heise, T.; Zijlstra, E.; Nosek, L.; Heckermann, S.; Plum-Mörschel, L.; Forst, T. Euglycaemic Glucose Clamp: What It Can and Cannot Do, and How to Do It. Diabetes Obes. Metab. 2016, 18, 962–972. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total | NODAP | T2DM | NAP | p * |
---|---|---|---|---|---|
(n = 106) | (n = 37) | (n = 37) | (n = 32) | ||
Age (years) | 56.1 (14.5) | 58.9 (14.4) | 57.2 (15.0) | 51.6 (13.3) | 0.094 |
Men, n (%) | 69 (65.1) | 26 (70.3) | 28 (75.7) | 15 (46.9) | 0.031 |
Daily energy intake (kcal) | 1686 (609) | 1776 (692) | 1728 (534) | 1534 (575) | 0.226 |
V/S fat volume ratio | 0.77 (0.43) | 0.81(0.40) | 0.87 (0.46) | 0.61 (0.40) | 0.035 |
Alcohol intake (g/day) | 11.08 (17.91) | 13.43 (21.90) | 8.65 (13.05) | 11.08 (17.70) | 0.527 |
Tobacco smoking | 0.052 | ||||
Yes | 23 (21.7) | 10 (27.0) | 4 (10.8) | 9 (28.2) | |
No | 82 (77.3) | 27 (72.9) | 32 (86.5) | 23 (71.9) | |
Aetiology of AP | 0.563 | ||||
Biliary | 40 (37.7) | 14 (37.8) | 14 (37.8) | 12 (37.5) | |
Non-biliary | 66 (62.3) | 23 (62.1) | 23 (62.1) | 20 (62.5) | |
Number of AP episodes | 1.85 (2.77) | 2.27 (3.76) | 1.43 (1.04) | 1.84 (2.82) | 0.434 |
Cholecystectomy | 0.538 | ||||
Yes | 39 (36.8) | 13 (35.1) | 12 (32.4) | 14 (43.8) | |
No | 66 (62.3) | 24 (64.9) | 25 (67.6) | 17 (53.1) | |
Anti-diabetic medication use | <0.001 | ||||
None | 92 (86.8) | 37 (100) | 23 (62.2) | 32 (100) | |
Oral medication | 8 (7.5) | 0 (0) | 8 (21.6) | 0 (0) | |
Insulin | 6 (5.7) | 0 (0) | 6 (16.2) | 0 (0) | |
Fasting plasma glucose (mmol/L) | 5.86 (1.74) | 5.86 (0.92) | 6.61 (2.55) | 4.96 (0.34) | <0.001 |
HOMA-β (%) | 106.97 (56.87) | 95.74 (45.63) | 103.24 (57.12) | 125.07 (65.87) | 0.098 |
HOMA-IR (mIU/L-mmol/L) | 1.76 (1.28) | 1.73 (1.29) | 1.97 (1.31) | 1.55 (1.22) | 0.408 |
Fasting insulin (mU/L) | 16.68 (36.01) | 12.98 (9.96) | 24.62 (59.95) | 12.15 (10.27) | 0.277 |
Vitamin | Model | NAP | T2DM | NODAP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R² | Unstandardised | p | 95% CI | R² | Unstandardised | p | 95% CI | R² | Unstandardised | p | 95% CI | |||||
B | Lower | Upper | B | Lower | Upper | B | Lower | Upper | ||||||||
α-Carotene (µg) | 1 | 0.025 | −0.116 | 0.400 | −0.393 | 0.162 | 0.062 | −0.839 | 0.149 | −1.993 | 0.315 | 0.032 | −0.341 | 0.292 | −0.987 | 0.306 |
2 | 0.157 | −0.083 | 0.571 | −0.381 | 0.215 | 0.085 | −0.887 | 0.206 | −2.287 | 0.514 | 0.268 | −0.486 | 0.110 | −1.089 | 0.116 | |
3 | 0.233 | −0.107 | 0.458 | −0.400 | 0.186 | 0.105 | −0.729 | 0.317 | −2.194 | 0.736 | 0.269 | −0.507 | 0.115 | −1.145 | 0.131 | |
4 | 0.233 | −0.111 | 0.510 | −0.456 | 0.233 | 0.260 | −0.334 | 0.638 | −1.776 | 1.107 | 0.298 | −0.478 | 0.146 | −1.134 | 0.177 | |
5 | 0.247 | −0.137 | 0.488 | −0.543 | 0.269 | 0.533 | 0.266 | 0.690 | −1.098 | 1.630 | 0.330 | −0.474 | 0.167 | −1.159 | 0.211 | |
β-Carotene (µg) | 1 | 0.039 | −0.169 | 0.293 | −0.491 | 0.154 | 0.004 | −0.339 | 0.716 | −2.215 | 1.537 | 0.037 | −0.633 | 0.252 | −1.737 | 0.471 |
2 | 0.162 | −0.117 | 0.499 | −0.467 | 0.234 | 0.034 | −0.107 | 0.926 | −2.446 | 2.232 | 0.254 | −0.715 | 0.164 | −1.737 | 0.306 | |
3 | 0.229 | −0.113 | 0.505 | −0.456 | 0.231 | 0.075 | 0.283 | 0.814 | −2.152 | 2.719 | 0.254 | −0.714 | 0.176 | −1.765 | 0.337 | |
4 | 0.231 | −0.124 | 0.538 | −0.536 | 0.288 | 0.264 | 0.735 | 0.528 | −1.622 | 3.092 | 0.286 | −0.697 | 0.201 | −1.789 | 0.394 | |
5 | 0.243 | −0.154 | 0.539 | −0.668 | 0.361 | 0.556 | 1.230 | 0.248 | −0.918 | 3.378 | 0.324 | −0.751 | 0.193 | −1.905 | 0.403 | |
Retinol (µg) | 1 | 0.089 | 0.296 | 0.110 | −0.071 | 0.663 | 0.024 | −0.863 | 0.370 | −2.794 | 1.068 | 0.083 | 0.666 | 0.084 | −0.094 | 1.425 |
2 | 0.221 | 0.318 | 0.134 | −0.104 | 0.740 | 0.056 | −0.943 | 0.413 | −3.261 | 1.375 | 0.250 | 0.582 | 0.180 | −0.282 | 1.446 | |
3 | 0.321 | 0.385 | 0.064 | −0.025 | 0.794 | 0.081 | −0.604 | 0.618 | −3.056 | 1.847 | 0.257 | 0.633 | 0.160 | −0.263 | 1.530 | |
4 | 0.350 | 0.458 | 0.046 | 0.009 | 0.907 | 0.260 | −0.540 | 0.635 | −2.851 | 1.771 | 0.289 | 0.652 | 0.184 | −0.328 | 1.632 | |
5 | 0.387 | 0.568 | 0.038 | 0.033 | 1.103 | 0.538 | −0.672 | 0.520 | −2.803 | 1.458 | 0.307 | 0.545 | 0.309 | −0.535 | 1.624 | |
Total carotene (µg) | 1 | 0.037 | −0.168 | 0.308 | −0.499 | 0.163 | 0.011 | −0.585 | 0.549 | −2.554 | 1.383 | 0.043 | −0.690 | 0.218 | −1.806 | 0.426 |
2 | 0.161 | −0.117 | 0.516 | −0.481 | 0.248 | 0.037 | −0.376 | 0.750 | −2.767 | 2.014 | 0.262 | −0.790 | 0.128 | −1.821 | 0.241 | |
3 | 0.229 | −0.117 | 0.506 | −0.474 | 0.241 | 0.073 | 0.045 | 0.971 | −2.477 | 2.568 | 0.262 | −0.794 | 0.138 | −1.859 | 0.271 | |
4 | 0.231 | −0.127 | 0.542 | −0.551 | 0.298 | 0.256 | 0.377 | 0.748 | −2.006 | 2.760 | 0.294 | −0.771 | 0.161 | −1.866 | 0.325 | |
5 | 0.243 | −0.160 | 0.536 | −0.692 | 0.372 | 0.537 | 0.657 | 0.533 | −1.490 | 2.804 | 0.333 | −0.831 | 0.153 | −1.991 | 0.330 | |
Total retinol equivalents (µg) | 1 | 0.013 | −0.115 | 0.541 | −0.496 | 0.266 | 0.058 | −1.812 | 0.162 | −4.386 | 0.762 | 0.014 | 0.471 | 0.492 | −0.904 | 1.845 |
2 | 0.149 | −0.062 | 0.769 | −0.492 | 0.368 | 0.082 | −1.960 | 0.219 | −5.150 | 1.230 | 0.207 | 0.133 | 0.858 | −1.374 | 1.640 | |
3 | 0.216 | −0.038 | 0.853 | −0.462 | 0.385 | 0.098 | −1.515 | 0.377 | −4.973 | 1.942 | 0.209 | 0.191 | 0.808 | −1.399 | 1.781 | |
4 | 0.218 | −0.021 | 0.930 | −0.498 | 0.457 | 0.272 | −1.309 | 0.414 | −4.550 | 1.931 | 0.247 | 0.300 | 0.735 | −1.493 | 2.093 | |
5 | 0.227 | −0.018 | 0.955 | −0.689 | 0.652 | 0.541 | −1.085 | 0.446 | −3.980 | 1.809 | 0.278 | 0.125 | 0.898 | −1.855 | 2.104 | |
Vitamin D (µg) | 1 | 0.101 | 0.394 | 0.087 | −0.061 | 0.849 | 0.016 | −1.374 | 0.468 | −5.184 | 2.436 | 0.009 | 0.276 | 0.587 | −0.746 | 1.299 |
2 | 0.182 | 0.314 | 0.304 | −0.302 | 0.931 | 0.040 | −1.025 | 0.651 | −5.610 | 3.559 | 0.213 | −0.341 | 0.603 | −1.663 | 0.981 | |
3 | 0.262 | 0.365 | 0.223 | −0.237 | 0.967 | 0.078 | −0.858 | 0.705 | −5.447 | 3.731 | 0.214 | −0.343 | 0.606 | −1.687 | 1.001 | |
4 | 0.266 | 0.373 | 0.238 | −0.265 | 1.011 | 0.254 | −0.225 | 0.917 | −4.595 | 4.145 | 0.256 | −0.454 | 0.504 | −1.828 | 0.919 | |
5 | 0.276 | 0.375 | 0.271 | −0.318 | 1.069 | 0.533 | 0.908 | 0.659 | −3.295 | 5.110 | 0.304 | −0.704 | 0.332 | −2.167 | 0.760 | |
Vitamin E (mg) | 1 | 0.079 | −0.429 | 0.133 | −0.998 | 0.139 | 0.025 | −1.469 | 0.368 | −4.742 | 1.804 | 0.053 | 0.888 | 0.169 | −0.396 | 2.173 |
2 | 0.280 | −0.691 | 0.040 | −1.349 | −0.033 | 0.043 | −1.594 | 0.599 | −7.725 | 4.537 | 0.226 | −1.049 | 0.373 | −3.415 | 1.317 | |
3 | 0.308 | −0.600 | 0.085 | −1.288 | 0.088 | 0.080 | −1.369 | 0.652 | −7.506 | 4.768 | 0.226 | −1.052 | 0.395 | −3.540 | 1.436 | |
4 | 0.308 | −0.597 | 0.104 | −1.325 | 0.132 | 0.277 | −2.726 | 0.357 | −8.697 | 3.245 | 0.277 | −1.454 | 0.254 | −4.011 | 1.103 | |
5 | 0.320 | −0.673 | 0.124 | −1.549 | 0.202 | 0.529 | −0.156 | 0.959 | −6.341 | 6.029 | 0.299 | −1.183 | 0.387 | −3.947 | 1.582 |
Vitamin | Model | NAP | T2DM | NODAP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R² | Unstandardised | p | 95% CI | R² | Unstandardised | p | 95% CI | R² | Unstandardised | p | 95% CI | |||||
B | Lower | Upper | B | Lower | Upper | B | Lower | Upper | ||||||||
α-Carotene (µg) | 1 | 0.085 | 42.654 | 0.118 | −11.525 | 96.833 | 0.026 | 12.369 | 0.380 | −15.993 | 40.730 | 0.122 | 33.125 | 0.034 | 2.563 | 63.688 |
2 | 0.097 | 46.408 | 0.137 | −15.817 | 108.633 | 0.067 | 11.596 | 0.509 | −23.970 | 47.162 | 0.144 | 31.487 | 0.056 | −0.863 | 63.836 | |
3 | 0.120 | 49.019 | 0.123 | −14.212 | 112.250 | 0.071 | 9.963 | 0.592 | −27.775 | 47.701 | 0.161 | 35.211 | 0.042 | 1.280 | 69.143 | |
4 | 0.149 | 42.815 | 0.238 | −30.423 | 116.053 | 0.167 | 2.010 | 0.916 | −37.064 | 41.083 | 0.265 | 39.096 | 0.023 | 5.803 | 72.390 | |
5 | 0.253 | 46.748 | 0.245 | −34.802 | 128.298 | 0.228 | −2.449 | 0.918 | −51.174 | 46.277 | 0.400 | 41.584 | 0.013 | 9.383 | 73.785 | |
β-Carotene (µg) | 1 | 0.046 | 36.574 | 0.258 | −28.244 | 101.392 | 0.017 | 16.025 | 0.479 | −29.657 | 61.706 | 0.075 | 44.684 | 0.100 | −9.036 | 98.405 |
2 | 0.062 | 41.825 | 0.260 | −32.875 | 116.526 | 0.059 | 12.900 | 0.648 | −44.502 | 70.302 | 0.111 | 43.746 | 0.117 | −11.620 | 99.112 | |
3 | 0.075 | 41.472 | 0.271 | −34.421 | 117.365 | 0.064 | 9.766 | 0.744 | −51.147 | 70.678 | 0.117 | 45.524 | 0.112 | −11.213 | 102.261 | |
4 | 0.105 | 23.914 | 0.586 | −65.736 | 113.565 | 0.166 | −0.629 | 0.984 | −65.396 | 64.139 | 0.235 | 57.657 | 0.044 | 1.591 | 113.723 | |
5 | 0.234 | 48.647 | 0.341 | −55.638 | 152.933 | 0.229 | −6.627 | 0.859 | −83.196 | 69.942 | 0.360 | 60.440 | 0.035 | 4.672 | 116.209 | |
Retinol (µg) | 1 | 0.028 | 33.740 | 0.374 | −42.742 | 110.222 | 0.001 | 4.373 | 0.856 | −44.366 | 53.112 | 0.000 | −2.031 | 0.917 | −41.393 | 37.331 |
2 | 0.048 | 44.359 | 0.341 | −49.691 | 138.410 | 0.060 | −14.040 | 0.628 | −72.872 | 44.791 | 0.051 | −14.781 | 0.537 | −63.044 | 33.482 | |
3 | 0.055 | 40.772 | 0.396 | −56.658 | 138.202 | 0.076 | −20.059 | 0.515 | −82.446 | 42.329 | 0.051 | −14.404 | 0.564 | −64.723 | 35.916 | |
4 | 0.124 | 45.228 | 0.382 | −59.861 | 150.317 | 0.183 | −20.912 | 0.488 | −82.218 | 40.394 | 0.119 | −0.939 | 0.972 | −55.105 | 53.228 | |
5 | 0.235 | 56.332 | 0.340 | −64.138 | 176.803 | 0.246 | −22.664 | 0.498 | −91.238 | 45.911 | 0.249 | −16.912 | 0.539 | −72.685 | 38.860 | |
Total carotene (µg) | 1 | 0.053 | 40.540 | 0.220 | −25.715 | 106.796 | 0.013 | 15.205 | 0.527 | −33.323 | 63.734 | 0.090 | 49.461 | 0.072 | −4.580 | 103.502 |
2 | 0.072 | 47.608 | 0.217 | −29.735 | 124.951 | 0.058 | 12.827 | 0.667 | −47.733 | 73.387 | 0.124 | 48.182 | 0.088 | −7.591 | 103.956 | |
3 | 0.086 | 47.633 | 0.223 | −30.889 | 126.155 | 0.063 | 9.133 | 0.775 | −55.814 | 74.081 | 0.132 | 50.738 | 0.081 | −6.625 | 108.102 | |
4 | 0.112 | 31.256 | 0.488 | −60.620 | 123.132 | 0.166 | 2.405 | 0.942 | −65.244 | 70.054 | 0.241 | 59.620 | 0.039 | 3.231 | 116.009 | |
5 | 0.247 | 58.189 | 0.269 | −48.786 | 165.163 | 0.228 | −0.725 | 0.985 | −79.302 | 77.852 | 0.368 | 63.178 | 0.029 | 7.069 | 119.286 | |
Total retinol equivalents (µg) | 1 | 0.043 | 41.583 | 0.269 | −33.984 | 117.150 | 0.027 | 29.823 | 0.371 | −37.247 | 96.893 | 0.007 | 16.417 | 0.630 | −52.062 | 84.896 |
2 | 0.061 | 50.225 | 0.267 | −40.850 | 141.300 | 0.055 | 13.194 | 0.755 | −72.675 | 99.062 | 0.040 | 5.249 | 0.897 | −77.085 | 87.583 | |
3 | 0.070 | 48.395 | 0.293 | −44.571 | 141.360 | 0.061 | 6.655 | 0.885 | −86.884 | 100.194 | 0.041 | 8.065 | 0.851 | −78.824 | 94.955 | |
4 | 0.111 | 34.100 | 0.498 | −68.523 | 136.723 | 0.166 | 1.319 | 0.977 | −91.619 | 94.257 | 0.149 | 47.023 | 0.318 | −47.582 | 141.628 | |
5 | 0.265 | 84.330 | 0.196 | −47.518 | 216.178 | 0.228 | −2.039 | 0.967 | −102.177 | 98.099 | 0.254 | 36.814 | 0.456 | −63.106 | 136.734 | |
Vitamin D (µg) | 1 | 0.003 | 13.246 | 0.781 | −83.424 | 109.916 | 0.025 | −44.015 | 0.390 | −146.965 | 58.935 | 0.056 | 35.164 | 0.159 | −14.385 | 84.712 |
2 | 0.024 | 36.265 | 0.587 | −99.552 | 172.082 | 0.116 | −80.625 | 0.170 | −197.999 | 36.749 | 0.127 | 60.927 | 0.082 | −8.187 | 130.041 | |
3 | 0.035 | 32.472 | 0.634 | −106.445 | 171.388 | 0.128 | −82.399 | 0.167 | −201.624 | 36.826 | 0.128 | 60.837 | 0.087 | −9.439 | 131.113 | |
4 | 0.109 | 43.550 | 0.531 | −98.202 | 185.303 | 0.291 | −115.998 | 0.051 | −232.456 | 0.460 | 0.192 | 56.521 | 0.114 | −14.500 | 127.542 | |
5 | 0.216 | 48.852 | 0.491 | −96.631 | 194.335 | 0.347 | −122.811 | 0.071 | −256.989 | 11.367 | 0.275 | 42.089 | 0.254 | −32.052 | 116.231 | |
Vitamin E (mg) | 1 | 0.003 | 16.183 | 0.783 | −103.121 | 135.488 | 0.066 | 61.903 | 0.156 | −24.999 | 148.806 | 0.014 | 22.958 | 0.478 | −42.091 | 88.007 |
2 | 0.016 | 23.462 | 0.758 | −131.794 | 178.719 | 0.107 | 100.700 | 0.205 | −58.552 | 259.953 | 0.048 | 34.906 | 0.589 | −95.343 | 165.154 | |
3 | 0.027 | 11.989 | 0.882 | −152.544 | 176.522 | 0.113 | 98.254 | 0.225 | −64.290 | 260.798 | 0.052 | 40.872 | 0.546 | −95.836 | 177.580 | |
4 | 0.092 | 2.743 | 0.973 | −165.515 | 171.002 | 0.225 | 105.902 | 0.191 | −56.399 | 268.203 | 0.132 | 44.707 | 0.516 | −94.467 | 183.881 | |
5 | 0.210 | 52.021 | 0.574 | −138.296 | 242.338 | 0.258 | 92.114 | 0.374 | −119.097 | 303.326 | 0.279 | 83.141 | 0.230 | −56.011 | 222.293 |
Vitamin | Model | NAP | T2DM | NODAP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R² | Unstandardised | p | 95% CI | R² | Unstandardised | p | 95% CI | R² | Unstandardised | p | 95% CI | |||||
B | Lower | Upper | B | Lower | Upper | B | Lower | Upper | ||||||||
Vitamin B1 (mg) | 1 | 0.002 | −0.084 | 0.828 | −0.867 | 0.700 | 0.089 | −3.682 | 0.081 | −7.847 | 0.483 | 0.052 | 1.227 | 0.177 | −0.579 | 3.033 |
2 | 0.181 | −0.573 | 0.313 | −1.716 | 0.571 | 0.121 | −5.077 | 0.096 | −11.104 | 0.950 | 0.216 | −0.856 | 0.537 | −3.649 | 1.937 | |
3 | 0.221 | −0.282 | 0.648 | −1.543 | 0.978 | 0.143 | −4.615 | 0.136 | −10.774 | 1.545 | 0.217 | −0.875 | 0.535 | −3.718 | 1.967 | |
4 | 0.222 | −0.252 | 0.712 | −1.648 | 1.144 | 0.368 | −6.024 | 0.036 | −11.612 | −0.437 | 0.265 | −1.321 | 0.365 | −4.257 | 1.615 | |
5 | 0.234 | −0.337 | 0.677 | −2.003 | 1.329 | 0.573 | −3.930 | 0.137 | −9.206 | 1.346 | 0.311 | −1.711 | 0.271 | −4.836 | 1.414 | |
Vitamin B2 (mg) | 1 | 0.005 | 0.144 | 0.716 | −0.656 | 0.943 | 0.106 | −4.251 | 0.056 | −8.613 | 0.111 | 0.091 | 1.965 | 0.069 | −0.161 | 4.091 |
2 | 0.146 | 0.019 | 0.972 | −1.058 | 1.095 | 0.176 | −6.653 | 0.030 | −12.614 | −0.691 | 0.211 | 0.718 | 0.648 | −2.451 | 3.888 | |
3 | 0.219 | 0.193 | 0.716 | −0.888 | 1.273 | 0.200 | −6.313 | 0.041 | −12.347 | −0.279 | 0.213 | 0.769 | 0.632 | −2.474 | 4.011 | |
4 | 0.221 | 0.184 | 0.741 | −0.952 | 1.319 | 0.357 | −5.771 | 0.046 | −11.439 | −0.104 | 0.275 | 2.198 | 0.272 | −1.820 | 6.216 | |
5 | 0.229 | 0.194 | 0.744 | −1.030 | 1.418 | 0.593 | −5.056 | 0.070 | −10.560 | 0.448 | 0.301 | 2.103 | 0.368 | −2.610 | 6.816 | |
Vitamin B3 (mg) | 1 | 0.042 | −0.442 | 0.277 | −1.259 | 0.375 | 0.055 | −3.346 | 0.173 | −8.237 | 1.544 | 0.029 | 0.808 | 0.316 | −0.804 | 2.421 |
2 | 0.295 | −1.100 | 0.030 | −2.086 | −0.115 | 0.095 | −4.751 | 0.167 | −11.594 | 2.092 | 0.224 | −0.943 | 0.400 | −3.194 | 1.308 | |
3 | 0.323 | −0.972 | 0.062 | −1.995 | 0.051 | 0.132 | −4.694 | 0.170 | −11.517 | 2.130 | 0.224 | −0.930 | 0.415 | −3.225 | 1.366 | |
4 | 0.331 | −1.014 | 0.066 | −2.098 | 0.071 | 0.276 | −3.074 | 0.362 | −9.881 | 3.733 | 0.255 | −0.853 | 0.509 | −3.459 | 1.754 | |
5 | 0.334 | −1.058 | 0.096 | −2.324 | 0.208 | 0.531 | −1.020 | 0.750 | −7.572 | 5.532 | 0.291 | −0.931 | 0.488 | −3.650 | 1.789 | |
Vitamin B6 (mg) | 1 | 0.019 | −0.320 | 0.466 | −1.208 | 0.567 | 0.051 | −3.222 | 0.192 | −8.141 | 1.696 | 0.026 | 0.916 | 0.336 | −0.992 | 2.824 |
2 | 0.242 | −1.114 | 0.088 | −2.404 | 0.176 | 0.098 | −5.976 | 0.154 | −14.314 | 2.362 | 0.239 | −1.504 | 0.246 | −4.096 | 1.089 | |
3 | 0.274 | −0.920 | 0.172 | −2.267 | 0.428 | 0.132 | −5.717 | 0.172 | −14.064 | 2.631 | 0.239 | −1.492 | 0.261 | −4.150 | 1.167 | |
4 | 0.275 | −0.910 | 0.200 | −2.337 | 0.517 | 0.280 | −3.967 | 0.322 | −12.036 | 4.101 | 0.268 | −1.396 | 0.333 | −4.297 | 1.505 | |
5 | 0.291 | −1.025 | 0.205 | −2.661 | 0.611 | 0.565 | −4.942 | 0.183 | −12.394 | 2.510 | 0.301 | −1.355 | 0.365 | −4.380 | 1.669 | |
Vitamin B9 (µg) | 1 | 0.016 | −0.192 | 0.502 | −0.770 | 0.386 | 0.002 | −0.430 | 0.813 | −4.103 | 3.242 | 0.003 | 0.270 | 0.742 | −1.381 | 1.921 |
2 | 0.174 | −0.314 | 0.365 | −1.015 | 0.387 | 0.035 | 0.530 | 0.836 | −4.650 | 5.711 | 0.258 | −1.391 | 0.143 | −3.277 | 0.495 | |
3 | 0.237 | −0.280 | 0.411 | −0.971 | 0.411 | 0.076 | 0.727 | 0.776 | −4.450 | 5.903 | 0.259 | −1.385 | 0.151 | −3.304 | 0.535 | |
4 | 0.237 | −0.276 | 0.454 | −1.028 | 0.475 | 0.254 | 0.251 | 0.917 | −4.609 | 5.110 | 0.274 | −1.182 | 0.284 | −3.396 | 1.032 | |
5 | 0.259 | −0.413 | 0.374 | −1.362 | 0.536 | 0.530 | −0.327 | 0.879 | −4.715 | 4.061 | 0.316 | −1.381 | 0.238 | −3.728 | 0.967 | |
Vitamin B12 (µg) | 1 | 0.041 | 0.281 | 0.283 | −0.245 | 0.808 | 0.270 | −5.259 | 0.001 | −8.326 | −2.193 | 0.055 | 0.926 | 0.164 | −0.397 | 2.250 |
2 | 0.153 | 0.140 | 0.655 | −0.497 | 0.777 | 0.310 | −5.895 | 0.002 | −9.372 | −2.418 | 0.212 | 0.387 | 0.634 | −1.253 | 2.026 | |
3 | 0.233 | 0.231 | 0.457 | −0.400 | 0.863 | 0.319 | −5.676 | 0.003 | −9.262 | −2.090 | 0.214 | 0.420 | 0.615 | −1.263 | 2.102 | |
4 | 0.233 | 0.223 | 0.502 | −0.455 | 0.902 | 0.384 | −4.698 | 0.024 | −8.723 | −0.674 | 0.250 | 0.430 | 0.630 | −1.378 | 2.239 | |
5 | 0.240 | 0.213 | 0.573 | −0.564 | 0.990 | 0.593 | −3.437 | 0.069 | −7.169 | 0.295 | 0.281 | 0.318 | 0.734 | −1.589 | 2.225 | |
Vitamin C (mg) | 1 | 0.052 | −0.236 | 0.223 | −0.625 | 0.152 | 0.005 | −0.510 | 0.677 | −2.974 | 1.955 | 0.005 | −0.258 | 0.673 | −1.486 | 0.971 |
2 | 0.201 | −0.284 | 0.202 | −0.730 | 0.162 | 0.034 | −0.129 | 0.926 | −2.935 | 2.677 | 0.242 | −0.708 | 0.229 | −1.883 | 0.468 | |
3 | 0.255 | −0.245 | 0.267 | −0.690 | 0.200 | 0.074 | 0.197 | 0.889 | −2.665 | 3.058 | 0.242 | −0.703 | 0.240 | −1.900 | 0.493 | |
4 | 0.258 | −0.268 | 0.284 | −0.773 | 0.238 | 0.253 | −0.088 | 0.947 | −2.778 | 2.602 | 0.284 | −0.756 | 0.214 | −1.973 | 0.461 | |
5 | 0.296 | −0.441 | 0.190 | −1.119 | 0.238 | 0.540 | −0.866 | 0.466 | −3.282 | 1.551 | 0.341 | −1.034 | 0.127 | −2.382 | 0.315 |
Vitamin | Model | NAP | T2DM | NODAP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R² | Unstandardised | p | 95% CI | R² | Unstandardised | p | 95% CI | R² | Unstandardised | p | 95% CI | |||||
B | Lower | Upper | B | Lower | Upper | B | Lower | Upper | ||||||||
Vitamin B1 (mg) | 1 | 0.011 | 42.743 | 0.582 | −114.512 | 199.998 | 0.010 | 32.893 | 0.577 | −86.282 | 152.067 | 0.055 | 62.654 | 0.164 | −26.869 | 152.178 |
2 | 0.051 | 121.755 | 0.322 | −126.508 | 370.018 | 0.053 | 19.778 | 0.811 | −148.017 | 187.573 | 0.131 | 131.536 | 0.076 | −14.439 | 277.511 | |
3 | 0.052 | 111.205 | 0.421 | −169.103 | 391.512 | 0.061 | 13.557 | 0.873 | −159.371 | 186.485 | 0.131 | 131.084 | 0.082 | −17.611 | 279.778 | |
4 | 0.109 | 94.553 | 0.522 | −206.688 | 395.793 | 0.170 | 28.241 | 0.739 | −144.743 | 201.226 | 0.226 | 146.635 | 0.054 | −2.996 | 296.265 | |
5 | 0.223 | 131.169 | 0.427 | −207.308 | 469.646 | 0.234 | 40.247 | 0.677 | −158.402 | 238.895 | 0.314 | 127.934 | 0.102 | −26.982 | 282.850 | |
Vitamin B2 (mg) | 1 | 0.023 | 62.837 | 0.427 | −96.935 | 222.609 | 0.059 | 76.867 | 0.180 | −37.390 | 191.124 | 0.000 | −1.518 | 0.978 | −112.231 | 109.196 |
2 | 0.068 | 135.116 | 0.231 | −91.641 | 361.873 | 0.094 | 88.374 | 0.271 | −72.907 | 249.655 | 0.042 | −25.655 | 0.765 | −199.099 | 147.790 | |
3 | 0.073 | 126.599 | 0.282 | −110.736 | 363.935 | 0.099 | 85.231 | 0.298 | −79.789 | 250.251 | 0.043 | −23.939 | 0.785 | −201.522 | 153.644 | |
4 | 0.140 | 128.952 | 0.278 | −111.612 | 369.517 | 0.192 | 69.896 | 0.390 | −94.709 | 234.501 | 0.131 | 69.627 | 0.519 | −148.701 | 287.955 | |
5 | 0.233 | 119.315 | 0.347 | −139.643 | 378.273 | 0.263 | 95.159 | 0.340 | −107.822 | 298.141 | 0.238 | 10.611 | 0.930 | −233.651 | 254.873 | |
Vitamin B3 (mg) | 1 | 0.025 | 68.587 | 0.405 | −97.535 | 234.708 | 0.013 | 41.105 | 0.536 | −92.863 | 175.072 | 0.032 | 42.527 | 0.287 | −37.389 | 122.443 |
2 | 0.076 | 144.887 | 0.202 | −82.670 | 372.444 | 0.057 | 35.967 | 0.700 | −153.789 | 225.723 | 0.079 | 70.447 | 0.247 | −51.283 | 192.178 | |
3 | 0.079 | 136.725 | 0.253 | −103.996 | 377.447 | 0.065 | 34.328 | 0.718 | −158.689 | 227.345 | 0.082 | 71.752 | 0.247 | −52.247 | 195.752 | |
4 | 0.169 | 167.720 | 0.168 | −76.085 | 411.526 | 0.170 | −32.271 | 0.750 | −238.848 | 174.306 | 0.245 | 140.586 | 0.035 | 10.330 | 270.842 | |
5 | 0.342 | 249.197 | 0.054 | −4.603 | 502.997 | 0.232 | −38.662 | 0.737 | −275.291 | 197.966 | 0.352 | 134.901 | 0.041 | 5.816 | 263.985 | |
Vitamin B6 (mg) | 1 | 0.029 | 79.794 | 0.367 | −98.301 | 257.889 | 0.025 | 53.354 | 0.384 | −70.034 | 176.742 | 0.004 | 18.678 | 0.695 | −77.091 | 114.447 |
2 | 0.106 | 222.157 | 0.118 | −60.324 | 504.637 | 0.068 | 70.571 | 0.488 | −135.447 | 276.589 | 0.040 | 14.355 | 0.841 | −130.214 | 158.924 | |
3 | 0.107 | 215.652 | 0.153 | −85.765 | 517.070 | 0.076 | 68.214 | 0.510 | −141.538 | 277.965 | 0.042 | 16.470 | 0.822 | −131.676 | 164.616 | |
4 | 0.164 | 215.652 | 0.153 | −85.765 | 517.070 | 0.170 | 34.555 | 0.741 | −178.907 | 248.017 | 0.138 | 61.693 | 0.426 | −94.618 | 218.004 | |
5 | 0.283 | 240.804 | 0.145 | −91.028 | 572.636 | 0.240 | 70.489 | 0.572 | −185.510 | 326.487 | 0.259 | 65.964 | 0.388 | −88.546 | 220.475 | |
Vitamin B9 (µg) | 1 | 0.030 | 52.984 | 0.356 | −62.696 | 168.665 | 0.017 | 32.051 | 0.479 | −59.229 | 123.332 | 0.016 | 30.339 | 0.454 | −51.071 | 111.750 |
2 | 0.066 | 87.722 | 0.240 | −62.516 | 237.960 | 0.054 | 16.610 | 0.799 | −115.882 | 149.103 | 0.057 | 40.811 | 0.437 | −64.747 | 146.369 | |
3 | 0.076 | 84.973 | 0.264 | −68.271 | 238.217 | 0.062 | 15.355 | 0.817 | −119.424 | 150.133 | 0.059 | 41.402 | 0.438 | −65.998 | 148.802 | |
4 | 0.120 | 65.458 | 0.413 | −97.326 | 228.241 | 0.171 | 23.043 | 0.724 | −110.081 | 156.167 | 0.173 | 79.214 | 0.178 | −38.046 | 196.473 | |
5 | 0.235 | 91.910 | 0.335 | −102.621 | 286.441 | 0.230 | 19.129 | 0.801 | −137.147 | 175.405 | 0.284 | 75.258 | 0.206 | −44.048 | 194.564 | |
Vitamin B12 (µg) | 1 | 0.000 | −3.524 | 0.947 | −111.910 | 104.863 | 0.070 | 66.147 | 0.144 | −23.970 | 156.263 | 0.002 | 8.979 | 0.789 | −58.525 | 76.483 |
2 | 0.012 | 5.736 | 0.933 | −133.002 | 144.475 | 0.094 | 56.737 | 0.272 | −47.021 | 160.494 | 0.039 | 0.995 | 0.982 | −88.885 | 90.874 | |
3 | 0.026 | 5.736 | 0.933 | −133.002 | 144.475 | 0.097 | 53.918 | 0.312 | −53.464 | 161.300 | 0.040 | 2.305 | 0.960 | −89.975 | 94.585 | |
4 | 0.094 | −1.786 | 0.980 | −145.308 | 141.736 | 0.169 | 17.344 | 0.780 | −109.359 | 144.048 | 0.130 | 29.526 | 0.537 | −67.152 | 126.205 | |
5 | 0.197 | 9.464 | 0.903 | −151.686 | 170.615 | 0.229 | 13.246 | 0.844 | −125.424 | 151.916 | 0.241 | 17.287 | 0.718 | −79.974 | 114.548 | |
Vitamin C (mg) | 1 | 0.049 | 45.996 | 0.240 | −32.526 | 124.519 | 0.020 | 24.530 | 0.440 | −39.475 | 88.536 | 0.068 | 46.339 | 0.120 | −12.699 | 105.378 |
2 | 0.078 | 62.628 | 0.194 | −34.000 | 159.256 | 0.064 | 22.657 | 0.544 | −53.029 | 98.344 | 0.120 | 52.901 | 0.096 | −9.984 | 115.786 | |
3 | 0.085 | 59.848 | 0.226 | −39.561 | 159.257 | 0.070 | 19.904 | 0.606 | −58.556 | 98.364 | 0.122 | 53.264 | 0.099 | −10.682 | 117.209 | |
4 | 0.116 | 41.520 | 0.447 | −69.754 | 152.795 | 0.186 | 31.218 | 0.453 | −53.300 | 115.736 | 0.183 | 47.746 | 0.141 | −16.774 | 112.266 | |
5 | 0.236 | 67.759 | 0.332 | −74.766 | 210.283 | 0.259 | 40.954 | 0.367 | −51.682 | 133.591 | 0.290 | 46.795 | 0.178 | −22.697 | 116.288 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norbitt, C.F.; Kimita, W.; Bharmal, S.H.; Ko, J.; Petrov, M.S. Relationship between Habitual Intake of Vitamins and New-Onset Prediabetes/Diabetes after Acute Pancreatitis. Nutrients 2022, 14, 1480. https://doi.org/10.3390/nu14071480
Norbitt CF, Kimita W, Bharmal SH, Ko J, Petrov MS. Relationship between Habitual Intake of Vitamins and New-Onset Prediabetes/Diabetes after Acute Pancreatitis. Nutrients. 2022; 14(7):1480. https://doi.org/10.3390/nu14071480
Chicago/Turabian StyleNorbitt, Claire F., Wandia Kimita, Sakina H. Bharmal, Juyeon Ko, and Maxim S. Petrov. 2022. "Relationship between Habitual Intake of Vitamins and New-Onset Prediabetes/Diabetes after Acute Pancreatitis" Nutrients 14, no. 7: 1480. https://doi.org/10.3390/nu14071480
APA StyleNorbitt, C. F., Kimita, W., Bharmal, S. H., Ko, J., & Petrov, M. S. (2022). Relationship between Habitual Intake of Vitamins and New-Onset Prediabetes/Diabetes after Acute Pancreatitis. Nutrients, 14(7), 1480. https://doi.org/10.3390/nu14071480