Is There an Academic Bias against Low-Energy Sweeteners?
Abstract
:1. Introduction
2. Perspective
- (1) Mechanisms without relevance.
- (2) Ignoring the rejected hypotheses.
- (3) Giving priority to lower-quality evidence.
3. The Counter-Arguments
- (1) The precautionary principle.
- (2) There is not enough long-term research.
- (3) Industry bias in LES research.
- (4) Do not need sweeteners.
- (5) Gaps and remaining uncertainties about LES.
4. Why Is There a Bias against LES?
- White hat bias
- Non-financial conflicts of interest:
- Opposition to (ultra-)processed and reformulated foods
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mela, D.J.; McLaughlin, J.; Rogers, P.J. Perspective: Standards for research and reporting on low-energy (“artificial”) sweeteners. Adv. Nutr. 2020, 11, 484–491. [Google Scholar] [CrossRef]
- González-Garay, A.G.; Romo-Romo, A.; Serralde-Zúñiga, A.E. Review of Recommendations for the Use of Caloric Sweeteners by Adults and Children. J. Food Nutr. Res. 2018, 6, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Mosdøl, A.; Vist, G.E.; Svendsen, C.; Dirven, H.; Lillegaard, I.T.L.; Mathisen, G.H.; Husøy, T. Hypotheses and evidence related to intense sweeteners and effects on appetite and body weight changes: A scoping review of reviews. PLoS ONE 2018, 13, e0199558. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Veysey, M.; Keely, S.; Scarlett, C.J.; Lucock, M.; Beckett, E.L. Intense sweeteners, taste receptors and the gut microbiome: A metabolic health perspective. Int. J. Environ. Res. Public Health 2020, 17, 4094. [Google Scholar] [CrossRef] [PubMed]
- Liauchonak, I.; Qorri, B.; Dawoud, F.; Riat, Y.; Szewczuk, M.R. Non-nutritive sweeteners and their implications on the development of metabolic syndrome. Nutrients 2019, 11, 644. [Google Scholar] [CrossRef] [Green Version]
- Shum, B.; Georgia, S. The Effects of Non-Nutritive Sweetener Consumption in the Pediatric Populations: What We Know, What We Don’t, and What We Need to Learn. Front. Endocrinol. 2021, 12, 272. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N. Harnessing the gut microbiota to promote metabolic health. Nutr. Rev. 2020, 78, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Sylvetsky, A.C.; Sen, S.; Merkel, P.; Dore, F.; Stern, D.B.; Henry, C.J.; Cai, H.; Walter, P.J.; Crandall, K.A.; Rother, K.I. Consumption of Diet Soda Sweetened with Sucralose and Acesulfame-Potassium Alters Inflammatory Transcriptome Pathways in Females with Overweight and Obesity. Mol. Nutr. Food Res. 2020, 64, 1901166. [Google Scholar] [CrossRef] [PubMed]
- Greyling, A.; Appleton, K.M.; Raben, A.; Mela, D.J. Acute glycemic and insulinemic effects of low-energy sweeteners: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2020, 112, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Laviada-Molina, H.; Molina-Segui, F.; Pérez-Gaxiola, G.; Cuello-García, C.; Arjona-Villicaña, R.; Espinosa-Marrón, A.; Martinez-Portilla, R.J. Effects of nonnutritive sweeteners on body weight and BMI in diverse clinical contexts: Systematic review and meta-analysis. Obes. Rev. 2020, 21, e13020. [Google Scholar] [CrossRef]
- Lee, H.Y.; Jack, M.; Poon, T.; Noori, D.; Venditti, C.; Hamamji, S.; Musa-Veloso, K. Effects of Unsweetened Preloads and Preloads Sweetened with Caloric or Low-/No-Calorie Sweeteners on Subsequent Energy Intakes: A Systematic Review and Meta-Analysis of Controlled Human Intervention Studies. Adv. Nutr. 2021, 12, 1481–1499. [Google Scholar] [CrossRef]
- Lobach, A.R.; Roberts, A.; Rowland, I.R. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem. Toxicol. 2018, 124, 385–399. [Google Scholar] [CrossRef]
- Lohner, S.; de Gaudry, D.K.; Toews, I.; Ferenci, T.; Meerpohl, J.J. Non-nutritive sweeteners for diabetes mellitus. Cochrane Database Syst. Rev. 2020, 5, CD012885. [Google Scholar] [CrossRef] [Green Version]
- Nichol, A.D.; Holle, M.J.; An, R. Glycemic impact of non-nutritive sweeteners: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2018, 72, 796–804. [Google Scholar] [CrossRef]
- Rogers, P.; Hogenkamp, P.; de Graaf, K.; Higgs, S.; Lluch, A.; Ness, A.; Penfold, C.; Perry, R.; Putz, P.; Yeomans, M. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int. J. Obes. 2016, 40, 381–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, P.; Appleton, K. The effects of low-calorie sweeteners on energy intake and body weight: A systematic review and meta-analyses of sustained intervention studies. Int. J. Obes. 2021, 45, 464–478. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.M.; Tan, S.-Y. Do non-nutritive sweeteners influence acute glucose homeostasis in humans? A systematic review. Physiol. Behav. 2017, 182, 17–26. [Google Scholar] [CrossRef]
- Toews, I.; Lohner, S.; de Gaudry, D.K.; Sommer, H.; Meerpohl, J.J. Association between intake of non-sugar sweeteners and health outcomes: Systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ 2019, 364, k4718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plaza-Diaz, J.; Pastor-Villaescusa, B.; Rueda-Robles, A.; Abadia-Molina, F.; Ruiz-Ojeda, F.J. Plausible biological interactions of low-and non-calorie sweeteners with the intestinal microbiota: An update of recent studies. Nutrients 2020, 12, 1153. [Google Scholar] [CrossRef]
- McGlynn, N.D.; Khan, T.A.; Wang, L.; Zhang, R.; Chiavaroli, L.; Au-Yeung, F.; Lee, J.J.; Noronha, J.C.; Comelli, E.M.; Blanco Mejia, S.; et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e222092. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Calorie Control Council. Council Spokesperson, Berna Magnuson, Reviews Nature Study on Low-Calorie Sweeteners. 2015. Available online: https://caloriecontrol.org/council-spokesperson-berna-magnuson-reviews-nature-study-on-low-calorie-sweeteners/ (accessed on 13 February 2022).
- Serrano, J.; Smith, K.R.; Crouch, A.L.; Sharma, V.; Yi, F.; Vargova, V.; LaMoia, T.E.; Dupont, L.M.; Serna, V.; Tang, F. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome 2021, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Abou-Setta, A.M.; Chauhan, B.F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Jeyaraman, M.M.; Reid, A.E.; Fiander, M. Nonnutritive sweeteners and cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Can. Med. Assoc. J. 2017, 189, E929–E939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behnen, E.M.T.; Ferguson, M.C.; Carlson, A. Do sugar substitutes have any impact on glycemic control in patients with diabetes? J. Pharm. Technol. 2013, 29, 61–65. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Plaza-Díaz, J.; Sáez-Lara, M.J.; Gil, A. Effects of sweeteners on the gut microbiota: A review of experimental studies and clinical trials. Adv. Nutr. 2019, 10, S31–S48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.A. Sugar-sweetened and artificially-sweetened beverages in relation to obesity risk. Adv. Nutr. 2014, 5, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Hemkens, L.G.; Ewald, H.; Naudet, F.; Ladanie, A.; Shaw, J.G.; Sajeev, G.; Ioannidis, J.P. Interpretation of epidemiologic studies very often lacked adequate consideration of confounding. J. Clin. Epidemiol. 2018, 93, 94–102. [Google Scholar] [CrossRef]
- Sylvetsky, A.C.; Rother, K.I. Nonnutritive sweeteners in weight management and chronic disease: A review. Obesity 2018, 26, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.W.; Aslibekyan, S.; Bier, D.; Ferreira da Silva, R.; Hoover, A.; Klurfeld, D.M.; Loken, E.; Mayo-Wilson, E.; Menachemi, N.; Pavela, G. Toward more rigorous and informative nutritional epidemiology: The rational space between dismissal and defense of the status quo. Crit. Rev. Food Sci. Nutr. 2021; 1–18, Online ahead of print. [Google Scholar] [CrossRef]
- Mela, D.J. Bringing satiety to the market through commercial foods: Technology, product development and claims. In Satiation, Satiety and the Control of Food Intake; Elsevier: Amsterdam, The Netherlands, 2013; pp. 316–341. [Google Scholar]
- Pearlman, M.; Obert, J.; Casey, L. The association between artificial sweeteners and obesity. Curr. Gastroenterol. Rep. 2017, 19, 64. [Google Scholar] [CrossRef]
- World Health Organization Regional Office for the Eastern Mediterranean. Policy Statement and Recommended Actions for Lowering Sugar Intake and Reducing Prevalence of Type 2 Diabetes and Obesity in the Eastern Mediterranean Region. WHO-EM/NUT/273/E. Available online: http://www.emro.who.int/nutrition/strategy/policy-statement-and-recommended-actions-for-lowering-sugar-intake-and-reducing-prevalence-of-type-2-diabetes-and-obesity-in-the-eastern-mediterranean-region.html (accessed on 10 October 2021).
- Pan American Health Organization. Pan American Health Organization Nutrient Profile Model; PAHO: Washington, DC, USA, 2016; ISBN 978-92-75-11873-3. Available online: https://iris.paho.org/bitstream/handle/10665.2/18621/9789275118733_eng.pdf (accessed on 10 October 2021).
- Tedstone, A.; Targett, V.; Allen, R.; staff at PHE. Public Health England. Sugar Reduction: The evidence for action. Annex. 5 Food Supply 2015. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/470179/Sugar_reduction_The_evidence_for_action.pdf (accessed on 10 October 2021).
- Appleton, K.M.; Tuorila, H.; Bertenshaw, E.; De Graaf, C.; Mela, D. Sweet taste exposure and the subsequent acceptance and preference for sweet taste in the diet: Systematic review of the published literature. Am. J. Clin. Nutr. 2018, 107, 405–419. [Google Scholar] [CrossRef]
- Appleton, K.M.; Rajska, J.; Warwick, S.M.; Rogers, P.J. No effects of sweet taste exposure at breakfast for 3 weeks on pleasantness, desire for, sweetness or intake of other sweet foods: A randomised controlled trial. Br. J. Nutr. 2021; 1–11, Online ahead of print. [Google Scholar] [CrossRef]
- Briones-Avila, L.S.; Moranchel-Hernández, M.A.; Moreno-Riolobos, D.; Silva Pereira, T.S.; Ortega Regules, A.E.; Villaseñor López, K.; Islas Romero, L.M. Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health. Nutrients 2021, 13, 2994. [Google Scholar] [CrossRef] [PubMed]
- Durán Agüero, S.; Angarita Davila, L.; Escobar Contreras, M.; Rojas Gomez, D.; de Assis Costa, J. Noncaloric sweeteners in children: A controversial theme. BioMed Res. Int. 2018, 2018, 4806534. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.; Lee, K.M.; Sylvetsky, A.C.; Kirkpatrick, S.I. Low-calorie sweeteners and human health: A rapid review of systematic reviews. Nutr. Rev. 2021, 79, 1145–1164. [Google Scholar] [CrossRef]
- Normand, M.; Ritz, C.; Mela, D.; Raben, A. Low-energy sweeteners and body weight: A citation network analysis. BMJ Nutr. Prev. Health 2021, 4, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Rehm, C. The use of low-calorie sweeteners is associated with self-reported prior intent to lose weight in a representative sample of US adults. Nutr. Diabetes 2016, 6, e202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Zhu, Y.; Malik, V.; Li, X.; Peng, X.; Zhang, F.F.; Shan, Z.; Liu, L. Intake of sugar-sweetened and low-calorie sweetened beverages and risk of cardiovascular disease: A meta-analysis and systematic review. Adv. Nutr. 2021, 12, 89–101. [Google Scholar] [CrossRef]
- Archer, E.; Marlow, M.L.; Lavie, C.J. Controversy and debate: Memory based methods paper 3: Nutrition’s ‘black swans’: Our reply. J. Clin. Epidemiol. 2018, 104, 130–135. [Google Scholar] [CrossRef]
- Swithers, S.E.; Sample, C.H.; Davidson, T.L. Adverse effects of high-intensity sweeteners on energy intake and weight control in male and obesity-prone female rats. Behav. Neurosci. 2013, 127, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Glendinning, J.I. Oral post-oral actions of low-calorie sweeteners: A tale of contradictions and controversies. Obesity 2018, 26, S9–S17. [Google Scholar] [CrossRef] [Green Version]
- Glendinning, J.I.; Hart, S.A.; Lee, H.; Maleh, J.; Ortiz, G.; Sang Ryu, Y.; Sanchez, A.; Shelling, S.; Williams, N. Low calorie sweeteners cause only limited metabolic effects in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 318, R70–R80. [Google Scholar] [CrossRef]
- Boakes, R.A.; Kendig, M.D.; Martire, S.I.; Rooney, K.B. Sweetening yoghurt with glucose, but not with saccharin, promotes weight gain and increased fat pad mass in rats. Appetite 2016, 105, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Morahan, H.; Leenaars, C.; Boakes, R.; Rooney, K. Metabolic and behavioural effects of prenatal exposure to non-nutritive sweeteners: A systematic review and meta-analysis of rodent models. Physiol. Behav. 2020, 213, 112696. [Google Scholar] [CrossRef] [PubMed]
- Doak, C.; Heitmann, B.; Summerbell, C.; Lissner, L. Prevention of childhood obesity–what type of evidence should we consider relevant? Obes. Rev. 2009, 10, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Woodman, J.; Thomas, J.; Dickson, K. How explicable are differences between reviews that appear to address a similar research question? A review of reviews of physical activity interventions. Syst. Rev. 2012, 1, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacke, C.; Nunan, D. Discrepancies in meta-analyses answering the same clinical question were hard to explain: A meta-epidemiological study. J. Clin. Epidemiol. 2020, 119, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Fagherazzi, G.; Gusto, G.; Affret, A.; Mancini, F.R.; Dow, C.; Balkau, B.; Clavel-Chapelon, F.; Bonnet, F.; Boutron-Ruault, M.-C. Chronic consumption of artificial sweetener in packets or tablets and type 2 diabetes risk: Evidence from the E3N-European prospective investigation into cancer and nutrition study. Ann. Nutr. Metab. 2017, 70, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Mandrioli, D.; Kearns, C.E.; Bero, L.A. Relationship between research outcomes and risk of bias, study sponsorship, and author financial conflicts of interest in reviews of the effects of artificially sweetened beverages on weight outcomes: A systematic review of reviews. PLoS ONE 2016, 11, e0162198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesser, L.I.; Ebbeling, C.B.; Goozner, M.; Wypij, D.; Ludwig, D.S. Relationship between funding source and conclusion among nutrition-related scientific articles. PLoS Med. 2007, 4, e5. [Google Scholar] [CrossRef]
- Mela, D.J. Foods design and ingredients for satiety: Promises and proof. Lipid Technol. 2007, 19, 180–183. [Google Scholar] [CrossRef]
- Chartres, N.; Fabbri, A.; Bero, L.A. Association of industry sponsorship with outcomes of nutrition studies: A systematic review and meta-analysis. JAMA Intern. Med. 2016, 176, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Boutron, I.; Dutton, S.; Ravaud, P.; Altman, D.G. Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes. JAMA 2010, 303, 2058–2064. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. HARKing, Cherry-Picking, P-Hacking, Fishing Expeditions, and Data Dredging and Mining as Questionable Research Practices. J. Clin. Psychiatry 2021, 82, 20f13804. [Google Scholar] [CrossRef] [PubMed]
- Tate, D.F.; Turner-McGrievy, G.; Lyons, E.; Stevens, J.; Erickson, K.; Polzien, K.; Diamond, M.; Wang, X.; Popkin, B. Replacing caloric beverages with water or diet beverages for weight loss in adults: Main results of the C hoose H ealthy O pt i ons C onsciously E veryday (CHOICE) randomized clinical trial. Am. J. Clin. Nutr. 2012, 95, 555–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.C.; Beck, J.; Cardel, M.; Wyatt, H.R.; Foster, G.D.; Pan, Z.; Wojtanowski, A.C.; Vander Veur, S.S.; Herring, S.J.; Brill, C. The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: A randomized clinical trial. Obesity 2016, 24, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cope, M.B.; Allison, D.B. White hat bias: Examples of its presence in obesity research and a call for renewed commitment to faithfulness in research reporting. Int. J. Obes. 2010, 34, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Ioannidis, J.P.; Trepanowski, J.F. Disclosures in nutrition research: Why it is different. JAMA 2018, 319, 547–548. [Google Scholar] [CrossRef]
- Akl, E.A.; El-Hachem, P.; Abou-Haidar, H.; Neumann, I.; Schünemann, H.J.; Guyatt, G.H. Considering intellectual, in addition to financial, conflicts of interest proved important in a clinical practice guideline: A descriptive study. J. Clin. Epidemiol. 2014, 67, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.; Akl, E.A.; Hirsh, J.; Kearon, C.; Crowther, M.; Gutterman, D.; Lewis, S.Z.; Nathanson, I.; Jaeschke, R.; Schünemann, H. The vexing problem of guidelines and conflict of interest: A potential solution. Ann. Intern. Med. 2010, 152, 738–741. [Google Scholar] [CrossRef] [PubMed]
- Mela, D.J. Food choice and intake: The human factor. Proc. Nutr. Soc. 1999, 58, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadler, C.R.; Grassby, T.; Hart, K.; Raats, M.; Sokolović, M.; Timotijevic, L. Processed food classification: Conceptualisation and challenges. Trends Food Sci. Technol. 2021, 112, 149–162. [Google Scholar] [CrossRef]
- Scrinis, G.; Monteiro, C.A. Ultra-processed foods and the limits of product reformulation. Public Health Nutr. 2018, 21, 247–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mela, D.J. Is There an Academic Bias against Low-Energy Sweeteners? Nutrients 2022, 14, 1428. https://doi.org/10.3390/nu14071428
Mela DJ. Is There an Academic Bias against Low-Energy Sweeteners? Nutrients. 2022; 14(7):1428. https://doi.org/10.3390/nu14071428
Chicago/Turabian StyleMela, David J. 2022. "Is There an Academic Bias against Low-Energy Sweeteners?" Nutrients 14, no. 7: 1428. https://doi.org/10.3390/nu14071428
APA StyleMela, D. J. (2022). Is There an Academic Bias against Low-Energy Sweeteners? Nutrients, 14(7), 1428. https://doi.org/10.3390/nu14071428