Co-Occurrence of Overweight/Obesity, Anemia and Micronutrient Deficiencies among Non-Pregnant Women of Reproductive Age in Ghana: Results from a Nationally Representative Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometric Measurements, Blood Collection and Laboratory Analysis
2.3. Case Definitions
2.4. Statistical Analysis
3. Results
3.1. Background Characteristics of the Respondents
3.2. Co-Occurrence of OWOB and Anemia and OWOB with Micronutrient Deficiency
3.3. Predictors of OWOB, Anemia, and Micronutrient Deficiency
4. Discussion
4.1. Overweight/Obesity
4.2. Anemia and Micronutrient Deficiency
4.3. Double Burden of Malnutrition
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doak, C.M.; Adair, L.S.; Bentley, M.; Monteiro, C.; Popkin, B.M. The dual burden household and the nutrition transition paradox. Int. J. Obes. 2005, 29, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doak, C.M.; Adair, L.S.; Monteiro, C.; Popkin, B.M. Overweight and Underweight Coexist within Households in Brazil, China and Russia. J. Nutr. 2000, 130, 2965–2971. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.L.; Ruel, M.T. Stunted Child–Overweight Mother Pairs: Prevalence and Association with Economic Development and Urbanization. Food Nutr. Bull. 2005, 26, 209–221. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization Fact Sheet. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 17 March 2022).
- Catalano, P.M.; Shankar, K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Fongar, A.; Gödecke, T.; Qaim, M. Various forms of double burden of malnutrition problems exist in rural Kenya. BMC Public Health 2019, 19, 1543. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, A. Micronutrient deficiency and the prevalence of mothers’ overweight/obesity in Egypt. Econ. Hum. Biol. 2007, 5, 471–483. [Google Scholar] [CrossRef]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Demaio, A.R.; Branca, F. Decade of action on nutrition: Our window to act on the double burden of malnutrition. BMJ Glob. Health 2017, 3, e000492. [Google Scholar] [CrossRef] [Green Version]
- Loechl, C.U.; Branca, F.; Aguayo, V. Moving Forward in Tackling the Double Burden of Malnutrition: The “International Symposium on Understanding the Double Burden of Malnutrition for Effective Interventions”. Ann. Nutr. Metab. 2019, 75, 95–98. [Google Scholar] [CrossRef]
- Agyemang, C.; Boatemaa, S.; Agyemang Frempong, G.; de-Graft Aikins, A. Obesity in Sub-Saharan Africa. In Metabolic Syndrome; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 41–53. [Google Scholar]
- Boah, M.; Azupogo, F.; Amporfro, D.A.; Abada, L.A. The epidemiology of undernutrition and its determinants in children under five years in Ghana. PLoS ONE 2019, 14, e0219665. [Google Scholar] [CrossRef] [Green Version]
- Ghana Statistical Service (GSS); Ghana Health Service (GHS). Ghana Demographic and Health Survey; ICF International: Fairfax, VA, USA, 2014. [Google Scholar]
- DHS Ghana. Demographic Health Survey; GSS, GHS, USAID, UNFPA, UNDP, UNICEF, ILO: Rockville, MD, USA, 2015; p. 530. [Google Scholar]
- Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; World Health Organization (WHO): Geneva, Switzerland, 1995.
- Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization (WHO): Geneva, Switzerland, 2011.
- Kushitor, S.B.; Owusu, L.; Kushitor, M.K. The prevalence and correlates of the double burden of malnutrition among women in Ghana. PLoS ONE 2020, 15, e0244362. [Google Scholar] [CrossRef] [PubMed]
- Muriuki, J.M.; Mentzer, A.J.; Mitchell, R.; Webb, E.L.; Etyang, A.O.; Kyobutungi, C.; Morovat, A.; Kimita, W.; Ndungu, F.M.; Macharia, A.W.; et al. Malaria is a cause of iron deficiency in African children. Nat. Med. 2021, 27, 653–658. [Google Scholar] [CrossRef]
- Wegmüller, R.; Bentil, H.; Wirth, J.P.; Petry, N.; Tanumihardjo, S.A.; Allen, L.; Williams, T.N.; Selenje, L.; Mahama, A.; Amoaful, E.; et al. Anemia, micronutrient deficiencies, malaria, hemoglobinopathies and malnutrition in young children and non-pregnant women in Ghana: Findings from a national survey. PLoS ONE 2020, 15, e0228258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezekiel, N. National Analytical Report: 2010 Population and Housing Census; Ghana Statistical Service: Accra, Ghana, 2013.
- FHI Minimum Dietary Diversity for Women—A Guide to Measurement; FAO: Rome, Italy, 2016.
- Cogill, B. Anthropometric Indicators Measurement Guide: Food and Nutrition Technical Project. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cogill+B.+Anthropometric+Indicators+Measurement+Guide.+2003&btnG= (accessed on 24 June 2021).
- Shetty, P.S.; James, W.P. Body mass index. A measure of chronic energy deficiency in adults. FAO Food Nutr. Pap. 1994, 56, 43–50. [Google Scholar]
- WHO. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. Vitamin and Mineral Nutrition Information System. World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Namaste, S.M.; Rohner, F.; Huang, J.; Bhushan, N.L.; Flores-Ayala, R.; Kupka, R.; Mei, Z.; Rawat, R.; Williams, A.M.; Raiten, D.J.; et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Merican J. Clin. Nutr. 2017, 106, 359S–371S. [Google Scholar]
- Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Vitamin A Review. J. Nutr. 2016, 146, 1816S–1848S. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.E.; Coffin, A.B.; Miller, D.L.; Popper, A.N. Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure. J. Exp. Biol. 2006, 209, 4193–4202. [Google Scholar] [CrossRef] [Green Version]
- WHO/UNICEF. Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (JMP)|UN_Water. Available online: https://www.unwater.org/publication_categories/whounicef-joint-monitoring-programme-for-water-supply-sanitation-hygiene-jmp/ (accessed on 8 August 2021).
- Rutstein, S.; Shea, O.; Kiersten, J. The DHS Wealth Index. DHS Comparative Reports No. 6; ORC Macro: Calverton, MD, USA, 2004. [Google Scholar]
- Chowdhury, M.A.B.; Adnan, M.M.; Hassan, M.Z. Trends, prevalence and risk factors of overweight and obesity among women of reproductive age in Bangladesh: A pooled analysis of five national cross-sectional surveys. BMJ Open 2018, 8, e018468. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Song, F.; Xu, W.; Pallard-Borg, S.; Qi, X. Relation of socioeconomic status to overweight and obesity: A large population-based study of Chinese adults. Ann. Hum. Biol. 2017, 44, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Shin, A.; Cho, S.; Choi, J.-Y.; Kang, D.; Lee, J.-K. Marital status and the prevalence of obesity in a Korean population. Obes. Res. Clin. Pract. 2020, 14, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Aitsi-Selmi, A.; Bell, R.; Shipley, M.J.; Marmot, M.G. Education Modifies the Association of Wealth with Obesity in Women in Middle-Income but Not Low-Income Countries: An Interaction Study Using Seven National Datasets, 2005–2010. PLoS ONE 2014, 9, e90403. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.D.; Hoey, L.; Blesh, J.; Janda, K.; Llanque, R.; Aguilar, A.M. Peri-Urban, but Not Urban, Residence in Bolivia Is Associated with Higher Odds of Co-Occurrence of Overweight and Anemia among Young Children, and of Households with an Overweight Woman and Stunted Child. J. Nutr. 2018, 148, 632–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Chen, X.; Liu, Z.; Varma, D.S.; Wan, R.; Zhao, S. Diet diversity and nutritional status among adults in southwest China. PLoS ONE 2017, 12, e0172406. [Google Scholar] [CrossRef] [PubMed]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Thurnham, D.; McCabe, G.; Lancet, C.N.-C.-T. Effects of Subclinical Infection on Plasma Retinol Concentrations and Assessment of Prevalence of Vitamin A Deficiency: Meta-Analysis; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Rhodes, E.C.; Suchdev, P.S.; Narayan, K.M.V.; Cunningham, S.; Weber, M.B.; Tripp, K.; Mapango, C.; Ramakrishnan, U.; Hennink, M.; Williams, A.M. The Co-Occurrence of Overweight and Micronutrient Deficiencies or Anemia among Women of Reproductive Age in Malawi. J. Nutr. 2020, 150, 1554–1565. [Google Scholar] [CrossRef]
- Williams, A.M.; Guo, J.; Addo, O.Y.; Ismaily, S.; Namaste, S.M.; Oaks, B.M.; Rohner, F.; Suchdev, P.S.; Young, M.F.; Flores-Ayala, R.; et al. Intraindividual double burden of overweight or obesity and micronutrient deficiencies or anemia among women of reproductive age in 17 population-based surveys. Am. J. Clin. Nutr. 2020, 112, 468S–477S. [Google Scholar] [CrossRef]
- Batal, M.; Steinhouse, L.; Delisle, H. The nutrition transition and the double burden of malnutrition. Med. Sante Trop. 2018, 28, 345–350. [Google Scholar] [CrossRef]
- Tuoyire, D.A. Television exposure and overweight/obesity among women in Ghana. BMC Obes. 2018, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aikins, A.D.-G. Food Beliefs and Practices During Pregnancy in Ghana: Implications for Maternal Health Interventions. Health Care Women Int. 2014, 35, 954–972. [Google Scholar] [CrossRef] [PubMed]
- Christian, A.K.; Biney, A.A.E.; Atiglo, D.Y.; Dodoo, N.D.; Obeng-Dwamena, A.D.; Owoo, N.S.; Dodoo, F.N.-A. Being overweight and its association with risky sexual behaviour among female youth in Ghana. SN Soc. Sci. 2021, 1, 1–15. [Google Scholar] [CrossRef]
- Ofori-Asenso, R.; Agyeman, A.A.; Laar, A.; Boateng, D. Overweight and obesity epidemic in Ghana-a systematic review and meta-analysis. BMC Public Health 2016, 16, 1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preventing Chronic Diseases: A vital Investment; WHO: Geneva, Switzerland, 2005.
- Ziraba, A.K.; Fotso, J.C.; Ochako, R. Overweight and obesity in urban Africa: A problem of the rich or the poor? BMC Public Health 2009, 9, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics 2014, 33, 673–689. [Google Scholar] [CrossRef]
- Appiah, C.A.; Steiner-Asiedu, M.; Otoo, G.E. Predictors of overweight/obesity in urban Ghanaian women. Int. J. Clin. Nutr. 2014, 2, 60–68. [Google Scholar] [CrossRef]
- Willis, L.H.; Slentz, C.A.; Bateman, L.A.; Shields, A.T.; Piner, L.W.; Bales, C.W.; Houmard, J.A.; Kraus, W.E. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J. Appl. Physiol. 2012, 113, 1831–1837. [Google Scholar] [CrossRef]
- Petry, N.; Wirth, J.P.; Adu-Afarwuah, S.; Wegmuller, R.; Woodruff, B.A.; Tanumihardjo, S.A.; Bentil, H.; Donkor, W.E.S.; Williams, T.N.; Shahab-Ferdows, S.; et al. Risk factors for anaemia among Ghanaian women and children vary by population group and climate zone. Matern. Child Nutr. 2020, 17, e13076. [Google Scholar] [CrossRef]
- Bationo, F.; Songré-Ouattara, L.T.; Hama-Ba, F.; Baye, K.; Hemery, Y.M.; Parkouda, C.; Lingani-Sawadogo, H.; Diawara, B.; Humblot, C. Folate Status of Women and Children in Africa—Current Situation and Improvement Strategies. Food Rev. Int. 2019, 36, 1–14. [Google Scholar] [CrossRef]
- Evaluating the Public Health Significance of Micronutrient Malnutrition. Guidelines on Food Fortifications with Micronutrients; WHO: Geneva, Switzerland, 2006.
- Ansah, I.G.K.; Marfo, E.; Donkoh, S.A. Food demand characteristics in Ghana: An application of the quadratic almost ideal demand systems. Sci. Afr. 2020, 8, e00293. [Google Scholar] [CrossRef]
- Jones, A.D.; Hayter, A.K.M.; Baker, C.P.; Prabhakaran, P.; Gupta, V.; Kulkarni, B.; Smith, G.D.; Ben-Shlomo, Y.; Krishna, K.V.R.; Kumar, P.U.; et al. The co-occurrence of anemia and cardiometabolic disease risk demonstrates sex-specific sociodemographic patterning in an urbanizing rural region of southern India. Eur. J. Clin. Nutr. 2015, 70, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, J.A.; Pedraza, L.S.; Martorell, R.; Gil, A. Introduction to the double burden of undernutrition and excess weight in Latin America. Am. J. Clin. Nutr. 2014, 100, 1613S–1616S. [Google Scholar] [CrossRef] [PubMed]
- Becquey, E.; Nutrition, Y.M.-P.-T.J. Micronutrient adequacy of women’s diet in urban Burkina Faso is low. J. Nutr. 2010, 140, 2079S–2085S. Available online: https://doi.org/10.3945/jn.110.123356 (accessed on 17 March 2022). [CrossRef]
- Ortíz Pérez, M.; Vázquez López, M.A.; Ibáñez Alcalde, M.; Galera Martínez, R.; Martín González, M.; Lendínez Molinos, F.; Bonillo Perales, A. Relationship between Obesity and Iron Deficiency in Healthy Adolescents. Child. Obes. 2020, 16, 440–447. [Google Scholar] [CrossRef] [PubMed]
Total | ||||
---|---|---|---|---|
Characteristic | n | % or Mean a | 95% CI b | |
Household (n = 1063) | ||||
Stratum | ||||
Southern, % | 330 | 36.1 | (29.7, 43.0) | |
Middle, % | 429 | 45.3 | (38.5, 52.3) | |
Northern, % | 304 | 18.6 | (14.7, 23.3) | |
Place | ||||
Urban, % | 474 | 49.9 | (37.4, 62.5) | |
Rural, % | 589 | 50.1 | (37.5, 62.6) | |
Improved Sanitation, % | 124 | 13.0 | (8.8, 18.8) | |
Safe drinking water, % | 907 | 90.3 | (84.4, 94.1) | |
Wealth | ||||
Low, % | 429 | 31.4 | (24.3, 39.4) | |
Medium, % | 341 | 37.3 | (29.4, 45.9) | |
High, % | 293 | 31.4 | (23.1, 41.0) | |
Women age | ||||
Mean age (years) | 1060 | 29.1 | (28.5, 29.8) | |
15-to 24, % | 406 | 38.2 | (34.7, 41.9) | |
25-to 34, % | 371 | 35.2 | (31.9, 38.6) | |
35-to 49, % | 283 | 26.6 | (24.2, 29.0) | |
Woman’s literacy status | ||||
Illiterate, % | 210 | 25.8 | (21.7, 30.3) | |
Partly or fully literate, % | 590 | 74.2 | (69.7, 78.3) | |
Marital status | ||||
Married, % | 405 | 59.9 | (56.5, 63.2) | |
Unmarried, % | 647 | 40.1 | (36.8, 43.5) | |
Anthropometry | ||||
Body Mass Index (kg/cm2), mean | 1002 | 24.5 | (24.1, 25.0) | |
Underweight/Normal weight, % c | 641 | 61.0 | (56.3, 65.5) | |
Overweight, % | 232 | 24.7 | (21.0, 28.8) | |
Obesity, % | 129 | 14.3 | (11.5, 17.7) | |
Micronutrient status | ||||
Hemoglobin concentration | ||||
Hemoglobin (g/L), mean | 999 | 127.7 | (126.4, 128.9) | |
Any anemia, % | 999 | 21.7 | (18.7, 25.1) | |
Iron status (n = 987) | ||||
Ferritin (μg/L), median d (IQR) | 987 | 43.1 | (23.3, 72.4) | |
Iron deficiency, % e | 13.7 | (11.2, 16.6) | ||
Vitamin A status (n = 987) | ||||
RBP (μmol/L), mean f | 987 | 1.6 | (1.6, 1.7) | |
Vitamin A deficiency, % g | 987 | 1.5 | (0.8, 2.9) | |
Folate status (n = 473) | ||||
Serum folate, median (IQR) | 473 | 9.3 | (5.4, 16.4) | |
Folate deficiency, % h | 473 | 53.8 | (47.6, 60.0) | |
Vitamin B12 status (n = 471) | ||||
Serum vitamin B12 (pmol), mean | 471 | 454.0 | (426.8; 481.3) | |
Vitamin B12 deficiencyi i, % | 471 | 6.9 | (4.8, 9.8) |
Single Burden | Double Burden Malnutrition | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | OWOB (A) | p-Value c | Anemia (B) | p-Value | ≥1 Micronutrient def. (C) d | p-Value | A + B | p-Value | A + C | p-Value | ||||||
n = 1002 | n = 999 | n = 466 | N = 989 | N = 457 | ||||||||||||
Household | % a | 95% CI b | % a | 95% CI b | % a, d | 95% CI b | % a | 95% CI b | % a | 95% CI b | ||||||
Stratum | ||||||||||||||||
Southern, % | 47.2 | (40.3, 54.2) | <0.001 | 24.0 | (18.9, 29.9) | 0.030 | 59.5 | (48.8, 69.5) | 0.725 | 8.3 | (5.1, 13.4) | 0.121 | 28.4 | (20.9, 37.3) | 0.029 | |
Middle, % | 41.1 | (34.5, 48.1) | 17.4 | (14.1, 21.4) | 61.2 | (52.9, 68.9) | 6.9 | (4.5, 10.5) | 24.8 | (18.1, 33.0) | ||||||
Northern, % | 18.5 | (12.2, 26.9) | 27.6 | (20.4, 36.2) | 65.8 | (53.8, 76.0) | 3.0 | (1.4, 6.3) | 11.8 | (6.6, 20.3) | ||||||
Place | ||||||||||||||||
Urban, % | 49.6 | (43.3, 55.9) | <0.001 | 21.6 | (17.5, 26.4) | 0.964 | 63.8 | (57.2, 70.0) | 0.393 | 8.4 | (3.1, 8.2) | 0.107 | 29.5 | (22.3, 37.9) | 0.009 | |
Rural, % | 28.8 | (24.2, 34.0 | 21.8 | (17.4, 26.9) | 59.2 | (50.2, 67.6) | 5.0 | (3.1, 8.2) | 17.7 | (13.3, 23.0) | ||||||
Wealth | ||||||||||||||||
Low, % | 21.5 | (16.4, 27.6) | <0.001 | 22.0 | (16.7, 28.4) | 0.213 | 56.3 | (46.7, 65.5) | 0.398 | 1.4 | (0.5 3.6) | <0.001 | 13.2 | (8.1, 20.8) | 0.001 | |
Medium, % | 39.6 | (34.8, 44.7) | 24.5 | (19.3, 30.6) | 64.4 | (54.8, 73.0) | 10.2 | (6.9, 14.8) | 21.4 | (16.6, 27.2) | ||||||
High, % | 56.5 | (49.9, 62.9) | 18.0 | (14.1, 22.7) | 63.0 | (54.5, 70.8) | 8.0 | (5.0, 12.6) | 35.7 | (25.3, 47.6) | ||||||
Sanitation | ||||||||||||||||
Unimproved | 38.3 | (34.1, 42.7) | 0.407 | 20.9 | (18.1, 24.1) | 0.140 | 60.9 | (54.5, 66.9) | 0.528 | 5.7 | (4.1, 7.9) | 0.001 | 24.0 | (19.4, 29.3) | 0.622 | |
Improved | 43.5 | (31.1, 56.6) | 26.8 | (19.1, 36.2) | 66.2 | (50.7, 78.8) | 13.1 | (8.5, 19.8) | 20.4 | (10.0, 37.1) | ||||||
Water source | ||||||||||||||||
Unimproved | 23.4 | (17.0, 31.3) | 0.001 | 17.2 | (12.7, 23.0) | 0.138 | 57.5 | (39.5, 73.6) | 0.628 | 4.2 | (1.3, 12.8) | 0.403 | 15.6 | (7.7, 29.0) | 0.194 | |
Improved | 40.6 | (35.8, 45.6) | 22.2 | (18.9, 25.8) | 61.9 | (56.0, 67.4) | 6.9 | (5.0, 9.5) | 24.3 | (19.5, 29.7) | ||||||
Women | ||||||||||||||||
Women age | ||||||||||||||||
15-to 24, % | 16.2 | (12.0, 21.5) | <0.001 | 23.7 | (18.1, 30.2) | 0.179 | 66.5 | (56.6, 75.2) | 0.013 | 2.9 | (1.6, 5.2) | <0.001 | 12.5 | (7.3, 20.6) | 0.002 | |
25-to 34, % | 50.8 | (43.8, 57.7) | 23.2 | (18.8, 28.2) | 66.3 | (57.2, 74.3) | 10.2 | (6.8, 15.1) | 30.5 | (22.9, 39.3) | ||||||
35-to 49, % | 56.9 | (48.5, 65.0) | 16.9 | (12.3, 22.7) | 49.6 | (41.2, 58.1) | 7.6 | (4.8, 11.9) | 29.2 | (21.4, 38.6) | ||||||
Formal Education | ||||||||||||||||
None, % | 34.2 | (26.0, 43.5) | 0.283 | 24.3 | (16.9, 33.7) | 0.468 | 61.3 | (49.2, 72.2) | 0.984 | 5.3 | (3.0, 9.3) | 0.407 | 20.8 | (13.9, 29.8) | 0.556 | |
Partly or fully literate, % | 40.0 | (34.8, 45.4) | 21.1 | (17.8, 24.8) | 61.4 | (55.3, 67.2) | 7.0 | (4.9, 9.9) | 24.0 | (18.5, 30.4) | ||||||
Dietary diversity | ||||||||||||||||
<5 food groups | 40.2 | (34.1, 46.6) | 0.495 | 23.9 | (19.4, 29.0) | 0.118 | 63.1 | (56.3, 69.5) | 0.473 | 8.0 | (5.4, 11.9) | 0.100 | 24.1 | (18.0, 31.4) | 0.849 | |
≥5 food groups | 37.6 | (32.2, 43.4) | 19.3 | (15.8, 23.2) | 59.7 | (51.5, 67.4) | 5.2 | (3.4, 7.8) | 23.0 | (16.2, 31.7) | ||||||
Total | 39.0 | (34.5, 43.7) | 21.7 | (18.7, 25.1) | 61.5 | (55.8, 66.9) | 6.7 | (4.9, 9.1) | 23.6 | (19.1, 28.7) |
Population | Observed Co-Occurrence (%) | Expected Co-Occurrence (%) | χ2 | p-Value |
---|---|---|---|---|
Southern | ||||
OWOB + anemia | 8.3 | 11.3 | 0.008 | 0.928 |
OWOB + micronutrient def. | 28.4 | 13.2 | <0.001 | 1.000 |
Middle | ||||
OWOB + anemia | 6.9 | 7.2 | <0.001 | 1.000 |
OWOB + micronutrient def. | 24.8 | 25.2 | <0.001 | 1.000 |
Northern | ||||
OWOB + anemia | 3.0 | 5.1 | 0.009 | 0.927 |
OWOB + micronutrient def. | 11.8 | 12.2 | <0.001 | 1.000 |
Total | ||||
OWOB + anemia | 6.7 | 8.5 | 0.004 | 0.951 |
OWOB + micronutrient def. | 23.6 | 24.0 | <0.001 | 0.992 |
OWOB | Anemia | ≥1 Micronutrient Deficiency a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Household Characteristics | OR a (95% CI) | p-Value | dy/dx b | OR (95% CI) | p-Value | OR (95% CI) | p-Value | dy/dx | ||
Strata (ref: Southern) | ||||||||||
Middle | 0.9 (0.6, 1.3) | 0.706 | −0.012 | 0.6 (0.4, 0.9) | 0.011 | −0.079 | 1.3 (0.8, 2.2) | 0.209 | 0.072 | |
Northern | 0.6 (0.3, 0.8) | 0.007 | −0.110 | 1.0 (0.6, 1.5) | 0.905 | −0.005 | 2.5 (1.4, 4.4) | 0.002 | 0.203 | |
Place of residence (ref: Urban) | ||||||||||
Rural | 0.7 (0.5, 1.2) | 0.212 | −0.045 | 1.0 (0.6, 1.4) | 0.931 | −0.003 | 1.0 (0.5, 1.7) | 0.990 | −0.001 | |
Wealth (ref: Low) | ||||||||||
Medium | 1.6 (1.0, 2.4) | 0.030 | 0.084 | 1.3 (0.9, 2.0) | 0.139 | 0.054 | 2.0 (1.1, 3.5) | 0.016 | 0.156 | |
High | 2.9 (1.7, 5.1) | <0.001 | 0.206 | 1.0 (0.6, 1.8) | 0.756 | 0.014 | 1.7 (0.8, 3.5) | 0.162 | 0.120 | |
Sanitation (ref: unimproved) | ||||||||||
Improved | 0.8 (0.5, 1.2) | 0.361 | 0.352 | 1.4 (0.9, 2.2) | 0.110 | 0.065 | 1.1 (0.6, 2.1) | 0.840 | 0.015 | |
Water source (ref:unimproved) | ||||||||||
Improved | 1.2 (0.7, 1.9) | 0.503 | 0.030 | 1.2 (0.8, 2.0) | 0.269 | 0.042 | 1.1 (0.6, 2.0) | 0.739 | 0.024 | |
Individual characteristics | ||||||||||
Age in years (ref: 15 to 24) | ||||||||||
25 to 49 | 5.5 (3.7, 8.0) | <0.001 | 0.300 | 0.7 (0.5, 0.9) | 0.021 | −0.067 | 0.7 (0.4, 1.1) | 0.150 | −0.078 | |
Formal education (ref: none) | ||||||||||
Partly or fully literate | 1.4 (0.9, 2.0) | 0.111 | 0.056 | 0.8 (0.5, 1.1) | 0.157 | −0.048 | 0.9 (0.5, 1.5) | 0.707 | −0.022 | |
Marital status (ref: Single) | ||||||||||
Married/co-habiting | 1.8 (1.2, 2.6) | 0.002 | 0.103 | 1.1 (0.8, 1.5) | 0.573 | 0.016 | 1.0 (0.6, 1.5) | 0.935 | −0.004 | |
Dietary diversity (ref: <5 food groups consumed) | ||||||||||
≥5 food groups | 0.8 (0.6, 1.0) | 0.079 | −0.048 | 1.0 (0.7,1.3) | 0.902 | −0.003 | 0.8 (0.5, 1.2) | 0.267 | −0.051 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christian, A.K.; Steiner-Asiedu, M.; Bentil, H.J.; Rohner, F.; Wegmüller, R.; Petry, N.; Wirth, J.P.; Donkor, W.E.S.; Amoaful, E.F.; Adu-Afarwuah, S. Co-Occurrence of Overweight/Obesity, Anemia and Micronutrient Deficiencies among Non-Pregnant Women of Reproductive Age in Ghana: Results from a Nationally Representative Survey. Nutrients 2022, 14, 1427. https://doi.org/10.3390/nu14071427
Christian AK, Steiner-Asiedu M, Bentil HJ, Rohner F, Wegmüller R, Petry N, Wirth JP, Donkor WES, Amoaful EF, Adu-Afarwuah S. Co-Occurrence of Overweight/Obesity, Anemia and Micronutrient Deficiencies among Non-Pregnant Women of Reproductive Age in Ghana: Results from a Nationally Representative Survey. Nutrients. 2022; 14(7):1427. https://doi.org/10.3390/nu14071427
Chicago/Turabian StyleChristian, Aaron K., Matilda Steiner-Asiedu, Helena J. Bentil, Fabian Rohner, Rita Wegmüller, Nicolai Petry, James P. Wirth, William E. S. Donkor, Esi F. Amoaful, and Seth Adu-Afarwuah. 2022. "Co-Occurrence of Overweight/Obesity, Anemia and Micronutrient Deficiencies among Non-Pregnant Women of Reproductive Age in Ghana: Results from a Nationally Representative Survey" Nutrients 14, no. 7: 1427. https://doi.org/10.3390/nu14071427
APA StyleChristian, A. K., Steiner-Asiedu, M., Bentil, H. J., Rohner, F., Wegmüller, R., Petry, N., Wirth, J. P., Donkor, W. E. S., Amoaful, E. F., & Adu-Afarwuah, S. (2022). Co-Occurrence of Overweight/Obesity, Anemia and Micronutrient Deficiencies among Non-Pregnant Women of Reproductive Age in Ghana: Results from a Nationally Representative Survey. Nutrients, 14(7), 1427. https://doi.org/10.3390/nu14071427