Dysmetabolism and Sleep Fragmentation in Obstructive Sleep Apnea Patients Run Independently of High Caffeine Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Ethics
2.2. Study Design
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, T.; Peppard, P.E.; Gottlieb, D.J. Epidemiology of obstructive sleep apnea: A population health perspective. Am. J. Respir. Crit. Care Med. 2002, 165, 1217–1239. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Shah, S.; Fernandez, S.; Karam, J.; Jean-Louis, G.; McFarlane, S.I. Obesity, obstructive sleep apnea, and cardiovascular risk. Curr. Cardiovasc. Risk Rep. 2008, 2, 101–106. [Google Scholar] [CrossRef]
- Narkiewicz, K.; Van De Borne, P.J.H.; Montano, N.; Dyken, M.E.; Phillips, B.G.; Somers, V.K. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation 1998, 97, 943–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamsuzzaman, A.S.M.; Gersh, B.J.; Somers, V.K. Obstructive sleep apnea. J. Am. Med. Assoc. 1996, 290, 97–100. [Google Scholar] [CrossRef]
- Robinson, G.V.; Langford, B.A.; Smith, D.M.; Stradling, J.R. Predictors of blood pressure fall with continuous positive airway pressure (CPAP) treatment of obstructive sleep apnoea (OSA). Thorax 2008, 63, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Bardwell, W.A.; Ziegler, M.G.; Ancoli-Israel, S.; Berry, C.C.; Nelesen, R.A.; Durning, A.; Dimsdale, J.E. Dimsdale Does caffeine confound relationships among adrenergic tone, blood pressure and sleep apnoea? J. Sleep Res. 2000, 9, 269–272. [Google Scholar] [CrossRef]
- Taveira, K.V.M.; Kuntze, M.M.; Berretta, F.; de Souza, B.D.M.; Godolfim, L.R.; Demathe, T.; De Luca Canto, G.; Porporatti, A.L. Association between obstructive sleep apnea and alcohol, caffeine and tobacco: A meta-analysis. J. Oral Rehabil. 2018, 45, 890–902. [Google Scholar] [CrossRef]
- Aurora, R.N.; Crainiceanu, C.; Caffo, B.; Punjabi, N.M. Sleep-disordered breathing and caffeine consumption: Results of a community-based study. Chest 2012, 142, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Norman, D.; Bardwell, W.A.; Loredo, J.S.; Ancoli-Israel, S.; Heaton, R.K.; Dimsdale, J.E. Caffeine intake is independently associated with neuropsychological performance in patients with obstructive sleep apnea. Sleep Breath. 2008, 12, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Riksen, N.P.; Rongen, G.A.; Smits, P. Acute and long-term cardiovascular effects of coffee: Implications for coronary heart disease. Pharmacol. Ther. 2009, 121, 185–191. [Google Scholar] [CrossRef]
- Sung, B.H.; Whitsett, T.L.; Lovallo, W.R.; Al’Absi, M.; Pincomb, G.A.; Wilson, M.F. Prolonged increase in blood pressure by a single oral dose of caffeine in mildly hypertensive men. Am. J. Hypertens. 1994, 7, 755–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, B.H.; Lovallo, W.R.; Whitsett, T.; Wilson, M.F. Caffeine elevates blood pressure response to exercise in mild hypertensive men. Am. J. Hypertens. 1995, 8, 1184–1188. [Google Scholar] [CrossRef]
- Pincomb, A.; Lovallo, W.R.; Mckey, B.S.; Sun, B.H.; Passey, R.B.; Everson, S.A.; Wilson, M.F. Acute Blood Pressure Elevations with Caffeine Systemic HyPertension. Am. J. Cardiol 1996, 77, 270–274. [Google Scholar] [CrossRef]
- Benowitz, N.L. Clinical pharmacology of caffeine. Annu. Rev. Med. 1990, 41, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of Caffeine in the Brain with Special Reference to Factors That Contribute to Its Widespread Use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar]
- Van Dam, R.M.; Feskens, E.J.M. Coffee consumption and risk of type 2 diabetes mellitus. Lancet 2002, 360, 1477–1478. [Google Scholar] [CrossRef]
- Reis, C.E.G.; Dórea, J.G.; da Costa, T.H.M. Effects of coffee consumption on glucose metabolism: A systematic review of clinical trials. J. Tradit. Complement. Med. 2019, 9, 184–191. [Google Scholar] [CrossRef]
- Gardener, S.L.; Rainey-Smith, S.R.; Villemagne, V.L.; Fripp, J.; Doré, V.; Bourgeat, P.; Taddei, K.; Fowler, C.; Masters, C.L.; Maruff, P.; et al. Higher Coffee Consumption Is Associated With Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation Over 126 Months: Data From the Australian Imaging, Biomarkers, and Lifestyle Study. Front. Aging Neurosci. 2021, 13, 744872. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Panza, F.; Imbimbo, B.P.; D’Introno, A.; Galluzzo, L.; Gandin, C.; Misciagna, G.; Guerra, V.; Osella, A.; Baldereschi, M.; et al. Coffee consumption habits and the risk of mild cognitive impairment: The Italian longitudinal study on aging. J. Alzheimer’s Dis. 2015, 47, 889–899. [Google Scholar] [CrossRef]
- Conde, S.V.; Obeso, A.; Rigual, R.; Monteiro, E.C.; Gonzalez, C. Function of the rat carotid body chemoreceptors in ageing. J. Neurochem. 2006, 99, 711–723. [Google Scholar] [CrossRef]
- Conde, S.V.; Nunes Da Silva, T.; Gonzalez, C.; Mota Carmo, M.; Monteiro, E.C.; Guarino, M.P. Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats. Br. J. Nutr. 2012. [Google Scholar] [CrossRef] [PubMed]
- Roehrs, T.; Roth, T. Caffeine: Sleep and daytime sleepiness. Sleep Med. Rev. 2008, 12, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Carrier, J.; Fernandez-Bolanos, M.; Robillard, R.; Dumont, M.; Paquet, J.; Selmaoui, B.; Filipini, D. Effects of caffeine are more marked on daytime recovery sleep than on nocturnal sleep. Neuropsychopharmacology 2007, 32, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Paterson, L.M.; Nutt, D.J.; Ivarsson, M.; Hutson, P.H.; Wilson, S.J. Effects on sleep stages and microarchitecture of caffeine and its combination with zolpidem or trazodone in healthy volunteers. J. Psychopharmacol. 2009, 23, 487–494. [Google Scholar] [CrossRef]
- Barry, R.J.; Rushby, J.A.; Wallace, M.J.; Clarke, A.R.; Johnstone, S.J.; Zlojutro, I. Caffeine effects on resting-state arousal. Clin. Neurophysiol. 2005, 116, 2693–2700. [Google Scholar] [CrossRef]
- Boutrel, B.; Koob, G.F. What keeps us awake: The neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 2004, 27, 1181–1194. [Google Scholar] [CrossRef] [Green Version]
- Takabayashi, A.; Maruyama, K.; Tanno, Y.; Sakurai, S.; Eguchi, E.; Wada, H.; Shirahama, R.; Saito, I.; Tanigawa, T. The association of coffee consumption and oxygen desaturation index during sleep among Japanese male workers. Sleep Breath. 2019, 23, 1027–1031. [Google Scholar] [CrossRef]
- Chen, L.; Tang, W.; Wang, C.; Chen, D.; Gao, Y.; Ma, W.; Zha, P.; Lei, F.; Tang, X.; Ran, X. Diagnostic Accuracy of Oxygen Desaturation Index for Sleep-Disordered Breathing in Patients With Diabetes. Front. Endocrinol. 2021, 12, 598470. [Google Scholar] [CrossRef]
- Temirbekoy, D.; Gunes, S.; Yazici, Z.M.; Sayin, İ. The Ignored Parameter in the Diagnosis of Obstructive Sleep Apnea Syndrome The Oxygen Desaturation Index. Turk. Otolarengoloji Arsivi/Turk. Arch. Otolaryngol. 2018, 56, 1–6. [Google Scholar] [CrossRef]
- Moisey, L.L.; Kacker, S.; Bickerton, A.C.; Robinson, L.E.; Graham, T.E. Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men. Am. J. Clin. Nutr. 2008, 87, 1254–1261. [Google Scholar] [CrossRef]
- van Dam, R.M.; Willett, W.C.; Manson, J.E.; Hu, F.B. Coffee, Caffeine, and Risk of Type 2 Diabetes. Diabetes Care 2006, 29, 398–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, J.C.; Melo, B.F.; Rodrigues, T.; Matafome, P.; Sacramento, J.F.; Guarino, M.P.; Seiça, R.; Conde, S.V. Caffeine Restores Insulin Sensitivity and Glucose tolerance in High-sucrose Diet Rats: Effects on Adipose Tissue. J. Cardiovasc. Dis. 2016, 35, 440–449. [Google Scholar]
- Panchal, S.K.; Wong, W.Y.; Kauter, K.; Ward, L.C.; Brown, L. Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition 2012, 28, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Lv, Y.; Zha, W.; Hong, X.; Luo, Q. Effect of coffee consumption on dyslipidemia: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 2159–2170. [Google Scholar] [CrossRef]
- Hartley, T.R.; Lovallo, W.R.; Whitsett, T.L. Cardiovascular effects of caffeine in men and women. Am. J. Cardiol. 2004, 93, 1022–1026. [Google Scholar] [CrossRef]
- Jee, S.H.; He, J.; Appel, L.J.; Whelton, P.K.; Suh, I.; Klag, M.J. Coffee consumption and serum lipids: A meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol. 2001, 153, 353–362. [Google Scholar] [CrossRef]
- Narkiewicz, K.; Somers, V.K. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol. Scand. 2003, 177, 385–390. [Google Scholar] [CrossRef]
Variables Assessed | Patients without OSA (n = 32) Median (Q1–Q3) | Patients with OSA (n = 65) Median (Q1–Q3) |
---|---|---|
BMI (kg m−2) | 25.15 (20.8–29.1) | 32.30 (25.2–42.6) *** |
Glycaemia (mg/dL) | 77.00 (62.0–88.0) | 88.00 (63.0–128.0) *** |
Total cholesterol (mg/dL) | 171.0 (118.0–237.0) | 191.00 (124.0–275.0) *** |
LDL (mg/dL) | 98.00 (62.0–169.0) | 125.00 (61.0–188.0) *** |
HDL (mg/dL) | 51.50 (37.0–57.0) | 43.00 (27.0–61.0) *** |
TG (mg/dL) | 81.5 (30.0–241.0) | 129.00 (59.0–417.0) * |
Dopamine (μg/24 h) | 236.50 (64.0–303.0) | 245.96 (48.0–549.8) ** |
Epinephrine (μg/24 h) | 4.50 (2.0–11.0) | 6.0 (2.0–29.4) |
Norepinephrine (μg/24 h) | 30.00 (14.0–56.0) | 58.0 (12.0–149.3) *** |
Variables Assessed | Patients without OSA (n = 32) Median (Q1–Q3) | Patients with OSA (n = 65) Median (Q1–Q3) |
---|---|---|
Caffeine (μg/mL) | 0.18 (0.0–0.77) | 1.25 (0.0–13.4) ** |
Total xanthine (μg/mL) | 0.93 (0.0–3.6) | 1.91 (0.0–18.5) |
AHI (events/h) | 1.60 (0.2–4.9) | 26.10 (6.3–137.5) *** |
NREM (min) | 304.50 (253.0–341.7) | 291.50 (150.5–388.3) |
REM (min) | 44.25 (16.0–121.0) | 38.50 (5.0–98.5) |
Arousals (events/h) | 7.00 (4.0–19.5) | 30.60 (10.3–109.1) *** |
Variables Correlated with Caffeine | OSA Patients | |
---|---|---|
R (Spearman) | p Value | |
AHI | −0.186 | 0.309 |
Arousals | −0.164 | 0.370 |
REM | −0.050 | 0.791 |
NREM | −0.316 | 0.083 |
Dependent Variable = OSA Independent Variables | Odds Ratio (OR) | IC95% | p Value |
---|---|---|---|
BMI (kg m−2) | 1.93 | 1.44–2.60 | <0.001 |
Glycaemia (mg/dL) | 1.22 | 1.11–1.34 | <0.001 |
Total cholesterol (mg/dL) | 1.03 | 1.02–1.05 | <0.001 |
LDL (mg/dL) | 1.04 | 1.02–1.05 | <0.001 |
HDL (mg/dL) | 0.92 | 0.87–0.96 | <0.01 |
TG (mg/dL) | 1.01 | 1.00–1.02 | <0.05 |
Dopamine (μg/24 h) | 1.01 | 1.00–1.01 | <0.01 |
Norepinephrine (μg/24 h) | 1.12 | 1.06–1.18 | <0.001 |
Caffeine (μg/mL) | 3.23 | 1.35–7.74 | <0.01 |
Arousals (events/h) | 1.31 | 1.17–1.46 | <0.001 |
(a) Dysmetabolism model: | |||
DependentVariable = OSA Independent Variables | OR | IC95% | p Value |
Caffeine (μg/mL) | 3.05 | 0.587–15.87 | 0.185 |
BMI (kg m−2) | 2.71 | 1.38–5.31 | <0.01 |
Glycaemia (mg/dL) | 1.234 | 1.03–1.48 | <0.05 |
(b) Dyslipidaemia model: | |||
Dependent Variable = OSA Independent Variables | OR | IC95% | p Value |
Caffeine (μg/mL) | 6.93 | 0.79–61.18 | 0.081 |
TG (mg/dL) | 1.01 | 0.99–1.02 | 0.304 |
HDL-c (mg/dL) | 0.88 | 0.80–0.97 | <0.01 |
LDL-c (mg/dL) | 1.03 | 1.00–1.06 | <0.05 |
(c) SNS model: | |||
Dependent Variable = OSA Independent Variables | OR | IC95% | p Value |
Caffeine (μg/mL) | 11.28 | 1.29–98.66 | <0.05 |
Dopamine (μg/24 h) | 1.00 | 0.98–1.01 | 0.263 |
Norepinephrine (μg/24 h) | 1.14 | 1.06–1.23 | <0.01 |
(d) Sleep model: | |||
Dependent Variable = OSA Independent Variables | OR | IC95% | p Value |
Caffeine (μg/mL) | 1.77 | 0.58–5.45 | 0.318 |
Arousals (events/h) | 1.37 | 1.16–1.61 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conde, S.V.; Martins, F.O.; Dias, S.S.; Pinto, P.; Bárbara, C.; Monteiro, E.C. Dysmetabolism and Sleep Fragmentation in Obstructive Sleep Apnea Patients Run Independently of High Caffeine Consumption. Nutrients 2022, 14, 1382. https://doi.org/10.3390/nu14071382
Conde SV, Martins FO, Dias SS, Pinto P, Bárbara C, Monteiro EC. Dysmetabolism and Sleep Fragmentation in Obstructive Sleep Apnea Patients Run Independently of High Caffeine Consumption. Nutrients. 2022; 14(7):1382. https://doi.org/10.3390/nu14071382
Chicago/Turabian StyleConde, Sílvia V., Fátima O. Martins, Sara S. Dias, Paula Pinto, Cristina Bárbara, and Emília C. Monteiro. 2022. "Dysmetabolism and Sleep Fragmentation in Obstructive Sleep Apnea Patients Run Independently of High Caffeine Consumption" Nutrients 14, no. 7: 1382. https://doi.org/10.3390/nu14071382
APA StyleConde, S. V., Martins, F. O., Dias, S. S., Pinto, P., Bárbara, C., & Monteiro, E. C. (2022). Dysmetabolism and Sleep Fragmentation in Obstructive Sleep Apnea Patients Run Independently of High Caffeine Consumption. Nutrients, 14(7), 1382. https://doi.org/10.3390/nu14071382