Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease
Abstract
:1. Introduction to RBP4
2. RBP4 Secretion
2.1. Source of Circulating RBP4
2.2. Hepatic Retinoid Storage and Mobilization
3. RBP4 Receptors
4. Renal Filtration and Recycling of RBP4
5. RBP4: A Carrier for Non-Retinoid Ligands?
6. RBP4 in Health and Disease
6.1. RBP4 and Vision
6.2. RBP4 and Embryonic Development
6.3. RBP4 and Insulin Sensitivity
6.4. RBP4 and Adipose Tissue Lipolysis
6.5. RBP4 in Cardiovascular and Renal Diseases
6.6. RBP4 and Non-Shivering Thermogenesis during Cold Adaptation
6.7. RBP4 and Neuropathology
7. RBP4 as Therapeutic Target?
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCollum, E.V.; Davis, M. The necessity of certain lipids during growth. J. Biol. Chem. 1913, 15, 167–175. [Google Scholar] [CrossRef]
- Blaner, W.S. STRA6, a Cell-Surface Receptor for Retinol-Binding Protein: The Plot Thickens. Cell Metab. 2007, 5, 164–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaner, W.S.; Piantedosi, R.; Sykes, A.; Vogel, S. Retinoic Acid Synthesis and Metabolism. In Retinoids: The Biochemical and Molecular Basis of Vitamin A and Retinoid Action; Nau, H., Blaner, W.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 117–149. [Google Scholar]
- Morriss-Kay, G.M.; Sokolova, N. Embryonic development and pattern formation. FASEB J. 1996, 10, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Napoli, J.L. Biochemical Pathways of Retinoid Transport, Metabolism, and Signal Transduction. Clin. Immunol. Immunopathol. 1996, 80, S52–S62. [Google Scholar] [CrossRef] [PubMed]
- Kanai, M.; Raz, A.; Goodman, D.S. Retinol-binding protein: The transport protein for vitamin A in human plasma. J. Clin. Investig. 1968, 47, 2025–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rask, L.; Anundi, H.; Böhme, J.; Eriksson, U.; Fredriksson, A.; Nilsson, S.F.; Ronne, H.; Vahlquist, A.; Peterson, P.A. The retinol-binding protein. Scand. J. Clin. Lab. Investig. Suppl. 1980, 154, 45–61. [Google Scholar]
- Rask, L.; Anundi, H.; Fohlman, J.; Peterson, P.A. The Complete Amino Acid Sequence of Human Serum Retinol-binding Protein. Upsala J. Med. Sci. 1987, 92, 115–146. [Google Scholar] [CrossRef] [Green Version]
- Newcomer, M.; Jones, T.; Aqvist, J.; Sundelin, J.; Eriksson, U.; Rask, L.; Peterson, P. The three-dimensional structure of retinol-binding protein. EMBO J. 1984, 3, 1451–1454. [Google Scholar] [CrossRef]
- Pervaiz, S.; Brew, K. Homology and structure-function correlations between α1-acid glycoprotein and serum retinol-binding protein and its relatives. FASEB J. 1987, 1, 209–214. [Google Scholar] [CrossRef]
- Steinhoff, J.S.; Lass, A.; Schupp, M. Biological Functions of RBP4 and Its Relevance for Human Diseases. Front. Physiol. 2021, 12, 659977. [Google Scholar] [CrossRef]
- O’Byrne, S.M.; Blaner, W.S. Retinol and retinyl esters: Biochemistry and physiology. J. Lipid Res. 2013, 54, 1731–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaner, W.S. Retinol-Binding Protein: The Serum Transport Protein for Vitamin A. Endocr. Rev. 1989, 10, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Schreiber, G. Expression of retinol-binding protein mRNA in mammalian choroid plexus. Comp. Biochem. Physiol. Part B Comp. Biochem. 1992, 101, 399–406. [Google Scholar] [CrossRef]
- MacDonald, P.N.; Bok, D.; Ong, D.E. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human. Proc. Natl. Acad. Sci. USA 1990, 87, 4265–4269. [Google Scholar] [CrossRef] [Green Version]
- Soprano, D.R.; Blaner, W.S. Plasma retinol-binding protein. In The Retinoids: Biology, Chemistry, and Medicine; Sporn, M.B., Roberts, A.B., Goodman, D.S., Eds.; Raven Press: New York, NY, USA, 1994; pp. 675–676. [Google Scholar]
- Soprano, D.R.; Soprano, K.J.; Goodman, D.S. Retinol-binding protein messenger RNA levels in the liver and in extrahepatic tissues of the rat. J. Lipid Res. 1986, 27, 166–171. [Google Scholar] [CrossRef]
- Tsutsumi, C.; Okuno, M.; Tannous, L.; Piantedosi, R.; Allan, M.; Goodman, D.S.; Blaner, W.S. Retinoids and retinoid-binding protein expression in rat adipocytes. J. Biol. Chem. 1992, 267, 1805–1810. [Google Scholar] [CrossRef]
- Wu, C.; MacLeod, I.; Su, A.I. BioGPS and MyGene.info: Organizing online, gene-centric information. Nucleic Acids Res. 2012, 41, D561–D565. [Google Scholar] [CrossRef]
- Wu, C.; Orozco, C.; Boyer, J.; Leglise, M.; Goodale, J.; Batalov, S.; Hodge, C.L.; Haase, J.; Janes, J.; Huss, J.W.; et al. BioGPS: An extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 2009, 10, R130. [Google Scholar] [CrossRef]
- Colantuoni, V.; Pirozzi, A.; Blance, C.; Cortese, R. Negative control of liver-specific gene expression: Cloned human retinol-binding protein gene is repressed in HeLa cells. EMBO J. 1987, 6, 631–636. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Colantuoni, V.; Cortese, R. Structure and cell-specific expression of a cloned human retinol binding protein gene: The 5′-flanking region contains hepatoma specific transcriptional signals. EMBO J. 1985, 4, 1981–1989. [Google Scholar] [CrossRef]
- Bianconcini, A.; Lupo, A.; Capone, S.; Quadro, L.; Monti, M.; Zurlo, D.; Fucci, A.; Sabatino, L.; Brunetti, A.; Chiefari, E.; et al. Transcriptional activity of the murine retinol-binding protein gene is regulated by a multiprotein complex containing HMGA1, p54nrb/NonO, protein-associated splicing factor (PSF) and steroidogenic factor 1 (SF1)/liver receptor homologue 1 (LRH-1). Int. J. Biochem. Cell Biol. 2009, 41, 2189–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiefari, E.; Paonessa, F.; Iiritano, S.; Le Pera, I.; Palmieri, D.; Brunetti, G.; Lupo, A.; Colantuoni, V.; Foti, D.; Gulletta, E.; et al. The cAMP-HMGA1-RBP4 system: A novel biochemical pathway for modulating glucose homeostasis. BMC Biol. 2009, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessen, K.A.; Satre, M.A. Induction of Mouse Retinol Binding Protein Gene Expression by Cyclic AMP in Hepa 1–6 Cells. Arch. Biochem. Biophys. 1998, 357, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Kersten, S.; Seydoux, J.; Peters, J.M.; Gonzalez, F.J.; Desvergne, B.; Wahli, W. Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. J. Clin. Investig. 1999, 103, 1489–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smati, S.; Régnier, M.; Fougeray, T.; Polizzi, A.; Fougerat, A.; Lasserre, F.; Lukowicz, C.; Tramunt, B.; Guillaume, M.; Burnol, A.-F.; et al. Regulation of hepatokine gene expression in response to fasting and feeding: Influence of PPAR-α and insulin-dependent signalling in hepatocytes. Diabetes Metab. 2019, 46, 129–136. [Google Scholar] [CrossRef]
- Soprano, D.R.; Smith, J.E.; Goodman, D.S. Effect of retinol status on retinol-binding protein biosynthesis rate and translatable messenger RNA level in rat liver. J. Biol. Chem. 1982, 257, 7693–7697. [Google Scholar]
- Jessen, K.; Satre, M. Mouse retinol binding protein gene: Cloning, expression and regulation by retinoic acid. Mol. Cell. Biochem. 2000, 211, 85–94. [Google Scholar] [CrossRef]
- Mercader, J.; Granados, N.; Bonet, L.; Palou, A. All-Trans Retinoic Acid Decreases Murine Adipose Retinol Binding Protein 4 Production. Cell. Physiol. Biochem. 2008, 22, 363–372. [Google Scholar] [CrossRef]
- Welles, J.E.; Toro, A.L.; Sunilkumar, S.; Stevens, S.A.; Purnell, C.J.; Kimball, S.R.; Dennis, M.D. Retinol binding protein 4 (Rbp4) mRNA translation in hepatocytes is enhanced by activation of mTORC1. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E306–E315. [Google Scholar] [CrossRef]
- Jaconi, S.; Rose, K.; Hughes, G.; Saurat, J.; Siegenthaler, G. Characterization of two post-translationally processed forms of human serum retinol-binding protein: Altered ratios in chronic renal failure. J. Lipid Res. 1995, 36, 1247–1253. [Google Scholar] [CrossRef]
- Jaconi, S.; Saurat, J.-H.; Siegenthaler, G. Analysis of normal and truncated holo- and apo-retinol-binding protein (RBP) in human serum: Altered ratios in chronic renal failure. Eur. J. Endocrinol. 1996, 134, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Shirakami, Y.; Lee, S.-A.; Clugston, R.D.; Blaner, W.S. Hepatic metabolism of retinoids and disease associations. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2012, 1821, 124–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, S.J.; Sargsyan, A.; Lee, S.-A.; Yuen, J.J.; Cai, J.; Smalling, R.; Ghyselinck, N.; Mark, M.; Blaner, W.S.; Graham, T.E. Hepatocytes Are the Principal Source of Circulating RBP4 in Mice. Diabetes 2016, 66, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005, 436, 356–362. [Google Scholar] [CrossRef]
- Muoio, D.M.; Newgard, C.B. A is for adipokine. Nature 2005, 436, 337–338. [Google Scholar] [CrossRef]
- Tamori, Y.; Sakaue, H.; Kasuga, M. RBP4, an unexpected adipokine. Nat. Med. 2006, 12, 30–31. [Google Scholar] [CrossRef]
- Fedders, R.; Muenzner, M.; Weber, P.; Sommerfeld, M.; Knauer, M.; Kedziora, S.; Kast, N.; Heidenreich, S.; Raila, J.; Weger, S.; et al. Liver-secreted RBP4 does not impair glucose homeostasis in mice. J. Biol. Chem. 2018, 293, 15269–15276. [Google Scholar] [CrossRef] [Green Version]
- Muenzner, M.; Tuvia, N.; Deutschmann, C.; Witte, N.; Tolkachov, A.; Valai, A.; Henze, A.; Sander, L.E.; Raila, J.; Schupp, M. Retinol-Binding Protein 4 and Its Membrane Receptor STRA6 Control Adipogenesis by Regulating Cellular Retinoid Homeostasis and Retinoic Acid Receptor α Activity. Mol. Cell. Biol. 2013, 33, 4068–4082. [Google Scholar] [CrossRef] [Green Version]
- Yagmur, E.; Weiskirchen, R.; Gressner, A.M.; Trautwein, C.; Tacke, F. Insulin Resistance in Liver Cirrhosis is Not Associated with Circulating Retinol-Binding Protein 4. Diabetes Care 2007, 30, 1168–1172. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.; Weiskirchen, R.; Sanson, E.; Zimmermann, H.W.; Voigt, S.; Dückers, H.; Trautwein, C.; Tacke, F. Circulating retinol binding protein 4 in critically ill patients before specific treatment: Prognostic impact and correlation with organ function, metabolism and inflammation. Crit. Care 2010, 14, R179. [Google Scholar] [CrossRef] [Green Version]
- Langouche, L.; Perre, S.V.; Frystyk, J.; Flyvbjerg, A.; Hansen, T.K.; Berghe, G.V.D. Adiponectin, retinol-binding protein 4, and leptin in protracted critical illness of pulmonary origin. Crit. Care 2009, 13, R112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-A.; Yuen, J.J.; Jiang, H.; Kahn, B.B.; Blaner, W.S. Adipocyte-specific overexpression of retinol-binding protein 4 causes hepatic steatosis in mice. Hepatology 2016, 64, 1534–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Lai, K.; Patel, S.; Piantedosi, R.; Shen, H.; Colantuoni, V.; Kraemer, F.; Blaner, W.S. Retinyl Ester Hydrolysis and Retinol Efflux from BFC-1β Adipocytes. J. Biol. Chem. 1997, 272, 14159–14165. [Google Scholar] [CrossRef] [Green Version]
- Quadro, L.; Blaner, W.S.; Hamberger, L.; Van Gelder, R.N.; Vogel, S.; Piantedosi, R.; Gouras, P.; Colantuoni, V.; Gottesman, M.E. Muscle Expression of Human Retinol-binding Protein (RBP). J. Biol. Chem. 2002, 277, 30191–30197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quadro, L.; Blaner, W.S.; Hamberger, L.; Novikoff, P.M.; Vogel, S.; Piantedosi, R.; Gottesman, M.E.; Colantuoni, V. The role of extrahepatic retinol binding protein in the mobilization of retinoid stores. J. Lipid Res. 2004, 45, 1975–1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amengual, J.; Zhang, N.; Kemerer, M.; Maeda, T.; Palczewski, K.; von Lintig, J. STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum. Mol. Genet. 2014, 23, 5402–5417. [Google Scholar] [CrossRef] [PubMed]
- Goodman, D.W.; Huang, H.S.; Shiratori, T. Tissue Distribution and Metabolsim of Newly Absorbed Vitamin A in the Rat. J. Lipid Res. 1965, 6, 390–396. [Google Scholar] [CrossRef]
- Vogel, S.; Gamble, M.V.; Blaner, W.S. Biosynthesis, Absorption, Metabolism and Transport of Retinoids. In Retinoids: The Biochemical and Molecular Basis of Vitamin A and Retinoid Action; Nau, H., Blaner, W.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 31–95. [Google Scholar]
- Blaner, W.; Obunike, J.; Kurlandsky, S.; Al-Haideri, M.; Piantedosi, R.; Deckelbaum, R.; Goldberg, I. Lipoprotein lipase hydrolysis of retinyl ester. Possible implications for retinoid uptake by cells. J. Biol. Chem. 1994, 269, 16559–16565. [Google Scholar] [CrossRef]
- Quadro, L.; Hamberger, L.; Gottesman, M.E.; Colantuoni, V.; Ramakrishnan, R.; Blaner, W.S. Transplacental delivery of retinoid: The role of retinol-binding protein and lipoprotein retinyl ester. Am. J. Physiol. Metab. 2004, 286, E844–E851. [Google Scholar] [CrossRef]
- Kane, M.A.; Folias, A.E.; Napoli, J.L. HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal. Biochem. 2008, 378, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Blaner, W.S.; Soprano, D.R.; Dixon, J.L.; Kjeldbye, H.M.; Goodman, D.S. Biochemical characteristics of isolated rat liver stellate cells. Hepatology 1987, 7, 1224–1229. [Google Scholar] [CrossRef] [PubMed]
- Quadro, L.; Blaner, W.S.; Salchow, D.J.; Vogel, S.; Piantedosi, R.; Gouras, P.; Freeman, S.; Cosma, M.P.; Colantuoni, V.; Gottesman, M.E. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 1999, 18, 4633–4644. [Google Scholar] [CrossRef] [PubMed]
- Ghyselinck, N.B.; Bavik, C.; Sapin, V.; Mark, M.; Bonnier, M.; Hindelang, C.; Dierich, A.; Nilsson, C.B.; Håkansson, H.; Sauvant, P.; et al. Cellular retinol-binding protein I is essential for vitamin A homeostasis. EMBO J. 1999, 18, 4903–4914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batten, M.L.; Imanishi, Y.; Maeda, T.; Tu, D.C.; Moise, A.; Bronson, D.; Possin, D.; Van Gelder, R.; Baehr, W.; Palczewski, K. Lecithin-retinol Acyltransferase Is Essential for Accumulation of All-trans-Retinyl Esters in the Eye and in the Liver. J. Biol. Chem. 2004, 279, 10422–10432. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Gudas, L.J. Disruption of the Lecithin: Retinol Acyltransferase Gene Makes Mice More Susceptible to Vitamin A Deficiency. J. Biol. Chem. 2005, 280, 40226–40234. [Google Scholar] [CrossRef] [Green Version]
- O’Byrne, S.M.; Wongsiriroj, N.; Libien, J.M.; Vogel, S.; Goldberg, I.J.; Baehr, W.; Palczewski, K.; Blaner, W.S. Retinoid absorption and storage is impaired in mice lacking lecithin: Retinol acyltransferase (LRAT). J. Biol. Chem. 2005, 280, 35647–35657. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, A.; Winston, A.; Lim, Y.-H.; Gilbert, B.A.; Rando, R.R.; Bok, D. Molecular and Biochemical Characterization of Lecithin Retinol Acyltransferase. J. Biol. Chem. 1999, 274, 3834–3841. [Google Scholar] [CrossRef] [Green Version]
- Haemmerle, G.; Lass, A. Genetically modified mouse models to study hepatic neutral lipid mobilization. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2018, 1865, 879–894. [Google Scholar] [CrossRef]
- Wagner, C.; Hois, V.; Pajed, L.; Pusch, L.-M.; Wolinski, H.; Trauner, M.; Zimmermann, R.; Taschler, U.; Lass, A. Lysosomal acid lipase is the major acid retinyl ester hydrolase in cultured human hepatic stellate cells but not essential for retinyl ester degradation. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2020, 1865, 158730. [Google Scholar] [CrossRef]
- Bellovino, D.; Lanyau, Y.; Garaguso, I.; Amicone, L.; Cavallari, C.; Tripodi, M.; Gaetani, S. MMH cells: An in vitro model for the study of retinol-binding protein secretion regulated by retinol. J. Cell. Physiol. 1999, 181, 24–32. [Google Scholar] [CrossRef]
- Dixon, J.L.; Goodman, D.S. Studies on the metabolism of retinol-binding protein by primary hepatocytes from retinol-deficient rats. J. Cell. Physiol. 1987, 130, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Muto, Y.; Goodman, D. Tissue distribution and subcellular localization of retinol-binding protein in normal and vitamin A-deficient rats. J. Lipid Res. 1975, 16, 318–323. [Google Scholar] [CrossRef]
- Monaco, H.L.; Rizzi, M.; Coda, A. Structure of a complex of two plasma proteins: Transthyretin and retinol-binding protein. Science 1995, 268, 1039–1041. [Google Scholar] [CrossRef]
- Naylor, H.M.; Newcomer, M.E. The Structure of Human Retinol-Binding Protein (RBP) with Its Carrier Protein Transthyretin Reveals an Interaction with the Carboxy Terminus of RBP. Biochemistry 1999, 38, 2647–2653. [Google Scholar] [CrossRef] [PubMed]
- Bellovino, D.; Morimoto, T.; Tosetti, F.; Gaetani, S. Retinol Binding Protein and Transthyretin Are Secreted as a Complex Formed in the Endoplasmic Reticulum in HepG2 Human Hepatocarcinoma Cells. Exp. Cell Res. 1996, 222, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Van Bennekum, A.M.; Wei, S.; Gamble, M.V.; Vogel, S.; Piantedosi, R.; Gottesman, M.; Episkopou, V.; Blaner, W.S. Biochemical Basis for Depressed Serum Retinol Levels in Transthyretin-deficient Mice. J. Biol. Chem. 2001, 276, 1107–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingbar, S.H. Observations concerning the binding of thyroid hormones by human serum prealbumin. J. Clin. Investig. 1963, 42, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Episkopou, V.; Piantedosi, R.; Maeda, S.; Shimada, K.; Gottesman, M.E.; Blaner, W.S. Studies on the Metabolism of Retinol and Retinol-binding Protein in Transthyretin-deficient Mice Produced by Homologous Recombination. J. Biol. Chem. 1995, 270, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Krasinski, S.D.; Cohn, J.S.; Russell, R.M.; Schaefer, E.J. Postprandial plasma vitamin A metabolism in humans: A reassessment of the use of plasma retinyl esters as markers for intestinally derived chylomicrons and their remnants. Metabolism 1990, 39, 357–365. [Google Scholar] [CrossRef]
- Quadro, L.; Hamberger, L.; Gottesman, M.E.; Wang, F.; Colantuoni, V.; Blaner, W.S.; Mendelsohn, C.L. Pathways of Vitamin A Delivery to the Embryo: Insights from a New Tunable Model of Embryonic Vitamin A Deficiency. Endocrinology 2005, 146, 4479–4490. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, R.; Yu, J.; Honda, J.; Hu, J.; Whitelegge, J.; Ping, P.; Wiita, P.; Bok, D.; Sun, H. A Membrane Receptor for Retinol Binding Protein Mediates Cellular Uptake of Vitamin A. Science 2007, 315, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Taneja, R.; Bouillet, P.; Boylan, J.F.; Gaub, M.P.; Roy, B.; Gudas, L.J.; Chambon, P. Reexpression of retinoic acid receptor (RAR) gamma or overexpression of RAR alpha or RAR beta in RAR gamma-null F9 cells reveals a partial functional redundancy between the three RAR types. Proc. Natl. Acad. Sci. USA 1995, 92, 7854–7858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouillet, P.; Sapin, V.; Chazaud, C.; Messaddeq, N.; Décimo, D.; Dollé, P.; Chambon, P. Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. Mech. Dev. 1997, 63, 173–186. [Google Scholar] [CrossRef]
- Kawaguchi, R.; Yu, J.; Wiita, P.; Honda, J.; Sun, H. An Essential Ligand-binding Domain in the Membrane Receptor for Retinol-binding Protein Revealed by Large-scale Mutagenesis and a Human Polymorphism. J. Biol. Chem. 2008, 283, 15160–15168. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Clarke, O.B.; Kim, J.; Stowe, S.; Kim, Y.-K.; Assur, Z.; Cavalier, M.; Godoy-Ruiz, R.; von Alpen, D.C.; Manzini, C.; et al. Structure of the STRA6 receptor for retinol uptake. Science 2016, 353, 887. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, R.; Yu, J.; Ter-Stepanian, M.; Zhong, M.; Cheng, G.; Yuan, Q.; Jin, M.; Travis, G.H.; Ong, D.; Sun, H. Receptor-Mediated Cellular Uptake Mechanism That Couples to Intracellular Storage. ACS Chem. Biol. 2011, 6, 1041–1051. [Google Scholar] [CrossRef] [Green Version]
- Isken, A.; Golczak, M.; Oberhauser, V.; Hunzelmann, S.; Driever, W.; Imanishi, Y.; Palczewski, K.; von Lintig, J. RBP4 Disrupts Vitamin A Uptake Homeostasis in a STRA6-Deficient Animal Model for Matthew-Wood Syndrome. Cell Metab. 2008, 7, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.; Kawaguchi, R.; Costabile, B.; Tang, Y.; Hu, J.; Cheng, G.; Kassai, M.; Ribalet, B.; Mancia, F.; Bok, D.; et al. Regulatory mechanism for the transmembrane receptor that mediates bidirectional vitamin A transport. Proc. Natl. Acad. Sci. USA 2020, 117, 9857–9864. [Google Scholar] [CrossRef]
- Ruiz, A.; Mark, M.; Jacobs, H.; Klopfenstein, M.; Hu, J.; Lloyd, M.; Habib, S.; Tosha, C.; A Radu, R.; Ghyselinck, N.B.; et al. Retinoid Content, Visual Responses, and Ocular Morphology Are Compromised in the Retinas of Mice Lacking the Retinol-Binding Protein Receptor, STRA6. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3027–3039. [Google Scholar] [CrossRef]
- Kawaguchi, R.; Zhong, M.; Kassai, M.; Ter-Stepanian, M.; Sun, H. STRA6-Catalyzed Vitamin A Influx, Efflux, and Exchange. J. Membr. Biol. 2012, 245, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Chassaing, N.; Golzio, C.; Odent, S.; Lequeux, L.; Vigouroux, A.; Martinovic-Bouriel, J.; Tiziano, F.D.; Masini, L.; Piro, F.; Maragliano, G.; et al. Phenotypic spectrum ofSTRA6mutations: From Matthew-Wood syndrome to non-lethal anophthalmia. Hum. Mutat. 2009, 30, E673–E681. [Google Scholar] [CrossRef] [PubMed]
- Golzio, C.; Martinovic-Bouriel, J.; Thomas, S.; Mougou-Zrelli, S.; Grattagliano-Bessières, B.; Bonnière, M.; Delahaye, S.; Munnich, A.; Encha-Razavi, F.; Lyonnet, S.; et al. Matthew-Wood Syndrome Is Caused by Truncating Mutations in the Retinol-Binding Protein Receptor Gene STRA6. Am. J. Hum. Genet. 2007, 80, 1179–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasutto, F.; Sticht, H.; Hammersen, G.; Gillessen-Kaesbach, G.; FitzPatrick, D.R.; Nürnberg, G.; Brasch, F.; Schirmer-Zimmermann, H.; Tolmie, J.L.; Chitayat, D.; et al. Mutations in STRA6 Cause a Broad Spectrum of Malformations Including Anophthalmia, Congenital Heart Defects, Diaphragmatic Hernia, Alveolar Capillary Dysplasia, Lung Hypoplasia, and Mental Retardation. Am. J. Hum. Genet. 2007, 80, 550–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alapatt, P.; Guo, F.; Komanetsky, S.M.; Wang, S.; Cai, J.; Sargsyan, A.; Diaz, E.; Bacon, B.; Aryal, P.; Graham, T.E. Liver Retinol Transporter and Receptor for Serum Retinol-binding Protein (RBP4). J. Biol. Chem. 2013, 288, 1250–1265. [Google Scholar] [CrossRef] [Green Version]
- Lobo, G.P.; Pauer, G.; Lipschutz, J.H.; Hagstrom, S.A. The Retinol-Binding Protein Receptor 2 (Rbpr2) Is Required for Photoreceptor Survival and Visual Function in the Zebrafish. Adv. Exp. Med. Biol. 2018, 1074, 569–576. [Google Scholar] [CrossRef]
- Shi, Y.; Obert, E.; Rahman, B.; Rohrer, B.; Lobo, G.P. The Retinol Binding Protein Receptor 2 (Rbpr2) is required for Photoreceptor Outer Segment Morphogenesis and Visual Function in Zebrafish. Sci. Rep. 2017, 7, 16207. [Google Scholar] [CrossRef] [Green Version]
- Solanki, A.K.; Kondkar, A.A.; Fogerty, J.; Su, Y.; Kim, S.-H.; Lipschutz, J.H.; Nihalani, D.; Perkins, B.D.; Lobo, G.P. A Functional Binding Domain in the Rbpr2 Receptor Is Required for Vitamin A Transport, Ocular Retinoid Homeostasis, and Photoreceptor Cell Survival in Zebrafish. Cells 2020, 9, 1099. [Google Scholar] [CrossRef]
- Berry, D.C.; Jacobs, H.; Marwarha, G.; Gely-Pernot, A.; O’Byrne, S.M.; DeSantis, D.; Klopfenstein, M.; Feret, B.; Dennefeld, C.; Blaner, W.S.; et al. The STRA6 Receptor Is Essential for Retinol-binding Protein-induced Insulin Resistance but Not for Maintaining Vitamin A Homeostasis in Tissues Other Than the Eye. J. Biol. Chem. 2013, 288, 24528–24539. [Google Scholar] [CrossRef] [Green Version]
- Christensen, E.I.; Moskaug, J.; Vorum, H.; Jacobsen, C.; Gundersen, T.E.; Nykjaer, A.; Blomhoff, R.; Willnow, T.; Moestrup, S.K. Evidence for an Essential Role of Megalin in Transepithelial Transport of Retinol. J. Am. Soc. Nephrol. 1999, 10, 685–695. [Google Scholar] [CrossRef]
- Raila, J.; Willnow, T.; Schweigert, F. Megalin-Mediated Reuptake of Retinol in the Kidneys of Mice Is Essential for Vitamin A Homeostasis. J. Nutr. 2005, 135, 2512–2516. [Google Scholar] [CrossRef] [Green Version]
- Bonventre, J.V.; Vaidya, V.S.; Schmouder, R.; Feig, P.; Dieterle, F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 2010, 28, 436–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanao, M.; Mercer, D.; Nguyen, L.; Buckley, D.; Stout, T.J. Crystal Structure of Rbp4 Bound to Oleic Acid. Protein Data Bank. 2010. Available online: https://www.rcsb.org/structure/2wq9 (accessed on 14 February 2022).
- Huang, H.J.; Nanao, M.; Stout, T.; Rosen, J. Identification of a Non-Retinoid Compound and Fatty Acids as Ligands for Retinol Binding Protein 4 and Their Implications in Diabetes. Protein Data Bank. 2010. Available online: https://www.rcsb.org/structure/2wr6 (accessed on 14 February 2022).
- Perduca, M.; Nicolis, S.; Mannucci, B.; Galliano, M.; Monaco, H.L. Human plasma retinol-binding protein (RBP4) is also a fatty acid-binding protein. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2018, 1863, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, C.L.; Racz, B.; Varadi, A.; Freeman, E.; Conlon, M.P.; Chen, P.; Zhu, L.; Kitchen, D.B.; Barnes, K.; Martin, W.; et al. Design, Synthesis, and Pre-Clinical Efficacy of Novel Non-Retinoid Antagonists of Retinol Binding Protein 4 in the Mouse Model of Hepatic Steatosis. J. Med. Chem. 2019, 62, 5470–5500. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, J.; Roberts, A.; Adame, A.; Masliah, E. Silencing of murine transthyretin and retinol binding protein genes has distinct and shared behavioral and neuropathologic effects. Neuroscience 2014, 275, 352–364. [Google Scholar] [CrossRef]
- Kraus, B.J.; Sartoretto, J.L.; Polak, P.; Hosooka, T.; Shiroto, T.; Eskurza, I.; Lee, S.-A.; Jiang, H.; Michel, T.; Kahn, B.B. Novel role for retinol-binding protein 4 in the regulation of blood pressure. FASEB J. 2015, 29, 3133–3140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Shen, X.; Wang, M.; Wang, L.; Sun, H.; Li, X.; Huang, J.; Li, X.; Wu, C.; Zhao, C.; et al. Retinol-Binding Protein 4 Promotes Cardiac Injury After Myocardial Infarction Via Inducing Cardiomyocyte Pyroptosis Through an Interaction With NLRP3. J. Am. Hear. Assoc. 2021, 10, e022011. [Google Scholar] [CrossRef]
- Fenzl, A.; Kulterer, O.C.; Spirk, K.; Mitulović, G.; Marculescu, R.; Bilban, M.; Baumgartner-Parzer, S.; Kautzky-Willer, A.; Kenner, L.; Plutzky, J.; et al. Intact vitamin A transport is critical for cold-mediated adipose tissue browning and thermogenesis. Mol. Metab. 2020, 42, 101088. [Google Scholar] [CrossRef]
- Wendler, C.C.; Schmoldt, A.; Flentke, G.R.; Case, L.C.; Quadro, L.; Blaner, W.S.; Lough, J.; Smith, S.M. Increased Fibronectin Deposition in Embryonic Hearts of Retinol-Binding Protein–Null Mice. Circ. Res. 2003, 92, 920–928. [Google Scholar] [CrossRef]
- Cukras, C.; Gaasterland, T.; Lee, P.; Gudiseva, H.V.; Chavali, V.R.M.; Pullakhandam, R.; Maranhao, B.; Edsall, L.E.; Soares, S.; Reddy, G.B.; et al. Exome Analysis Identified a Novel Mutation in the RBP4 Gene in a Consanguineous Pedigree with Retinal Dystrophy and Developmental Abnormalities. PLoS ONE 2012, 7, e50205. [Google Scholar] [CrossRef]
- Motani, A.; Wang, Z.; Conn, M.; Siegler, K.; Zhang, Y.; Liu, Q.; Johnstone, S.; Xu, H.; Thibault, S.; Wang, Y.; et al. Identification and Characterization of a Non-retinoid Ligand for Retinol-binding Protein 4 Which Lowers Serum Retinol-binding Protein 4 Levels in Vivo. J. Biol. Chem. 2009, 284, 7673–7680. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Otalora, L.; Martin, A.A.; Moiseyev, G.; Vanlandingham, P.; Wang, Q.; Farjo, R.; Yeganeh, A.; Quiambao, A.; Farjo, K.M. Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism. Mol. Cell. Biol. 2015, 35, 2771–2789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes-Vieira, P.M.; Castoldi, A.; Aryal, P.; Wellenstein, K.; Peroni, O.D.; Kahn, B.B. Antigen Presentation and T-Cell Activation Are Critical for RBP4-Induced Insulin Resistance. Diabetes 2016, 65, 1317–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes-Vieira, P.M.; Yore, M.M.; Sontheimer-Phelps, A.; Castoldi, A.; Norseen, J.; Aryal, P.; Sjödin, K.S.; Kahn, B.B. Retinol binding protein 4 primes the NLRP3 inflammasome by signaling through Toll-like receptors 2 and 4. Proc. Natl. Acad. Sci. USA 2020, 117, 31309–31318. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Bai, X.; Li, X.; Wang, X.; Zhao, L. Retinol-Binding Protein 4 Activates STRA6, Provoking Pancreatic β-Cell Dysfunction in Type 2 Diabetes. Diabetes 2020, 70, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Shi, D.; Suzuki, T.; Xia, Z.; Zhang, H.; Araki, K.; Wakana, S.; Takeda, N.; Yamamura, K.-I.; Jin, S.; et al. Severe ocular phenotypes in Rbp4-deficient mice in the C57BL/6 genetic background. Lab. Investig. 2016, 96, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Suzuki, T.; Shen, J.; Wakana, S.; Araki, K.; Yamamura, K.-I.; Lei, L.; Li, Z. Rescue of retinal morphology and function in a humanized mouse at the mouse retinol-binding protein locus. Lab. Investig. 2017, 97, 395–408. [Google Scholar] [CrossRef]
- Seeliger, M.W.; Biesalski, H.K.; Wissinger, B.; Gollnick, H.; Gielen, S.; Frank, J.; Beck, S.; Zrenner, E. Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. Investig. Ophthalmol. Vis. Sci. 1999, 40, 3–11. [Google Scholar]
- Chou, C.M.; Nelson, C.; Tarlé, S.A.; Pribila, J.T.; Bardakjian, T.; Woods, S.; Schneider, A.; Glaser, T. Biochemical Basis for Dominant Inheritance, Variable Penetrance, and Maternal Effects in RBP4 Congenital Eye Disease. Cell 2015, 161, 634–646. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.N.; Carss, K.; Raymond, F.L.; Islam, F.; Cons, N.B.-R.D.; Moore, A.T.; Michaelides, M.; Arno, G. Vitamin A deficiency due to bi-allelic mutation of RBP4: There’s more to it than meets the eye. Ophthalmic Genet. 2016, 38, 465–466. [Google Scholar] [CrossRef]
- Biesalski, H.K.; Frank, J.; Beck, S.C.; Heinrich, F.; Illek, B.; Reifen, R.; Gollnick, H.; Seeliger, M.W.; Wissinger, B.; Zrenner, E. Biochemical but not clinical vitamin A deficiency results from mutations in the gene for retinol binding protein. Am. J. Clin. Nutr. 1999, 69, 931–936. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Jasani, K.M.; Shanks, M.; Clouston, P.; MacLaren, R.E. A novel homozygous c.67C>T variant in retinol binding protein 4 (RBP4) associated with retinitis pigmentosa and childhood acne vulgaris. Ophthalmic Genet. 2020, 41, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Blegvad, O. Xerophthalmia, Keratomalacia and Xerosis Conjunctivae. Am. J. Ophthalmol. 1924, 7, 89–117. [Google Scholar] [CrossRef]
- Pirie, A. Vitamin A deficiency and child blindness in the developing world. Proc. Nutr. Soc. 1983, 42, 53–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, S.; Piantedosi, R.; O’Byrne, S.M.; Kako, Y.; Quadro, L.; Gottesman, M.E.; Goldberg, I.J.; Blaner, W.S. Retinol-Binding Protein-Deficient Mice: Biochemical Basis for Impaired Vision. Biochemistry 2002, 41, 15360–15368. [Google Scholar] [CrossRef] [PubMed]
- Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.A.; Motoshima, H.; Fox, B.A.; Le Trong, I.; Teller, D.C.; Okada, T.; Stenkamp, R.E.; et al. Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor. Science 2000, 289, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Phelps, E.; Balangue, M.J.; Dockins, A.; Moiseyev, G.; Shin, Y.; Kane, S.; Otalora, L.; Ma, J.-X.; Farjo, R.; et al. Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4375–4383. [Google Scholar] [CrossRef] [Green Version]
- Ask, N.M.; Leung, M.; Radhakrishnan, R.; Lobo, G.P. Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye. Nutrients 2021, 13, 3987. [Google Scholar] [CrossRef]
- Ramkumar, S.; Parmar, V.M.; Samuels, I.; Berger, N.A.; Jastrzebska, B.; von Lintig, J. The vitamin a transporter STRA6 adjusts the stoichiometry of chromophore and opsins in visual pigment synthesis and recycling. Hum. Mol. Genet. 2022, 31, 548–560. [Google Scholar] [CrossRef]
- Folli, C.; Viglione, S.; Busconi, M.; Berni, R. Biochemical basis for retinol deficiency induced by the I41N and G75D mutations in human plasma retinol-binding protein. Biochem. Biophys. Res. Commun. 2005, 336, 1017–1022. [Google Scholar] [CrossRef]
- Zhong, M.; Kawaguchi, R.; Kassai, M.; Sun, H. How Free Retinol Behaves Differently from RBP-Bound Retinol in RBP Receptor-Mediated Vitamin A Uptake. Mol. Cell. Biol. 2014, 34, 2108–2110. [Google Scholar] [CrossRef] [Green Version]
- Petkovich, M.; Brand, N.J.; Krust, A.; Chambon, P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 1987, 330, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Heyman, R.A.; Mangelsdorf, D.; Dyck, J.A.; Stein, R.B.; Eichele, G.; Evans, R.; Thaller, C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 1992, 68, 397–406. [Google Scholar] [CrossRef]
- Levin, A.A.; Sturzenbecker, L.J.; Kazmer, S.; Bosakowski, T.; Huselton, C.; Allenby, G.; Speck, J.; Ratzeisen, C.; Rosenberger, M.; Lovey, A.; et al. 9-Cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα. Nature 1992, 355, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Rühl, R.; Krzyżosiak, A.; Niewiadomska-Cimicka, A.; Rochel, N.; Szeles, L.; Vaz, B.; Wietrzych-Schindler, M.; Álvarez, S.; Szklenar, M.; Nagy, L.; et al. 9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice. PLoS Genet. 2015, 11, e1005213. [Google Scholar] [CrossRef] [Green Version]
- Mark, M.; Ghyselinck, N.B.; Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl. Recept. Signal. 2009, 7, e002. [Google Scholar] [CrossRef] [Green Version]
- Nau, H. Teratogenicity of isotretinoin revisited: Species variation and the role of all-trans-retinoic acid. J. Am. Acad. Dermatol. 2001, 45, S183–S187. [Google Scholar] [CrossRef]
- Abahusain, M.A.; Wright, J.; Dickerson, J.; De Vol, E.B. Retinol, α-tocopherol and carotenoids in diabetes. Eur. J. Clin. Nutr. 1999, 53, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Basualdo, C.G.; Wein, E.E.; Basu, T.K. Vitamin A (retinol) status of first nation adults with non-insulin-dependent diabetes mellitus. J. Am. Coll. Nutr. 1997, 16, 39–45. [Google Scholar] [CrossRef]
- Klöting, N.; Graham, T.E.; Berndt, J.; Kralisch, S.; Kovacs, P.; Wason, C.J.; Fasshauer, M.; Schön, M.; Stumvoll, M.; Blüher, M.; et al. Serum Retinol-Binding Protein Is More Highly Expressed in Visceral than in Subcutaneous Adipose Tissue and Is a Marker of Intra-abdominal Fat Mass. Cell Metab. 2007, 6, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Graham, T.E.; Yang, Q.; Blüher, M.; Hammarstedt, A.; Ciaraldi, T.P.; Henry, R.R.; Wason, C.J.; Oberbach, A.; Jansson, P.-A.; Smith, U.; et al. Retinol-Binding Protein 4 and Insulin Resistance in Lean, Obese, and Diabetic Subjects. N. Engl. J. Med. 2006, 354, 2552–2563. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Loos, R.; Qi, Q.; Hu, F.B.; Liu, Y.; Lin, X. RBP4 variants are significantly associated with plasma RBP4 levels and hypertriglyceridemia risk in Chinese Hans. J. Lipid Res. 2009, 50, 1479–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, J.; Loredo-Osti, J.C.; Sun, G. Association of RBP4 Gene Variants and Serum HDL Cholesterol Levels in the Newfoundland Population. Obesity 2010, 18, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Ma, S.; Li, X.; Tian, Z.; Liang, H.; Yan, J.; Chen, M.; Tan, H. Relationships of SLC2A4, RBP4, PCK1, and PI3K Gene Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population. BioMed Res. Int. 2019, 2019, 7398063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munkhtulga, L.; Nagashima, S.; Nakayama, K.; Utsumi, N.; Yanagisawa, Y.; Gotoh, T.; Omi, T.; Kumada, M.; Zolzaya, K.; Lkhagvasuren, T.; et al. Regulatory SNP in theRBP4Gene Modified the Expression in Adipocytes and Associated With BMI. Obesity 2010, 18, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, P.; Geyer, M.; Berndt, J.; Klöting, N.; Graham, T.E.; Böttcher, Y.; Enigk, B.; Tönjes, A.; Schleinitz, D.; Schön, M.R.; et al. Effects of Genetic Variation in the Human Retinol Binding Protein-4 Gene (RBP4) on Insulin Resistance and Fat Depot–Specific mRNA Expression. Diabetes 2007, 56, 3095–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, R.L.; Chu, W.S.; Elbein, S.C. Retinol binding protein 4 as a candidate gene for type 2 diabetes and prediabetic intermediate traits. Mol. Genet. Metab. 2007, 90, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munkhtulga, L.; Nakayama, K.; Utsumi, N.; Yanagisawa, Y.; Gotoh, T.; Omi, T.; Kumada, M.; Erdenebulgan, B.; Zolzaya, K.; Lkhagvasuren, T.; et al. Identification of a regulatory SNP in the retinol binding protein 4 gene associated with type 2 diabetes in Mongolia. Qual. Life Res. 2006, 120, 879–888. [Google Scholar] [CrossRef]
- Van Hoek, M.; Dehghan, A.; Zillikens, M.C.; Hofman, A.; Witteman, J.C.; Sijbrands, E.J.G. An RBP4 promoter polymorphism increases risk of type 2 diabetes. Diabetologia 2008, 51, 1423–1428. [Google Scholar] [CrossRef] [Green Version]
- Fedders, R.; Muenzner, M.; Schupp, M. Retinol binding protein 4 and its membrane receptors: A metabolic perspective. Horm. Mol. Biol. Clin. Investig. 2015, 22, 27–37. [Google Scholar] [CrossRef]
- Moraes-Vieira, P.; Yore, M.M.; Dwyer, P.M.; Syed, I.; Aryal, P.; Kahn, B.B. RBP4 Activates Antigen-Presenting Cells, Leading to Adipose Tissue Inflammation and Systemic Insulin Resistance. Cell Metab. 2014, 19, 512–526. [Google Scholar] [CrossRef] [Green Version]
- Norseen, J.; Hosooka, T.; Hammarstedt, A.; Yore, M.M.; Kant, S.; Aryal, P.; Kiernan, U.A.; Phillips, D.A.; Maruyama, H.; Kraus, B.J.; et al. Retinol-Binding Protein 4 Inhibits Insulin Signaling in Adipocytes by Inducing Proinflammatory Cytokines in Macrophages through a c-Jun N-Terminal Kinase- and Toll-Like Receptor 4-Dependent and Retinol-Independent Mechanism. Mol. Cell. Biol. 2012, 32, 2010–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, D.C.; Jin, H.; Majumdar, A.; Noy, N. Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses. Proc. Natl. Acad. Sci. USA 2011, 108, 4340–4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, D.C.; O’Byrne, S.M.; Vreeland, A.C.; Blaner, W.S.; Noy, N. Cross Talk between Signaling and Vitamin A Transport by the Retinol-Binding Protein Receptor STRA6. Mol. Cell. Biol. 2012, 32, 3164–3175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, D.C.; Croniger, C.M.; Ghyselinck, N.; Noy, N. Transthyretin Blocks Retinol Uptake and Cell Signaling by the Holo-Retinol-Binding Protein Receptor STRA6. Mol. Cell. Biol. 2012, 32, 3851–3859. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Nie, C.; Xue, L.; Yan, Y.; Liu, S.; Sun, J.; Fan, M.; Qian, H.; Ying, H.; Wang, L.; et al. Growth hormone receptor disrupts glucose homeostasis via promoting and stabilizing retinol binding protein 4. Theranostics 2021, 11, 8283–8300. [Google Scholar] [CrossRef]
- Janke, J.; Engeli, S.; Boschmann, M.; Adams, F.; Böhnke, J.; Luft, F.C.; Sharma, A.M.; Jordan, J. Retinol-Binding Protein 4 in Human Obesity. Diabetes 2006, 55, 2805–2810. [Google Scholar] [CrossRef] [Green Version]
- Raila, J.; Henze, A.; Spranger, J.; Möhlig, M.; Pfeiffer, A.; Schweigert, F. Microalbuminuria is a major determinant of elevated plasma retinol-binding protein 4 in type 2 diabetic patients. Kidney Int. 2007, 72, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Henze, A.; Frey, S.K.; Raila, J.; Tepel, M.; Scholze, A.; Pfeiffer, A.F.H.; Weickert, M.O.; Spranger, J.; Schweigert, F.J. Evidence That Kidney Function but Not Type 2 Diabetes Determines Retinol-Binding Protein 4 Serum Levels. Diabetes 2008, 57, 3323–3326. [Google Scholar] [CrossRef] [Green Version]
- Kilicarslan, M.; de Weijer, B.A.; Sjödin, K.S.; Aryal, P.; ter Horst, K.W.; Cakir, H.; Romijn, J.A.; Ackermans, M.T.; Janssen, I.M.; Berends, F.J.; et al. RBP4 increases lipolysis in human adipocytes and is associated with increased lipolysis and hepatic insulin resistance in obese women. FASEB J. 2020, 34, 6099–6110. [Google Scholar] [CrossRef] [Green Version]
- Paar, M.; Jüngst, C.; Steiner, N.A.; Magnes, C.; Sinner, F.; Kolb, D.; Lass, A.; Zimmermann, R.; Zumbusch, A.; Kohlwein, S.D.; et al. Remodeling of Lipid Droplets during Lipolysis and Growth in Adipocytes. J. Biol. Chem. 2012, 287, 11164–11173. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhu, S.; Song, G.; Zhang, K.; Gao, W.; Huang, J.; Lu, X. Retinol-binding protein 4 is closely correlated to blood pressure level and E/A in untreated essential hypertension patients. Ann. Palliat. Med. 2019, 8, 645–650. [Google Scholar] [CrossRef]
- Meisinger, C.; Rückert, I.M.; Rathmann, W.; Döring, A.; Thorand, B.; Huth, C.; Kowall, B.; Koenig, W. Retinol-Binding Protein 4 Is Associated With Prediabetes in Adults From the General Population. Diabetes Care 2011, 34, 1648–1650. [Google Scholar] [CrossRef] [Green Version]
- Solini, A.; Santini, E.; Madec, S.; Rossi, C.; Muscelli, E. Retinol-Binding Protein-4 in Women With Untreated Essential Hypertension. Am. J. Hypertens. 2009, 22, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Kiernan, U.A.; Shi, L.; Phillips, D.A.; Kahn, B.B.; Hu, F.B.; Manson, J.E.; Albert, C.; Rexrode, K. Plasma Retinol-Binding Protein 4 (RBP4) Levels and Risk of Coronary Heart Disease. Circulation 2013, 127, 1938–1947. [Google Scholar] [CrossRef]
- Majerczyk, M.; Choręza, P.; Bożentowicz-Wikarek, M.; Brzozowska, A.; Arabzada, H.; Owczarek, A.; Mossakowska, M.; Grodzicki, T.; Zdrojewski, T.; Więcek, A.; et al. Increased plasma RBP4 concentration in older hypertensives is related to the decreased kidney function and the number of antihypertensive drugs—Results from the PolSenior substudy. J. Am. Soc. Hypertens. 2017, 11, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Al-Attas, O.S.; Alokail, M.; Draz, H.M.; Bamakhramah, A.; Sabico, S. Retinol binding protein-4 is associated with TNF-\alpha and not insulin resistance in subjects with type 2 diabetes mellitus and coronary heart disease. Dis. Markers 2009, 26, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-J.; Yang, G.-J. Significance of change of retinol binding protein 4 level of plasma of patients with coronary heart disease complicated with hyperlipidemia. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4136–4140. [Google Scholar]
- Lambadiari, V.; Kadoglou, N.P.; Stasinos, V.; Maratou, E.; Antoniadis, A.; Kolokathis, F.; Parissis, J.; Hatziagelaki, E.; Iliodromitis, E.K.; Dimitriadis, G. Serum levels of retinol-binding protein-4 are associated with the presence and severity of coronary artery disease. Cardiovasc. Diabetol. 2014, 13, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.-X.; Ji, H.-H.; Chen, X.-L.; Wang, L.; Wang, Y.; Shen, X.-Y.; Lu, X.; Gao, W.; Wang, L.-S. Serum retinol-binding protein 4 is associated with the presence and severity of coronary artery disease in patients with subclinical hypothyroidism. Aging 2019, 11, 4510–4520. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Han, C.; Sun, L.; Ding, Z.; Shi, F.; Wang, R.; Wang, W.; Shan, W.; Zhang, Y.; Hu, N.; et al. Association between new circulating proinflammatory and anti-inflammatory adipocytokines with coronary artery disease. Coron. Artery Dis. 2019, 30, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Codoñer-Franch, P.; Carrasco-Luna, J.; Allepuz, P.; Codoñer-Alejos, A.; Guillem, V. Association of RBP4 genetic variants with childhood obesity and cardiovascular risk factors. Pediatr. Diabetes 2015, 17, 576–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farjo, K.M.; Farjo, R.A.; Halsey, S.; Moiseyev, G.; Ma, J.-X. Retinol-Binding Protein 4 Induces Inflammation in Human Endothelial Cells by an NADPH Oxidase- and Nuclear Factor Kappa B-Dependent and Retinol-Independent Mechanism. Mol. Cell. Biol. 2012, 32, 5103–5115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Xia, K.; Sheikh, S.A.; Cheng, J.; Li, C.; Yang, T. Retinol binding protein 4 promotes hyperinsulinism-induced proliferation of rat aortic smooth muscle cells. Mol. Med. Rep. 2014, 9, 1634–1640. [Google Scholar] [CrossRef] [Green Version]
- Cubedo, J.; Padro, T.; Cinca, J.; Mata, P.; Alonso, R.; Badimon, L. Retinol-binding protein 4 levels and susceptibility to ischaemic events in men. Eur. J. Clin. Investig. 2014, 44, 266–275. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, L.; Xie, Y.; Tan, Y.; Chang, C.; Qiu, X.; Li, X. Characterization of differentially expressed plasma proteins in patients with acute myocardial infarction. J. Proteom. 2020, 227, 103923. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, J.; Lai, J.; Zhou, Y.; Lin, X.; Deng, G.; Zhang, Z.; Li, L. Circulating retinol binding protein 4 levels in coronary artery disease: A systematic review and meta-analysis. Lipids Heal. Dis. 2021, 20, 89. [Google Scholar] [CrossRef]
- Jing, J.; Isoherranen, N.; Robinson-Cohen, C.; Petrie, I.; Kestenbaum, B.R.; Yeung, C.K. Chronic Kidney Disease Alters Vitamin A Homeostasis via Effects on Hepatic RBP4 Protein Expression and Metabolic Enzymes. Clin. Transl. Sci. 2016, 9, 207–215. [Google Scholar] [CrossRef]
- Yoshida, Y.; Matsunaga, N.; Nakao, T.; Hamamura, K.; Kondo, H.; Ide, T.; Tsutsui, H.; Tsuruta, A.; Kurogi, M.; Nakaya, M.; et al. Alteration of circadian machinery in monocytes underlies chronic kidney disease-associated cardiac inflammation and fibrosis. Nat. Commun. 2021, 12, 2783. [Google Scholar] [CrossRef]
- Senoo, H.; Imai, K.; Mezaki, Y.; Miura, M.; Morii, M.; Fujiwara, M.; Blomhoff, R. Accumulation of Vitamin A in the Hepatic Stellate Cell of Arctic Top Predators. Anat. Rec. 2012, 295, 1660–1668. [Google Scholar] [CrossRef]
- Ulukaya, E.; Wood, E.J. Fenretinide and its relation to cancer. Cancer Treat. Rev. 1999, 25, 229–235. [Google Scholar] [CrossRef]
- Holven, K.B.; Natarajan, V.; Gundersen, T.E.; Moskaug, J.; Norum, K.R.; Blomhoff, R. Secretion of N-(4-hydroxyphenyl) retinamide-retinol-binding protein from liver parenchymal cells: Evidence for reduced affinity of the complex for transthyretin. Int. J. Cancer 1997, 71, 654–659. [Google Scholar] [CrossRef]
- Malpeli, G.; Folli, C.; Berni, R. Retinoid binding to retinol-binding protein and the interference with the interaction with transthyretin. Biochim. Biophys. Acta BBA Protein Struct. Mol. Enzym. 1996, 1294, 48–54. [Google Scholar] [CrossRef]
- Schaffer, E.M.; Ritter, S.J.; Smith, J.E. N-(4-Hydroxyphenyl)retinamide (Fenretinide) Induces Retinol-Binding Protein Secretion from Liver and Accumulation in the Kidneys in Rats. J. Nutr. 1993, 123, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Formelli, F.; Clerici, M.; Campa, T.; Di Mauro, M.G.; Magni, A.; Mascotti, G.; Moglia, D.; De Palo, G.; Costa, A.; Veronesi, U. Five-year administration of fenretinide: Pharmacokinetics and effects on plasma retinol concentrations. J. Clin. Oncol. 1993, 11, 2036–2042. [Google Scholar] [CrossRef]
- Amengual, J.; Golczak, M.; Palczewski, K.; von Lintig, J. Lecithin:Retinol Acyltransferase Is Critical for Cellular Uptake of Vitamin A from Serum Retinol-binding Protein. J. Biol. Chem. 2012, 287, 24216–24227. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.P.; Black, M.; Amengual, J. Fenretinide inhibits vitamin A formation from β-carotene and regulates carotenoid levels in mice. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2021, 1867, 159070. [Google Scholar] [CrossRef]
- Decensi, A.; Torrisi, R.; Polizzi, A.; Gesi, R.; Brezzo, V.; Rolando, M.; Rondanina, G.; AntoniettaOrengo, M.; Formelli, F.; Costa, A. Effect of the Synthetic Retinoid Fenretinide on Dark Adaptation and the Ocular Surface. JNCI J. Natl. Cancer Inst. 1994, 86, 105–110. [Google Scholar] [CrossRef]
- Preitner, F.; Mody, N.; Graham, T.E.; Peroni, O.D.; Kahn, B.B. Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis. Am. J. Physiol. Metab. 2009, 297, E1420–E1429. [Google Scholar] [CrossRef] [Green Version]
- Mcilroy, G.D.; Delibegovic, M.; Owen, C.; Stoney, P.N.; Shearer, K.D.; McCaffery, P.J.; Mody, N. Fenretinide Treatment Prevents Diet-Induced Obesity in Association With Major Alterations in Retinoid Homeostatic Gene Expression in Adipose, Liver, and Hypothalamus. Diabetes 2013, 62, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Mata, N.L.; Lichter, J.B.; Vogel, R.; Han, Y.; Bui, T.V.; Singerman, L.J. Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration. Retina 2013, 33, 498–507. [Google Scholar] [CrossRef]
- Radu, R.A.; Han, Y.; Bui, T.V.; Nusinowitz, S.; Bok, D.; Lichter, J.; Widder, K.; Travis, G.H.; Mata, N.L. Reductions in Serum Vitamin A Arrest Accumulation of Toxic Retinal Fluorophores: A Potential Therapy for Treatment of Lipofuscin-Based Retinal Diseases. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4393–4401. [Google Scholar] [CrossRef] [PubMed]
- Dobri, N.; Qin, Q.; Kong, J.; Yamamoto, K.; Liu, Z.; Moiseyev, G.; Ma, J.-X.; Allikmets, R.; Sparrow, J.R.; Petrukhin, K. A1120, a Nonretinoid RBP4 Antagonist, Inhibits Formation of Cytotoxic Bisretinoids in the Animal Model of Enhanced Retinal Lipofuscinogenesis. Investig. Ophthalmol. Vis. Sci. 2013, 54, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.M.; Ciulla, T.; Berrocal, A.M.; Gregori, N.Z.; Flynn, H.W.; Lam, B.L. Stargardt macular dystrophy and evolving therapies. Expert Opin. Biol. Ther. 2018, 18, 1049–1059. [Google Scholar] [CrossRef] [Green Version]
- Zajc, C.U.; Dobersberger, M.; Schaffner, I.; Mlynek, G.; Pühringer, D.; Salzer, B.; Djinović-Carugo, K.; Steinberger, P.; Linhares, A.D.S.; Yang, N.J.; et al. A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc. Natl. Acad. Sci. USA 2020, 117, 14926–14935. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, C.L.; Dobri, N.; Freeman, E.E.; Conlon, M.P.; Chen, P.; Stafford, D.G.; Schwarz, D.M.C.; Golden, K.C.; Zhu, L.; Kitchen, D.B.; et al. Design, Synthesis, and Evaluation of Nonretinoid Retinol Binding Protein 4 Antagonists for the Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease. J. Med. Chem. 2014, 57, 7731–7757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.; Priefer, R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur. J. Med. Chem. 2021, 226, 113856. [Google Scholar] [CrossRef]
- Nakamura, S.; Kamaura, M.; Akao, Y.; Nakamura, N.; Mizukami, A.; Goto, A.; Furuyama, N.; Cho, N.; Kasai, S. Discovery of phenylpyrrolidine derivatives as a novel class of retinol binding protein 4 (RBP4) reducers. Bioorg. Med. Chem. 2021, 54, 116553. [Google Scholar] [CrossRef]
- Cioffi, C.L.; Raja, A.; Muthuraman, P.; Jayaraman, A.; Jayakumar, S.; Varadi, A.; Racz, B.; Petrukhin, K. Identification of Transthyretin Tetramer Kinetic Stabilizers That Are Capable of Inhibiting the Retinol-Dependent Retinol Binding Protein 4-Transthyretin Interaction: Potential Novel Therapeutics for Macular Degeneration, Transthyretin Amyloidosis, and Their Common Age-Related Comorbidities. J. Med. Chem. 2021, 64, 9010–9041. [Google Scholar] [CrossRef]
- Cioffi, C.L.; Muthuraman, P.; Raja, A.; Varadi, A.; Racz, B.; Petrukhin, K. Discovery of Bispecific Antagonists of Retinol Binding Protein 4 That Stabilize Transthyretin Tetramers: Scaffolding Hopping, Optimization, and Preclinical Pharmacological Evaluation as a Potential Therapy for Two Common Age-Related Comorbidities. J. Med. Chem. 2020, 63, 11054–11084. [Google Scholar] [CrossRef]
Organ System or Process (in Alphabetical Order) | Mouse Model Phenotypes | Human Mutation Phenotypes |
---|---|---|
adipose tissue lipolysis | lower circulating levels of non-esterified fatty acids in global RBP4 knockout [36] increased circulating levels of non-esterified fatty acids in adipocyte-specific RBP4 overexpression [44] | |
behavior and neurological function | decreased locomotor activity, increased anxiety-like behavior, neuronal loss, gliosis in cortex and hippocampus, and reduction in proliferating neuroblasts in subventricular zone in global RBP4 knockout [99] | |
cardiovascular regulation | lower blood pressure, partial protection from angiotensin 2-induced hypertension, and reduced cardiac hypertrophy in global RBP4 knockout [100] higher blood pressure in muscle-specific RBP4 overexpression [100] protection from cardiac remodeling and cardiac dysfunction after acute myocardial infarction by cardiac-specific RBP4 knockdown [101] | |
cold tolerance | lower core body temperature, reduced thermogenic activation, and diminished hormone-sensitive lipase activation in subcutaneous white adipose tissue upon cold exposure in global RBP4 knockout [102] | |
embryonic development | viable embryos with mild and temporary developmental heart abnormalities in global RBP4 knockout [103] vitamin A deficiency before and during pregnancy leads to severe embryonic malformations (smaller size, undetectable or abnormal midfacial regions and forelimbs, and exencephaly) in global RBP4 knockout [73] | developmental abnormalities in homozygous c.11 + 1G > A mutation [104] |
insulin sensitivity and glucose tolerance | increased insulin sensitivity in global RBP4 knockout [36] insulin resistance at 12 weeks of age in muscle-specific overexpression of RBP4 [36] no effect on insulin sensitivity and glucose tolerance (normal chow and high-fat diet) in global RBP4 knockout [105] glucose tolerance not impaired in acute liver-specific RBP4 overexpression [40] no effect of muscle-specific RBP4 overexpression on serum insulin levels and insulin sensitivity [106] improved insulin responses and lower adipose tissue inflammation and CD4+ T-cell activation in global RBP4 knockout (on normal chow and high-fat diet; analyzed after feeding low vitamin A diet for 4–5 generations prior to characterization) [107] impaired glucose tolerance and insulin sensitivity and increased adipose tissue inflammation in muscle-specific RBP4 overexpression [107,108] glucose intolerance in adipocyte-specific RBP4 overexpression [44] no alterations in insulin sensitivity or glucose tolerance on control or high-fat/high-sucrose diet in hepatocyte-specific RBP4 knockout [35] insulin response and glucose tolerance not impaired (on normal chow and high-fat diet) in long term liver-specific RBP4 overexpression [39] decreased insulin sensitivity and glucose tolerance through dynamic pancreatic β-cell dysfunction in CAG promoter driven RBP4 transgenic mice [109] | |
liver fat | hepatic steatosis and increased uptake of non-esterified fatty acids and elevated gluconeogenic gene expression (when fed high-fat diet) in liver by adipocyte-specific overexpression of human RBP4 [44] | |
retinoid homeostasis | circulating retinol levels decrease by ~90% in global RBP4 knockout [55] increased hepatic retinol and retinyl ester content at the age of 5 months in global RBP4 knockout [55] rescue of RBP4 and retinol serum levels when RBP4 was overexpressed in muscle of RBP4-deficient mice [46] increased utilization of lipoprotein-derived retinyl esters in global RBP4 knockout [52] increased serum RBP4 and retinol levels, decreased hepatic retinyl ester levels, and increased RAR activation in the stromal-vascular fraction of epididymal white adipose tissue by acute liver-specific RBP4 overexpression [40] serum retinol levels below detection threshold in global RBP4 knockout [110] increased RBP4 levels in adipose tissue and unaltered circulating RBP4 and retinol levels on normal chow, while increased on high-fat diet in adipocyte-specific RBP4 overexpression [44] serum RBP4 undetectable, circulating retinol levels reduced by more than 93%, and hepatic retinol and retinyl ester content unchanged in hepatocyte-specific RBP4 knockout [35] rescue of plasma RBP4 and retinol levels when human RBP4 open reading frame cloned into mouse Rbp4 locus of RBP4-deficient mice [111] increased serum RBP4 and retinol levels and unaltered hepatic retinyl ester levels in long-term liver-specific RBP4 overexpression [39] | undetectable serum RBP4 and reduced serum retinol levels in compound heterozygous p.I59N and p.G93D mutation [112] undetectable serum RBP4 levels and reduced serum retinol concentrations in homozygous c.11 + 1G > A mutation [104] poor binding of mutated RBP4 to retinol but higher affinity to STRA6 in heterozygous p.A73T and p.A75T mutation [113] undetectable serum RBP4 levels in bi-allelic c.248 + 1G > A mutation [114] |
vision | impaired retinal function and visual acuity after birth which is normalized at the age of 4–5 months when diet is vitamin A sufficient and which cannot be normalized on vitamin A-depleted diet in global RBP4 knockout [55] progressive retinal degeneration in muscle-specific RBP4 overexpression [106] suppression of visual defects when RBP4 was overexpressed in muscle of RBP4-deficient mice [46] severe and persistent visual defects in global RBP4 knockout [110] rescue of retinal function when human RBP4 open reading frame placed into mouse Rbp4 locus of RBP4-deficient mice [111] | night blindness and modest retinal dystrophy in compound heterozygous p.I59N and p.G93D mutation [112,115] retinal dystrophy in homozygous c.11 + 1G > A mutation [104] autosomal dominant congenital eye malformations (incl. microphthalmia, anophthalmia, and coloboma disease) in heterozygous p.A73T and p.A75T mutation [113] retinal dystrophy and ocular coloboma in bi-allelic c.248 + 1G > A mutation [114] retinitis pigmentosa in homozygous c.67 C > T mutation [116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinhoff, J.S.; Lass, A.; Schupp, M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022, 14, 1236. https://doi.org/10.3390/nu14061236
Steinhoff JS, Lass A, Schupp M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients. 2022; 14(6):1236. https://doi.org/10.3390/nu14061236
Chicago/Turabian StyleSteinhoff, Julia S., Achim Lass, and Michael Schupp. 2022. "Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease" Nutrients 14, no. 6: 1236. https://doi.org/10.3390/nu14061236
APA StyleSteinhoff, J. S., Lass, A., & Schupp, M. (2022). Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients, 14(6), 1236. https://doi.org/10.3390/nu14061236