Diet and Respiratory Infections: Specific or Generalized Associations?
Abstract
:1. Introduction
2. Materials and Methods
2.1. UK Biobank (UKB)
2.2. Pneumonia and Influenza Diagnoses
2.3. COVID-19 Diagnosis and Analysis Sample (Vu et al. 2021)
2.4. Baseline Dietary Data
2.5. Genetic Data and Single-Nucleotide-Polymorphism (SNP) Selection
2.6. Other Covariates
2.7. Analysis Samples
2.8. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Dietary Behaviors and Risk of Pneumonia/Influenza
3.3. Effect Modification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troeger, C.; Forouzanfar, M.; Rao, P.C.; Khalil, I.; Brown, A.; Swartz, S.; Fullman, N.; Mosser, J.; Thompson, R.L.; Reiner, R.C.; et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 2017, 17, 1133–1161. [Google Scholar] [CrossRef] [Green Version]
- Lafond, K.E.; Porter, R.M.; Whaley, M.J.; Suizan, Z.; Ran, Z.; Aleem, M.A.; Thapa, B.; Sar, B.; Proschle, V.S.; Peng, Z.; et al. Global burden of influenza-associated lower respiratory tract infections and hospitalizations among adults: A systematic review and meta-analysis. PLOS Med. 2021, 18, e1003550. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [Google Scholar] [CrossRef] [PubMed]
- De Frel, D.L.; Atsma, D.E.; Pijl, H.; Seidell, J.C.; Leenen, P.J.M.; Dik, W.A.; van Rossum, E.F.C. The Impact of Obesity and Lifestyle on the Immune System and Susceptibility to Infections Such as COVID-19. Front. Nutr. 2020, 7, 597600. [Google Scholar] [CrossRef] [PubMed]
- Zabetakis, I.; Lordan, R.; Norton, C.; Tsoupras, A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 2020, 12, 1466. [Google Scholar] [CrossRef] [PubMed]
- Childs, C.E.; Calder, P.C.; Miles, E.A. Diet and Immune Function. Nutrients 2019, 11, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 2020, 27, 1451–1454. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Lawlor, N.T.; Newburg, D.S. Human milk components modulate toll-like receptor–mediated inflammation. Adv. Nutr. 2016, 7, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.H.T.; Rydland, K.J.; Achenbach, C.J.; Van Horn, L.; Cornelis, M.C. Dietary Behaviors and Incident COVID-19 in the UK Biobank. Nutrients 2021, 13, 2114. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Noroozi, R.; Vafaee, R.; Branicki, W.; Pospiech, E.; Pyrc, K.; Labaj, P.P.; Omrani, M.D.; Taheri, M.; Sanak, M. Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomed. Pharmacother. 2020, 128, 110296. [Google Scholar] [CrossRef]
- Covid-Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature 2021, 10, 472–477. [CrossRef]
- Chen, H.H.; Shaw, D.M.; Petty, L.E.; Graff, M.; Bohlender, R.J.; Polikowsky, H.G.; Zhong, X.; Kim, D.; Buchanan, V.L.; Preuss, M.H.; et al. Host genetic effects in pneumonia. Am. J. Hum. Genet. 2021, 108, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.J.; Coulston, A.M.; Rock, C.L.; Monsen, E. Nutrition in the Prevention and Treatment of Disease; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- UK Biobank. Data Showcase. Available online: https://biobank.ctsu.ox.ac.uk/crystal/browse.cgi?id=100080&cd=category (accessed on 3 November 2021).
- UK Biobank. Category 2002. Summary Diagnoses-Hospital Inpatient-Health-Related Outcomes. Available online: https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=2002 (accessed on 3 November 2021).
- Bradbury, K.E.; Young, H.J.; Guo, W.; Key, T.J. Dietary assessment in UK Biobank: An evaluation of the performance of the touchscreen dietary questionnaire. J Nutr Sci. 2018, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UK Biobank. UK Biobank Phasing and Imputation Documentation. Available online: https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/impute_ukb_v1.pdf (accessed on 3 November 2021).
- UK Biobank. Pan-ancestry genetic analysis of the UK Biobank. Available online: https://pan.ukbb.broadinstitute.org/ (accessed on 3 November 2021).
- Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; et al. Genetic mechanisms of critical illness in COVID-19. Nature 2021, 591, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Severe Covid-19 GWAS Group. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef] [PubMed]
- Shelton, J.F.; Shastri, A.J.; Ye, C.; Weldon, C.H.; Filshtein-Sonmez, T.; Coker, D.; Symons, A.; Esparza-Gordillo, J.; Chubb, A.; Fitch, A.; et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat. Genet. 2021, 53, 801–808. [Google Scholar] [CrossRef]
- Bugert, P.; Rink, G.; Kemp, K.; Klüter, H. Blood group ABO genotyping in paternity testing. Transfus. Med. Hemotherapy 2012, 39, 182–186. [Google Scholar] [CrossRef]
- Campos, A.I.; Kho, P.F.; Vazquez-Prada, K.X.; García-Marín, L.M.; Martin, N.G.; Cuéllar-Partida, G.; Rentería, M.E. Genetic susceptibility to pneumonia: A GWAS meta-analysis between UK Biobank and FinnGen. Twin Res. Hum. Genet. 2020, 24, 145–154. [Google Scholar] [CrossRef]
- Tian, C.; Hromatka, B.S.; Kiefer, A.K.; Eriksson, N.; Noble, S.M.; Tung, J.Y.; Hinds, D.A. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 2017, 8, 599. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, M.C.; Kacprowski, T.; Menni, C.; Gustafsson, S.; Pivin, E.; Adamski, J.; Artati, A.; Eap, C.B.; Ehret, G.; Friedrich, N.; et al. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum. Mol. Genet. 2016, 25, 5472–5482. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.; Campling, J.; Ellsbury, G.; Hawkey, P.M.; Madhava, H.; Slack, M. Community-acquired pneumonia in the United Kingdom: A call to action. Pneumonia 2017, 9, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almirall, J.; Serra-Prat, M.; Bolíbar, I.; Balasso, V. Risk Factors for Community-Acquired Pneumonia in Adults: A Systematic Review of Observational Studies. Respiration 2017, 94, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Rothberg, M.B.; Haessler, S.; Lagu, T.; Lindenauer, P.K.; Pekow, P.S.; Priya, A.; Skiest, D.; Zilberberg, M.D. Outcomes of patients with healthcare-associated pneumonia: Worse disease or sicker patients? Infect. Control. Hosp. Epidemiol. 2014, 35, S107–S115. [Google Scholar] [CrossRef] [Green Version]
- Molinari, N.A.M.; Ortega-Sanchez, I.R.; Messonnier, M.L.; Thompson, W.W.; Wortley, P.M.; Weintraub, E.; Bridges, C.B. The annual impact of seasonal influenza in the US: Measuring disease burden and costs. Vaccine 2007, 25, 5086–5096. [Google Scholar] [CrossRef]
- Mertz, D.; Kim, T.H.; Johnstone, J.; Lam, P.P.; Kuster, S.P.; Fadel, S.A.; Tran, D.; Fernandez, E.; Bhatnagar, N.; Loeb, M. Populations at risk for severe or complicated influenza illness: Systematic review and meta-analysis. BMJ 2013, 347, f5061. [Google Scholar] [CrossRef] [Green Version]
- Coleman, B.L.; Fadel, S.A.; Fitzpatrick, T.; Thomas, S.M. Risk factors for serious outcomes associated with influenza illness in high-versus low-and middle-income countries: Systematic literature review and meta-analysis. Influenza Respir. Viruses 2018, 12, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef]
- Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J. Med. Virol. 2021, 93, 1449–1458. [Google Scholar] [CrossRef]
- Parohan, M.; Yaghoubi, S.; Seraji, A.; Javanbakht, M.H.; Sarraf, P.; Djalali, M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: A systematic review and meta-analysis of observational studies. Aging Male 2020, 23, 1416–1424. [Google Scholar] [CrossRef]
- Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: An analysis for the Global Burden of Disease Study 2017. Lancet. Respir. Med. 2019, 7, 69–89. [CrossRef] [Green Version]
- World Health Organization. Pneumonia. Available online: https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed on 24 November 2021).
- Polak, S.B.; Van Gool, I.C.; Cohen, D.; Jan, H.; van Paassen, J. A systematic review of pathological findings in COVID-19: A pathophysiological timeline and possible mechanisms of disease progression. Mod. Pathol. 2020, 33, 2128–2138. [Google Scholar] [CrossRef] [PubMed]
- Brendish, N.J.; Malachira, A.K.; Beard, K.R.; Armstrong, L.; Lillie, P.J.; Clark, T.W. Hospitalised adults with pneumonia are frequently misclassified as another diagnosis. Respir. Med. 2019, 150, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Al Reef, T.; Ghanem, E. Caffeine: Well-known as psychotropic substance, but little as immunomodulator. Immunobiology 2018, 223, 818–825. [Google Scholar] [CrossRef]
- Romero-Martinez, B.S.; Montano, L.M.; Solis-Chagoyan, H.; Sommer, B.; Ramirez-Salinas, G.L.; Perez-Figueroa, G.E.; Flores-Soto, E. Possible Beneficial Actions of Caffeine in SARS-CoV-2. Int. J. Mol. Sci. 2021, 22, 5460. [Google Scholar] [CrossRef] [PubMed]
- Tilley, S.L. Methylxanthines in asthma. Handb. Exp. Pharmacol. 2011, 10, 439–456. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Battig, K.; Holmen, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar]
- Tuzim, K.; Korolczuk, A. An update on extra-oral bitter taste receptors. J. Transl. Med. 2021, 19, 440. [Google Scholar] [CrossRef]
- Poole, R.L.; Tordoff, M.G. The Taste of Caffeine. J. Caffeine Res. 2017, 7, 39–52. [Google Scholar] [CrossRef]
- Açıkalın, B.; Sanlier, N. Coffee and its effects on the immune system. Trends Food Sci. Technol. 2021, 114, 625–632. [Google Scholar] [CrossRef]
- Melamed, I.; Kark, J.D.; Spire, Z. Coffee and the immune system. Int. J. Immunopharmacol. 1990, 12, 129–134. [Google Scholar] [CrossRef]
- Kamath, A.B.; Wang, L.; Das, H.; Li, L.; Reinhold, V.N.; Bukowski, J.F. Antigens in tea-beverage prime human Vgamma 2Vdelta 2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc. Natl. Acad. Sci. USA 2003, 100, 6009–6014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.; Mukhtar, H. Tea and health: Studies in humans. Curr. Pharm. Des. 2013, 19, 6141–6147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godos, J.; Pluchinotta, F.R.; Marventano, S.; Buscemi, S.; Li, V.G.; Galvano, F.; Grosso, G. Coffee components and cardiovascular risk: Beneficial and detrimental effects. Int. J. Food Sci. Nutr. 2014, 65, 925–936. [Google Scholar] [CrossRef]
- Umeda, M.; Tominaga, T.; Kozuma, K.; Kitazawa, H.; Furushima, D.; Hibi, M.; Yamada, H. Preventive effects of tea and tea catechins against influenza and acute upper respiratory tract infections: A systematic review and meta-analysis. Eur. J. Nutr. 2021, 60, 4189–4202. [Google Scholar] [CrossRef]
- Ide, K.; Kawasaki, Y.; Kawakami, K.; Yamada, H. Anti-influenza Virus Effects of Catechins: A Molecular and Clinical Review. Curr. Med. Chem. 2016, 23, 4773–4783. [Google Scholar] [CrossRef]
- Cornelis, M.C.; van Dam, R.M. Habitual Coffee and Tea Consumption and Cardiometabolic Biomarkers in the UK Biobank: The Role of Beverage Types and Genetic Variation. J. Nutr. 2020, 150, 2772–2788. [Google Scholar] [CrossRef]
- Alfaro, T.M.; Monteiro, R.A.; Cunha, R.A.; Cordeiro, C.R. Chronic coffee consumption and respiratory disease: A systematic review. Clin. Respir. J. 2018, 12, 1283–1294. [Google Scholar] [CrossRef]
- Park, S.Y.; Freedman, N.D.; Haiman, C.A.; Le Marchand, L.; Wilkens, L.R.; Setiawan, V.W. Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann. Intern. Med. 2017, 167, 228–235. [Google Scholar] [CrossRef]
- Van den Brandt, P.A. Coffee or Tea? A prospective cohort study on the associations of coffee and tea intake with overall and cause-specific mortality in men versus women. Eur. J. Epidemiol. 2018, 33, 183–200. [Google Scholar] [CrossRef] [Green Version]
- Gunter, M.J.; Murphy, N.; Cross, A.J.; Dossus, L.; Dartois, L.; Fagherazzi, G.; Kaaks, R.; Kühn, T.; Boeing, H.; Aleksandrova, K. Coffee drinking and mortality in 10 European countries: A multinational cohort study. Ann. Intern. Med. 2017, 167, 236–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, S.K.; Saito, E.; Sawada, N.; Tsugane, S.; Ito, H.; Lin, Y.; Tamakoshi, A.; Sado, J.; Kitamura, Y.; Sugawara, Y.; et al. Coffee consumption and mortality in Japanese men and women: A pooled analysis of eight population-based cohort studies in Japan (Japan Cohort Consortium). Prev. Med. 2019, 123, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Loftfield, E.; Cornelis, M.C.; Caporaso, N.; Yu, K.; Sinha, R.; Freedman, N. Association of coffee drinking with mortality by genetic variation in caffeine metabolism: Findings from the uk biobank. JAMA Intern. Med. 2018, 178, 1086–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, E.; Inoue, M.; Sawada, N.; Shimazu, T.; Yamaji, T.; Iwasaki, M.; Sasazuki, S.; Noda, M.; Iso, H.; Tsugane, S.; et al. Association of green tea consumption with mortality due to all causes and major causes of death in a Japanese population: The Japan Public Health Center-based Prospective Study (JPHC Study). Ann. Epidemiol. 2015, 25, 512–518. [Google Scholar] [CrossRef]
- Odegaard, A.O.; Koh, W.P.; Yuan, J.M.; Pereira, M.A. Beverage Habits and Mortality in Chinese Adults. J. Nutr. 2015, 145, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Abe, S.K.; Saito, E.; Sawada, N.; Tsugane, S.; Ito, H.; Lin, Y.; Tamakoshi, A.; Sado, J.; Kitamura, Y.; Sugawara, Y.; et al. Green tea consumption and mortality in Japanese men and women: A pooled analysis of eight population-based cohort studies in Japan. Eur. J. Epidemiol. 2019, 34, 917–926. [Google Scholar] [CrossRef]
- Calder, P.C. n-3 fatty acids, inflammation and immunity: New mechanisms to explain old actions. Proc. Nutr. Soc. 2013, 72, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Waitzberg, D.L.; Torrinhas, R.S. Fish oil lipid emulsions and immune response: What clinicians need to know. Nutr. Clin. Pract. 2009, 24, 487–499. [Google Scholar] [CrossRef]
- Serhan, C.N.; Yang, R.; Martinod, K.; Kasuga, K.; Pillai, P.S.; Porter, T.F.; Oh, S.F.; Spite, M. Maresins: Novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med. 2009, 206, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Spite, M.; Norling, L.V.; Summers, L.; Yang, R.; Cooper, D.; Petasis, N.A.; Flower, R.J.; Perretti, M.; Serhan, C.N. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 2009, 461, 1287–1291. [Google Scholar] [CrossRef] [Green Version]
- Julkunen, H.; Cichońska, A.; Slagboom, P.E.; Würtz, P.; Nightingale Health, U.K.B.I. Metabolic biomarker profiling for identifi-cation of susceptibility to severe pneumonia and COVID-19 in the general population. eLife 2021, 10, e63033. [Google Scholar] [CrossRef] [PubMed]
- Merchant, A.T.; Curhan, G.C.; Rimm, E.B.; Willett, W.C.; Fawzi, W.W. Intake of n-6 and n-3 fatty acids and fish and risk of community-acquired pneumonia in US men. Am. J. Clin. Nutr. 2005, 82, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Alperovich, M.; Neuman, M.I.; Willett, W.C.; Curhan, G.C. Fatty acid intake and the risk of community-acquired pneumonia in U.S. women. Nutrition 2007, 23, 196–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, P.T.; Ali, Z.; Armitage, A.E.; Bonell, A.; Cerami, C.; Drakesmith, H.; Jobe, M.; Jones, K.S.; Liew, Z.; Moore, S.E.; et al. The Role of Nutrition in COVID-19 Susceptibility and Severity of Disease: A Systematic Review. J. Nutr. 2021, 151, 1854–1878. [Google Scholar] [CrossRef] [PubMed]
- Torrinhas, R.S.; Calder, P.C.; Lemos, G.O.; Waitzberg, D.L. Parenteral fish oil: An adjuvant pharmacotherapy for coronavirus disease 2019? Nutrition 2021, 81, 110900. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, B.; Berthon, B.S.; Saedisomeolia, A.; Starkey, M.R.; Collison, A.; Wark, P.A.B.; Wood, L.G. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: A systematic literature review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 136–155. [Google Scholar] [CrossRef] [Green Version]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78, A18–A25. [Google Scholar] [CrossRef]
- Gibson, A.; Edgar, J.D.; Neville, C.E.; Gilchrist, S.E.; McKinley, M.C.; Patterson, C.C.; Young, I.S.; Woodside, J.V. Effect of fruit and vegetable consumption on immune function in older people: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 96, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H.; Finley, J. Potential cell culture models for antioxidant research. J. Agric. Food Chem. 2005, 53, 4311–4314. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papier, K.; Fensom, G.K.; Knuppel, A.; Appleby, P.N.; Tong, T.Y.N.; Schmidt, J.A.; Travis, R.C.; Key, T.J.; Perez-Cornago, A. Meat consumption and risk of 25 common conditions: Outcome-wide analyses in 475,000 men and women in the UK Biobank study. BMC Med. 2021, 19, 53. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer, S.J. Iron and its relation to immunity and infectious disease. J. Nutr. 2001, 131, 616S–635S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, G. Iron and immunity: A double-edged sword. Eur. J. Clin. Investig. 2002, 32, 70–78. [Google Scholar] [CrossRef]
- Kenney, A.D.; Dowdle, J.A.; Bozzacco, L.; McMichael, T.M.; St. Gelais, C.; Panfil, A.R.; Sun, Y.; Schlesinger, L.S.; Anderson, M.Z.; Green, P.L. Human genetic determinants of viral diseases. Annu. Rev. Genet. 2017, 51, 241–263. [Google Scholar] [CrossRef]
- Jensen, S.; Thomsen, A.R. Sensing of RNA viruses: A review of innate immune receptors involved in recognizing RNA virus invasion. J. Virol. 2012, 86, 2900–2910. [Google Scholar] [CrossRef] [Green Version]
- Randolph, H.E.; Fiege, J.K.; Thielen, B.K.; Mickelson, C.K.; Shiratori, M.; Barroso-Batista, J.; Langlois, R.A.; Barreiro, L.B. Genetic ancestry effects on the response to viral infection are pervasive but cell type specific. Science 2021, 374, 1127–1133. [Google Scholar] [CrossRef]
- Su, Y.; Chen, D.; Yuan, D.; Lausted, C.; Choi, J.; Dai, C.L.; Voillet, V.; Duvvuri, V.R.; Scherler, K.; Troisch, P. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 2020, 183, 1479–1495.e20. [Google Scholar] [CrossRef]
- Quach, H.; Rotival, M.; Pothlichet, J.; Loh, Y.H.E.; Dannemann, M.; Zidane, N.; Laval, G.; Patin, E.; Harmant, C.; Lopez, M. Genetic adaptation and Neandertal admixture shaped the immune system of human populations. Cell 2016, 167, 643–656.e7. [Google Scholar] [CrossRef] [Green Version]
- Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am. J. Epidemiol. 2017, 186, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C. Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Skull, S.A.; Andrews, R.M.; Byrnes, G.B.; Campbell, D.A.; Nolan, T.M.; Brown, G.V.; Kelly, H.A. ICD-10 codes are a valid tool for identification of pneumonia in hospitalized patients aged > or =65 years. Epidemiol. Infect. 2008, 136, 232–240. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics a | Male | Female |
---|---|---|
Number of Persons | 213,805 | 257,048 |
Age, year, mean (sd) | 56.78 (8.18) | 56.30 (8.00) |
Townsend Deprivation Index, mean (sd) | −1.37 (3.09) | −1.40 (3.00) |
White/British b | 202,928 (94.91) | 243,975 (94.91) |
Household income, GBP < 18,000 | 38,076 (17.81) | 51,710 (20.12) |
College or university degree | 73,887 (34.56) | 81,234 (31.60) |
Currently employed | 130,234 (60.91) | 142,124 (55.29) |
Lived in a house | 191,323 (89.48) | 232,716 (90.53) |
Number of co-habitants ≥ 4 | 43,910 (20.54) | 45,113 (17.55) |
Current smoker | 26,379 (12.34) | 23,298 (9.06) |
BMI (kg/m2), mean (sd) | 27.81 (4.22) | 27.05 (5.17) |
Physical activity, minutes/day, mean (sd) | 83.14 (108.22) | 68.85 (83.95) |
Poor overall health rating | 10,609 (4.96) | 9687 (3.77) |
Cholesterol medication use | 48,686 (22.77) | 32,033 (12.46) |
Blood pressure medication use | 52,080 (24.36) | 44,441 (17.29) |
History of diabetes | 14,635 (6.85) | 9495 (3.69) |
History of heart disease | 18,028 (8.43) | 8535 (3.32) |
History of pneumonia | 4441 (2.08) | 4270 (1.66) |
History of influenza | 44 (0.02) | 56 (0.02) |
Breastfed as baby | 115,990 (54.25) | 146,232 (56.89) |
Coffee, cups/day, mean (sd) | 3.39 (1.57) | 3.18 (1.53) |
Tea, cups/day, mean (sd) | 4.14 (1.69) | 4.10 (1.70) |
Oily fish, servings/day, mean (sd) | 0.16 (0.15) | 0.16 (0.15) |
Processed meat, servings/day, mean (sd) | 0.27 (0.22) | 0.16 (0.17) |
Red meat, servings/day, mean (sd) | 0.32 (0.22) | 0.28 (0.20) |
Fruit (fresh/dried), servings/day, mean (sd) | 2.74 (2.58) | 3.32 (2.56) |
Vegetables (cooked/raw), servings/day, mean (sd) | 0.78 (0.58) | 0.85 (0.54) |
Dietary Behavior | Current Analysis | Vu et al. [11] | ||||
---|---|---|---|---|---|---|
Pneumonia b (n = 470,853) | COVID-19 Infection c (n = 37,988) | |||||
Model 1 a | Model 2 | Model 2 | ||||
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Coffee, cups/day | ||||||
None or <1 cup | Reference | Reference | Reference | |||
1 cup | 0.90 (0.86, 0.94) | <0.0001 | 0.91 (0.87, 0.96) | <0.0001 | 0.90 (0.83, 0.98) | 0.015 |
2–3 cups | 0.93 (0.89, 0.97) | <0.0001 | 0.94 (0.90, 0.97) | 0.001 | 0.90 (0.83, 0.96) | 0.003 |
≥4 cups | 1.03 (0.99, 1.08) | 0.165 | 1.00 (0.96, 1.05) | 0.963 | 0.92 (0.84, 0.99) | 0.047 |
Tea, cups/day | ||||||
None or <1 cup | Reference | Reference | Reference | |||
1 cup | 0.87 (0.81, 0.93) | <0.0001 | 0.89 (0.83, 0.95) | <0.0001 | 0.93 (0.82, 1.04) | 0.204 |
2–3 cups | 0.86 (0.82, 0.90) | <0.0001 | 0.88 (0.84, 0.92) | <0.0001 | 0.93 (0.85, 1.01) | 0.078 |
≥4 cups | 0.90 (0.87, 0.94) | <0.0001 | 0.92 (0.88, 0.96) | <0.0001 | 0.98 (0.90, 1.06) | 0.543 |
Oily fish, servings/day | ||||||
Q1 (0–<0.07) | Reference | Reference | Reference | |||
Q2 (0.07–<0.14) | 0.88 (0.83, 0.92) | <0.0001 | 0.88 (0.84, 0.93) | <0.0001 | 0.94 (0.86, 1.03) | 0.183 |
Q3 and 4 (≥0.14) | 0.87 (0.83, 0.92) | <0.0001 | 0.90 (0.85, 0.94) | <0.0001 | 0.98 (0.90, 1.07) | 0.654 |
Processed meat, servings/day | ||||||
Q1 (0–<0.07) | Reference | Reference | Reference | |||
Q2 (0.07–<0.14) | 0.97 (0.91, 1.03) | 0.258 | 0.97 (0.91, 1.04) | 0.355 | 1.05 (0.93, 1.19) | 0.410 |
Q3 (0.14-–<0.43) | 1.02 (0.96, 1.09) | 0.457 | 1.02 (0.95, 1.09) | 0.627 | 1.09 (0.97, 1.24) | 0.155 |
Q4 (≥0.43) | 1.07 (1.00, 1.14) | 0.038 | 1.05 (0.98, 1.12) | 0.188 | 1.14 (1.01, 1.29) | 0.036 |
Red meat, servings/day | ||||||
Q1 (0–<0.21) | Reference | Reference | Reference | |||
Q2 (0.21–<0.28) | 0.99 (0.94, 1.04) | 0.599 | 1.01 (0.96, 1.06) | 0.855 | 0.95 (0.87, 1.04) | 0.236 |
Q3 (0.28–<0.35) | 1.05 (0.99, 1.10) | 0.089 | 1.06 (1.00, 1.12) | 0.048 | 1.00 (0.90, 1.10) | 0.948 |
Q4 (≥0.35) | 1.08 (1.03, 1.13) | 0.001 | 1.09 (1.03, 1.14) | 0.001 | 0.98 (0.89, 1.07) | 0.600 |
Fruit (fresh/dried), servings/day | ||||||
Q1 (0–<1.00) | Reference | Reference | Reference | |||
Q2 (1.00–<2.25) | 0.90 (0.85, 0.94) | <0.0001 | 0.91 (0.87, 0.96) | 0.001 | 1.05 (0.95, 1.16) | 0.376 |
Q3 (2.25–<4.00) | 0.84 (0.79, 0.89) | <0.0001 | 0.86 (0.81, 0.91) | <0.0001 | 1.02 (0.91, 1.14) | 0.762 |
Q4 (≥4.00) | 0.83 (0.79, 0.88) | <0.0001 | 0.86 (0.81, 0.91) | <0.0001 | 1.03 (0.92, 1.15) | 0.660 |
Vegetables(cooked/raw), servings/day | ||||||
Q1 (0–<0.50) | Reference | Reference | Reference | |||
Q2 (0.50–<0.67) | 0.97 (0.93, 1.01) | 0.152 | 1.00 (0.96, 1.05) | 0.972 | 0.93 (0.85, 1.00) | 0.060 |
Q3 (0.67–<1.00) | 0.96 (0.91, 1.01) | 0.096 | 1.00 (0.94, 1.05) | 0.895 | 0.88 (0.80, 0.98) | 0.015 |
Q4 (≥1.00) | 0.98 (0.94, 1.03) | 0.403 | 1.03 (0.99, 1.08) | 0.182 | 0.92 (0.84, 0.99) | 0.046 |
Breastfed as a baby | ||||||
No | Reference | Reference | Reference | |||
Yes | 0.96 (0.92, 1.01) | 0.083 | 0.97 (0.93, 1.01) | 0.165 | 0.91 (0.85, 0.98) | 0.013 |
Do not know | 1.00 (0.96, 1.05) | 0.982 | 1.00 (0.96, 1.05) | 0.975 | 0.98 (0.90, 1.07) | 0.696 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, T.-H.T.; Van Horn, L.; Achenbach, C.J.; Rydland, K.J.; Cornelis, M.C. Diet and Respiratory Infections: Specific or Generalized Associations? Nutrients 2022, 14, 1195. https://doi.org/10.3390/nu14061195
Vu T-HT, Van Horn L, Achenbach CJ, Rydland KJ, Cornelis MC. Diet and Respiratory Infections: Specific or Generalized Associations? Nutrients. 2022; 14(6):1195. https://doi.org/10.3390/nu14061195
Chicago/Turabian StyleVu, Thanh-Huyen T., Linda Van Horn, Chad J. Achenbach, Kelsey J. Rydland, and Marilyn C. Cornelis. 2022. "Diet and Respiratory Infections: Specific or Generalized Associations?" Nutrients 14, no. 6: 1195. https://doi.org/10.3390/nu14061195
APA StyleVu, T. -H. T., Van Horn, L., Achenbach, C. J., Rydland, K. J., & Cornelis, M. C. (2022). Diet and Respiratory Infections: Specific or Generalized Associations? Nutrients, 14(6), 1195. https://doi.org/10.3390/nu14061195