Associations of Maternal rs1801131 Genotype in MTHFR and Serum Folate and Vitamin B12 with Gestational Diabetes Mellitus in Chinese Pregnant Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection and Covariates Assessment
2.3. Diagnosis of GDM
2.4. Determination of OCM Related Nutrients
2.5. Genotyping of OCM Related Genes
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Associations between OCM Indicators and GDM
3.3. Associations between OCM Related Gene Polymorphisms and GDM
3.4. Combined Effects of OCM Indicators and rs18011311 Genotypes on GDM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 2019, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ 2020, 369, m1361. [Google Scholar] [CrossRef] [PubMed]
- Agha-Jaffar, R.; Oliver, N.; Johnston, D.; Robinson, S. Gestational diabetes mellitus: Does an effective prevention strategy exist? Nat. Rev. Endocrinol. 2016, 12, 533–546. [Google Scholar] [CrossRef]
- Vinter, C.A.; Tanvig, M.H.; Christensen, M.H.; Ovesen, P.G.; Jørgensen, J.S.; Andersen, M.S.; McIntyre, H.D.; Jensen, D.M. Lifestyle Intervention in Danish Obese Pregnant Women with Early Gestational Diabetes Mellitus According to, W.H.O 2013 Criteria Does Not Change Pregnancy Outcomes: Results from the LiP (Lifestyle in Pregnancy) Study. Diabetes Care 2018, 41, 2079–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steegers-Theunissen, R.P.M.; Twigt, J.; Pestinger, V.; Sinclair, K.D. The periconceptional period, reproduction and long-term health of offspring: The importance of one-carbon metabolism. Hum. Reprod. Update 2013, 19, 640–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korsmo, H.W.; Jiang, X. One carbon metabolism and early development: A diet-dependent destiny. Trends Endocrinol. Metab. 2021, 32, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Werler, M.M.; Shapiro, S.; Mitchell, A.A. Periconceptional folic acid exposure and risk of occurrent neural tube defects. JAMA 1993, 269, 1257–1261. [Google Scholar] [CrossRef]
- Zhu, B.; Ge, X.; Huang, K.; Mao, L.; Yan, S.; Xu, Y.; Huang, S.; Hao, J.; Zhu, P.; Niu, Y.; et al. Folic Acid Supplement Intake in Early Pregnancy Increases Risk of Gestational Diabetes Mellitus: Evidence from a Prospective Cohort Study. Diabetes Care 2016, 39, e36–e37. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, Y.; Huang, L.; Zhong, C.; Chen, R.; Zhou, X.; Chen, X.; Li, X.; Cui, W.; Xiong, T.; et al. High-Dose Folic Acid Supplement Use from Prepregnancy through Midpregnancy Is Associated With Increased Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes Care 2019, 42, e113–e115. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, Y.; Chen, H.; Jiang, Y.; Wang, Y.; Wang, D.; Li, M.; Dou, Y.; Sun, X.; Huang, G.; et al. Association of Maternal Folate and Vitamin B12 in Early Pregnancy with Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes Care 2021, 44, 217–223. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Chavarro, J.E.; Gaskins, A.J.; Ley, S.H.; Hinkle, S.N.; Wang, X.; Ding, M.; Bell, G.; Bjerregaard, A.A.; et al. Prepregnancy Habitual Intakes of Total, Supplemental, and Food Folate and Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes Care 2019, 42, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Kouroglou, E.; Anagnostis, P.; Daponte, A.; Bargiota, A. Vitamin B12 insufficiency is associated with increased risk of gestational diabetes mellitus: A systematic review and meta-analysis. Endocrine 2019, 66, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Krishnaveni, G.V.; Hill, J.C.; Veena, S.R.; Bhat, D.S.; Wills, A.K.; Karat, C.L.S.; Yajnik, C.S.; Fall, C.H.D. Low plasma vitamin B12 in pregnancy is associated with gestational “diabesity” and later diabetes. Diabetologia 2009, 52, 2350–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukumar, N.; Venkataraman, H.; Wilson, S.; Goljan, I.; Selvamoni, S.; Patel, V.; Saravanan, P. Vitamin B12 Status among Pregnant Women in the, U.K. and Its Association with Obesity and Gestational Diabetes. Nutrients 2016, 8, 768. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.S.; Pang, W.W.; Cai, S.; Lee, Y.S.; Chan, J.K.Y.; Shek, L.P.C.; Yap, F.K.; Tan, K.H.; Godfrey, K.; van Dam, R.M.; et al. High folate and low vitamin B12 status during pregnancy is associated with gestational diabetes mellitus. Clin. Nutr. 2018, 37, 940–947. [Google Scholar] [CrossRef]
- Saravanan, P.; Sukumar, N.; Adaikalakoteswari, A.; Goljan, I.; Venkataraman, H.; Gopinath, A.; Bagias, C.; Yajnik, C.S.; Stallard, N.; Ghebremichael-Weldeselassie, Y.; et al. Association of maternal vitamin B12 and folate levels in early pregnancy with gestational diabetes: A prospective, U.K. cohort study (PRiDE study). Diabetologia 2021, 64, 2170–2182. [Google Scholar] [CrossRef]
- Li, S.; Hou, Y.; Yan, X.; Wang, Y.; Shi, C.; Wu, X.; Liu, H.; Zhang, L.; Zhang, X.; Liu, J.; et al. Joint effects of folate and vitamin B12 imbalance with maternal characteristics on gestational diabetes mellitus. J. Diabetes 2019, 11, 744–751. [Google Scholar] [CrossRef]
- Zheng, Y.; Deng, H.-Y.; Qiao, Z.-Y.; Gong, F.-X. Homocysteine level and gestational diabetes mellitus: A systematic review and meta-analysis. Gynecol. Endocrinol. 2021, 37, 987–994. [Google Scholar] [CrossRef]
- Liu, C.-T.; Karasik, D.; Xu, H.; Zhou, Y.; Broe, K.; Cupples, L.A.; de Groot, L.C.; Ham, A.; Hannan, M.T.; Hsu, Y.-H.; et al. Genetic variants modify the associations of concentrations of methylmalonic acid, vitamin B-12, vitamin B-6, and folate with bone mineral density. Am. J. Clin. Nutr. 2021, 114, 578–587. [Google Scholar] [CrossRef]
- Barbosa, P.R.; Stabler, S.P.; Machado, A.L.K.; Braga, R.C.; Hirata, R.D.C.; Hirata, M.H.; Sampaio-Neto, L.F.; Allen, R.H.; Guerra-Shinohara, E.M. Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women. Eur. J. Clin. Nutr. 2008, 62, 1010–1021. [Google Scholar] [CrossRef]
- Steluti, J.; Carvalho, A.M.; Carioca, A.A.F.; Miranda, A.; Gattás, G.J.F.; Fisberg, R.M.; Marchioni, D.M. Genetic Variants Involved in One-Carbon Metabolism: Polymorphism Frequencies and Differences in Homocysteine Concentrations in the Folic Acid Fortification Era. Nutrients 2017, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-X.; Dai, S.-X.; Zheng, J.-J.; Liu, J.-Q.; Huang, J.-F. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency. Nutrients 2015, 7, 6670–6687. [Google Scholar] [CrossRef] [PubMed]
- Surendran, S.; Adaikalakoteswari, A.; Saravanan, P.; Shatwaan, I.A.; Lovegrove, J.A.; Vimaleswaran, K.S. An update on vitamin B12-related gene polymorphisms and B12 status. Genes Nutr. 2018, 13, 2. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.A.; Shaik, N.A.; Kamineni, V.; Jahan, P.; Hasan, Q.; Rao, P. Evaluation of Gestational Diabetes Mellitus Risk in South Indian Women Based on MTHFR (C677T) and FVL (G1691A) Mutations. Front. Pediatr. 2015, 3, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, S.; Adam, S.; Rheeder, P.; Pheiffer, C. No Association between ADIPOQ or MTHFR Polymorphisms and Gestational Diabetes Mellitus in South African Women. Diabetes Metab. Syndr. Obes. 2021, 14, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, X.; Li, S.; Liu, H.; Liu, L.; Huang, Q.; Hou, Y.; Liang, X.; Cui, B.; Zhang, M.; et al. Joint effect of urinary arsenic species and serum one-carbon metabolism nutrients on gestational diabetes mellitus: A cross-sectional study of Chinese pregnant women. Environ. Int. 2021, 156, 106741. [Google Scholar] [CrossRef]
- Medical Service Specialty Standard Committee of Ministry of Health, China. Diagnostic criteria for gestational diabetes mellitus (WS331-2011). Chin. Med. J. 2012, 125, 1212–1213. [Google Scholar] [CrossRef]
- Horita, M.; Bueno, C.T.; Horimoto, A.R.; Lemos, P.A.; Morandini-Filho, A.A.; Krieger, J.E.; Santos, P.C.J.L.; Pereira, A.C. MTRR rs326119 polymorphism is associated with plasma concentrations of homocysteine and cobalamin, but not with congenital heart disease or coronary atherosclerosis in Brazilian patients. Int. J. Cardiol. Heart Vasc. 2017, 14, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Martinez, C.A.; Northrup, H.; Lin, J.-I.; Morrison, A.C.; Fletcher, J.M.; Tyerman, G.H.; Au, K.S. Genetic Association Study of Putative Functional Single Nucleotide Polymorphisms of Genes in Folate Metabolism and Spina Bifida. Am. J. Obstet. Gynecol. 2009, 201, 394.e1–394.e11. [Google Scholar] [CrossRef] [Green Version]
- Spratlen, M.J.; Grau-Perez, M.; Umans, J.G.; Yracheta, J.; Best, L.G.; Francesconi, K.; Goessler, W.; Balakrishnan, P.; Cole, S.A.; Gamble, M.V.; et al. Arsenic, one carbon metabolism and diabetes-related outcomes in the Strong Heart Family Study. Environ. Int. 2018, 121 Pt 1, 728–740. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, Y.-X.; Li, K.; Qi, L.-X.; Zhang, Q.-F.; Wang, M.-C.; Xiao, J.-H. A novel three-round multiplex PCR for SNP genotyping with next generation sequencing. Anal. Bioanal. Chem. 2016, 408, 4371–4377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hou, Y.; Wang, D.; Xu, Y.; Wang, H.; Liu, J.; Xia, L.; Li, Y.; Tang, N.; Zheng, Q.; et al. Interactions of arsenic metabolism with arsenic exposure and individual factors on diabetes occurrence: Baseline findings from Arsenic and Non-Communicable disease cohort (AsNCD) in China. Environ. Pollut. 2020, 265, 114968. [Google Scholar] [CrossRef] [PubMed]
- Knol, M.J.; van der Tweel, I.; Grobbee, D.E.; Numans, M.E.; Geerlings, M.I. Estimating interaction on an additive scale between continuous determinants in a logistic regression model. Int. J. Epidemiol. 2007, 36, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16, 493–508. [Google Scholar] [CrossRef]
- Gomes, S.; Lopes, C.; Pinto, E. Folate and folic acid in the periconceptional period: Recommendations from official health organizations in thirty-six countries worldwide and WHO. Public Health Nutr. 2016, 19, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Xie, K.; Xu, P.; Fu, Z.; Gu, X.; Li, H.; Cui, X.; You, L.; Zhu, L.; Ji, C.; Guo, X. Association of maternal folate status in the second trimester of pregnancy with the risk of gestational diabetes mellitus. Food Sci. Nutr. 2019, 7, 3759–3765. [Google Scholar] [CrossRef]
- Looman, M.; Geelen, A.; Samlal, R.A.K.; Heijligenberg, R.; Klein Gunnewiek, J.M.T.; Balvers, M.G.J.; Wijnberger, L.D.E.; Brouwer-Brolsma, E.M.; Feskens, E.J.M. Changes in Micronutrient Intake and Status, Diet Quality and Glucose Tolerance from Preconception to the Second Trimester of Pregnancy. Nutrients 2019, 11, 460. [Google Scholar] [CrossRef] [Green Version]
- Bagley, P.J.; Selhub, J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc. Natl. Acad. Sci. USA 1998, 95, 13217–13220. [Google Scholar] [CrossRef] [Green Version]
- Palmer, A.M.; Kamynina, E.; Field, M.S.; Stover, P.J. Folate rescues vitamin B 12 depletion-induced inhibition of nuclear thymidylate biosynthesis and genome instability. Proc. Natl. Acad. Sci. USA 2017, 114, E4095–E4102. [Google Scholar] [CrossRef] [Green Version]
- Pannia, E.; Hammoud, R.; Simonian, R.; Arning, E.; Ashcraft, P.; Wasek, B.; Bottiglieri, T.; Pausova, Z.; Kubant, R.; Anderson, G.H. [6S]-5-Methyltetrahydrofolic Acid and Folic Acid Pregnancy Diets Differentially Program Metabolic Phenotype and Hypothalamic Gene Expression of Wistar Rat Dams Post-Birth. Nutrients 2020, 13, 48. [Google Scholar] [CrossRef]
- Mandaviya, P.R.; Joehanes, R.; Brody, J.; Castillo-Fernandez, J.E.; Dekkers, K.F.; Do, A.N.; Graff, M.; Hänninen, I.K.; Tanaka, T.; de Jonge, E.A.L.; et al. Association of dietary folate and vitamin B-12 intake with genome-wide, D.N.A methylation in blood: A large-scale epigenome-wide association analysis in 5841 individuals. Am. J. Clin. Nutr. 2019, 110, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Howe, C.G.; Cox, B.; Fore, R.; Jungius, J.; Kvist, T.; Lent, S.; Miles, H.E.; Salas, L.A.; Rifas-Shiman, S.; Starling, A.P.; et al. Maternal Gestational Diabetes Mellitus and Newborn DNA Methylation: Findings from the Pregnancy and Childhood Epigenetics Consortium. Diabetes Care 2020, 43, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Overall (n = 1388) | Non-GDM (n = 1114) | GDM (n = 274) | p | |
---|---|---|---|---|---|
Age (years) | |||||
<30 | 692 (49.9) | 589 (85.1) | 103 (14.9) | <0.001 | |
30–35 | 489 (35.2) | 381 (77.9) | 108 (20.1) | ||
≥35 | 207 (14.9) | 144 (69.6) | 63 (30.4) | ||
Prepregnancy BMI (kg/m2) | |||||
<18.5 | 104 (7.5) | 87 (83.7) | 17 (16.3) | 0.036 | |
18.5–24 | 771 (55.5) | 636 (82.5) | 135 (17.5) | ||
24–28 | 375 (27.0) | 287 (76.5) | 88 (23.5) | ||
≥28 | 138 (10.0) | 104 (75.4) | 34 (24.6) | ||
Ethnicity | |||||
Han nationality | 1293 (93.2) | 1031 (79.7) | 262 (20.3) | 0.095 | |
Minority nationality | 95 (6.8) | 83 (87.4) | 12 (12.6) | ||
Education (years) | |||||
≤12 | 561 (40.4) | 440 (78.4) | 121 (21.6) | 0.278 | |
12–15 | 436 (31.4) | 351 (80.5) | 85 (19.5) | ||
>15 | 391 (28.2) | 323 (82.6) | 68 (17.4) | ||
Drinking | |||||
Never | 1377 (99.2) | 1106 (80.3) | 271 (19.7) | 0.462 | |
Ever | 11 (0.8) | 8 (72.7) | 3 (27.3) | ||
Smoking | |||||
Never | 1368 (98.6) | 1101 (80.5) | 267 (19.5) | 0.092 | |
Ever | 20 (1.4) | 13 (65.0) | 7 (35.0) | ||
Family history of diabetes | |||||
No | 1260 (90.8) | 1037 (82.3) | 223 (17.7) | <0.001 | |
Yes | 128 (9.2) | 77 (60.2) | 51 (39.8) | ||
Parity | |||||
Nulliparous | 681 (49.1) | 564 (82.8) | 117 (17.2) | 0.022 | |
Multiparous | 707 (50.9) | 550 (77.8) | 157 (22.2) | ||
Folate (ng/mL) | 9.4 (6.2–14.6) | 9.1 (6.0–14.2) | 10.5 (6.7–15.5) | 0.009 | |
B12 (pg/mL) | 271 (214–337) | 273 (218–344) | 262 (198–317) | 0.003 | |
Hcy (μmol/L) | 5.0 (4.5–6.0) | 5.0 (4.5–6.0) | 5.0 (4.4–6.0) | 0.650 | |
Folate/B12 | 35.1 (23.9–49.2) | 34.1 (22.7–47.9) | 40.6 (28.6–54.1) | <0.001 |
OCM Indicators a | Non-GDM | GDM | OR (95% CI) b | p | p for Trend | OR (95% CI)c | p | p for Trend | |
---|---|---|---|---|---|---|---|---|---|
Folate | |||||||||
Per IQR increase | 1114 | 274 | 1.36 (1.07, 1.72) | 0.011 | 1.59 (1.22, 2.13) | 0.002 | |||
Q1 (<6.2) | 288 | 52 | 1.0 | 1.0 | |||||
Q2 (6.2–9.4) | 286 | 67 | 1.30 (0.87, 1.93) | 0.199 | 1.47 (0.99, 2.26) | 0.076 | |||
Q3 (9.4–14.6) | 275 | 71 | 1.43 (0.96, 2.12) | 0.075 | 1.61 (1.07, 2.49) | 0.033 | |||
Q4 (≥14.6) | 265 | 84 | 1.76 (1.20, 2.58) | 0.004 | 0.004 | 2.28 (1.49, 3.61) | <0.001 | <0.001 | |
B12 | |||||||||
Per IQR increase | 1114 | 274 | 0.83 (0.71, 0.97) | 0.019 | 0.76 (0.65, 0.92) | 0.004 | |||
Q1 (<214) | 261 | 82 | 1.0 | 1.0 | |||||
Q2 (214–271) | 278 | 67 | 0.77 (0.53, 1.10) | 0.154 | 0.71 (0.50, 1.06) | 0.091 | |||
Q3 (271–337) | 276 | 74 | 0.85 (0.60, 1.22) | 0.384 | 0.71 (0.49, 1.06) | 0.098 | |||
Q4 (≥337) | 299 | 51 | 0.54 (0.37, 0.80) | 0.002 | 0.006 | 0.45 (0.30, 0.69) | <0.001 | <0.001 | |
Hcy | |||||||||
Per IQR increase | 1114 | 274 | 1.02 (0.93, 1.12) | 0.656 | 1.04 (0.95, 1.15) | 0.456 | |||
Q1 (<4.5) | 267 | 77 | 1.0 | 1.0 | |||||
Q2 (4.5–5.0) | 283 | 65 | 0.80 (0.55, 1.15) | 0.228 | 0.77 (0.54, 1.14) | 0.195 | |||
Q3 (5.0–6.0) | 282 | 65 | 0.80 (0.55, 1.16) | 0.235 | 0.80 (0.56, 1.19) | 0.268 | |||
Q4 (≥6.0) | 282 | 67 | 0.82 (0.57, 1.19) | 0.302 | 0.323 | 0.90 (0.62, 1.36) | 0.631 | 0.650 | |
Folate/B12 | |||||||||
Per IQR increase | 1114 | 274 | 1.02 (0.97, 1.07) | 0.392 | 1.01 (0.96, 1.06) | 0.683 | |||
Q1 (<23.9) | 303 | 44 | 1.0 | 1.0 | |||||
Q2 (23.9–35.1) | 284 | 63 | 1.53 (1.01, 2.32) | 0.047 | 1.58 (1.05, 2.44) | 0.040 | |||
Q3 (35.1–49.2) | 274 | 73 | 1.83 (1.22, 2.76) | 0.004 | 1.94 (1.30, 2.98) | 0.003 | |||
Q4 (≥49.2) | 253 | 94 | 2.56 (1.72, 3.80) | <0.001 | <0.001 | 2.56 (1.73, 3.91) | <0.001 | <0.001 |
Genetic Variants | OR (95% CI) a | p | OR (95% CI) b | p | |
---|---|---|---|---|---|
MTHFR rs1801131 | |||||
TT | 1.00 | 1.00 | |||
TG | 0.67 (0.48, 0.92) | 0.014 | 0.68 (0.49, 0.96) | 0.027 | |
GG | 0.36 (0.08, 1.57) | 0.174 | 0.30 (0.07, 1.33) | 0.113 | |
Dominant (GG/TG vs. TT) | 0.65 (0.47, 0.89) | 0.008 | 0.65 (0.47, 0.91) | 0.012 | |
Recessive (GG vs. TG/TT) | 0.40 (0.09, 1.72) | 0.219 | 0.33 (0.07, 1.46) | 0.142 | |
Additive (GG vs. TG vs. TT) | 0.66 (0.49, 0.88) | 0.006 | 0.66 (0.48, 0.89) | 0.008 |
OCM Indicators | GG/TG (n = 377) a | TT (n = 987) a | pinteraction | ||
---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||
Folate (Per IQR increase) | 1.47 (0.74, 2.92) | 0.274 | 1.66 (1.20, 2.30) | 0.002 | 0.769 |
RERI (95% CI) a,b | 0.28 (−0.41, 1.05) | ||||
B12 (Per IQR increase) | 0.70 (0.47, 1.05) | 0.081 | 0.80 (0.65, 0.98) | 0.033 | 0.818 |
RERI (95% CI) a,b | −0.05 (−1.23, 0.39) | ||||
Hcy (Per IQR increase) | 0.93 (0.69, 1.26) | 0.653 | 1.05 (0.95, 1.17) | 0.344 | 0.347 |
RERI (95% CI) a,b | 0.13 (−0.14, 0.38) | ||||
Folate/B12 (Per IQR increase) | 1.43 (0.91, 2.24) | 0.118 | 1.00 (0.95, 1.06) | 0.878 | 0.067 |
RERI (95% CI) a,b | −0.46 (−1.06, 0.38) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Tian, X.; Wang, Y.; Zhang, X.; Zhang, L.; Li, C.; Li, J.; Wang, C.; Liu, H.; Liu, J.; et al. Associations of Maternal rs1801131 Genotype in MTHFR and Serum Folate and Vitamin B12 with Gestational Diabetes Mellitus in Chinese Pregnant Women. Nutrients 2022, 14, 1169. https://doi.org/10.3390/nu14061169
Li S, Tian X, Wang Y, Zhang X, Zhang L, Li C, Li J, Wang C, Liu H, Liu J, et al. Associations of Maternal rs1801131 Genotype in MTHFR and Serum Folate and Vitamin B12 with Gestational Diabetes Mellitus in Chinese Pregnant Women. Nutrients. 2022; 14(6):1169. https://doi.org/10.3390/nu14061169
Chicago/Turabian StyleLi, Shuying, Xiubiao Tian, Yiyun Wang, Xumei Zhang, Liwen Zhang, Chen Li, Jing Li, Chunhua Wang, Huihuan Liu, Juan Liu, and et al. 2022. "Associations of Maternal rs1801131 Genotype in MTHFR and Serum Folate and Vitamin B12 with Gestational Diabetes Mellitus in Chinese Pregnant Women" Nutrients 14, no. 6: 1169. https://doi.org/10.3390/nu14061169
APA StyleLi, S., Tian, X., Wang, Y., Zhang, X., Zhang, L., Li, C., Li, J., Wang, C., Liu, H., Liu, J., Liu, H., Yang, X., Li, W., Leng, J., Yang, X., Tang, N., & Zhang, Q. (2022). Associations of Maternal rs1801131 Genotype in MTHFR and Serum Folate and Vitamin B12 with Gestational Diabetes Mellitus in Chinese Pregnant Women. Nutrients, 14(6), 1169. https://doi.org/10.3390/nu14061169