Dietary Acid Load Modulation of Asthma-Related miRNAs in the Exhaled Breath Condensate of Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. 24-Hour-Recall Questionnaire
2.3. Assessment of Dietary Acid Load Scores
2.4. Collection of Exhaled Breath Condensate (EBC)
2.5. Assessment of miRNAs from EBC
2.6. Covariates
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Von Mutius, E.; Smits, H.H. Primary prevention of asthma: From risk and protective factors to targeted strategies for prevention. Lancet 2020, 396, 854–866. [Google Scholar] [CrossRef]
- Wypych, T.P.; Marsland, B.J.; Ubags, N.D.J. The Impact of Diet on Immunity and Respiratory Diseases. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. S5), S339–S347. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Larsen, V.; Del Giacco, S.R.; Moreira, A.; Bonini, M.; Charles, D.; Reeves, T.; Carlsen, K.-H.; Haahtela, T.; Bonini, S.; Fonseca, J.; et al. Asthma and dietary intake: An overview of systematic reviews. Allergy 2016, 71, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, F.D.C.; Paciência, I.; Rufo, J.C.; Farraia, M.; Silva, D.; Padrão, P.; Delgado, L.; Garcia-Larsen, V.; Moreira, A.; Moreira, P. Higher diversity of vegetable consumption is associated with less airway inflammation and prevalence of asthma in school-aged children. Pediatr. Allergy Immunol. 2021, 32, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Cunha, P.; Moreira, A.; Moreira, P.; Delgado, L. Dietary diversity and childhood asthma-Dietary acid load, an additional nutritional variable to consider. Allergy 2020, 75, 2418–2420. [Google Scholar] [CrossRef]
- Ho, S.M. Environmental epigenetics of asthma: An update. J. Allergy Clin. Immunol. 2010, 126, 453–465. [Google Scholar] [CrossRef] [Green Version]
- Mandal, C.; Ghosh-Choudhury, T.; Dey, N.; Choudhury, G.G.; Ghosh-Choudhury, N. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis 2012, 33, 1897–1908. [Google Scholar] [CrossRef] [Green Version]
- Roessler, C.; Kuhlmann, K.; Hellwing, C.; Leimert, A.; Schumann, J. Impact of Polyunsaturated Fatty Acids on miRNA Profiles of Monocytes/Macrophages and Endothelial Cells—A Pilot Study. Int. J. Mol. Sci. 2017, 18, 284. [Google Scholar] [CrossRef] [Green Version]
- Mendes, F.C.; Paciência, I.; Ferreira, A.C.; Martins, C.; Rufo, J.C.; Silva, D.; Cunha, P.; Farraia, M.; Moreira, P.; Delgado, L.; et al. Development and validation of exhaled breath condensate microRNAs to identify and endotype asthma in children. PLoS ONE 2019, 14, e0224983. [Google Scholar] [CrossRef]
- Pinkerton, M.; Chinchilli, V.; Banta, E.; Craig, T.; August, A.; Bascom, R.; Cantorna, M.; Harvill, E.; Ishmael, F.T. Differential expression of microRNAs in exhaled breath condensates of patients with asthma, patients with chronic obstructive pulmonary disease, and healthy adults. J. Allergy Clin. Immunol. 2013, 132, 217–219.e2. [Google Scholar] [CrossRef]
- Ortega, F.J.; Cardona-Alvarado, M.I.; Mercader, J.M.; Moreno-Navarrete, J.M.; Moreno, M.; Sabater-Masdeu, M.; Fuentes-Batllevell, N.; Ramirez-Chavez, E.; Ricart, W.; Torres, J.M.; et al. Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J. Nutr. Biochem. 2015, 26, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Boesch-Saadatmandi, C.; Loboda, A.; Wagner, A.E.; Stachurska, A.; Jozkowicz, A.; Dulak, J.; Döring, F.; Wolffram, S.; Rimbach, G. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: Role of miR-155. J. Nutr. Biochem. 2011, 22, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Quintanilha, B.J.; Reis, B.Z.; Duarte, G.B.S.; Cozzolino, S.M.F.; Rogero, M.M. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017, 9, 1168. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. Int. Rev. J. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Cunha, P.; Paciência, I.; Cavaleiro Rufo, J.; Castro Mendes, F.; Farraia, M.; Barros, R.; Silva, D.; Delgado, L.; Padrão, P.; Moreira, P.; et al. Dietary Acid Load: A Novel Nutritional Target in Overweight/Obese Children with Asthma? Nutrients 2019, 11, 2255. [Google Scholar] [CrossRef] [Green Version]
- Paciência, I.; Rufo, J.C.; Silva, D.; Martins, C.; Mendes, F.; Farraia, M.; Delgado, L.; Fernandes, E.D.O.; Padrão, P.; Moreira, P.; et al. Exposure to indoor endocrine-disrupting chemicals and childhood asthma and obesity. Allergy 2019, 74, 1277–1291. [Google Scholar] [CrossRef]
- Walker, J.L.; Ardouin, S.; Burrows, T. The validity of dietary assessment methods to accurately measure energy intake in children and adolescents who are overweight or obese: A systematic review. Eur. J. Clin. Nutr. 2018, 72, 185–197. [Google Scholar] [CrossRef]
- Rangan, A.M.; Flood, V.M.; Gill, T.P. Misreporting of energy intake in the 2007 Australian Children’s Survey: Identification, characteristics and impact of misreporters. Nutrients 2011, 3, 186–199. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. S1), 5–41. [Google Scholar]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Remer, T.; Dimitriou, T.; Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 2003, 77, 1255–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkemeyer, S. Critique on equations of net endogenous acid production (NEAP) and indirect proof of constant organic acid excretion. Am. J. Clin. Nutr. 2009, 91, 1409–1410. [Google Scholar] [CrossRef]
- Japan Public Health Center–Based Prospective Study Group; Akter, S.; Kurotani, K.; Kashino, I.; Goto, A.; Mizoue, T.; Noda, M.; Sawada, N.; Tsugane, S. High Dietary Acid Load Score Is Associated with Increased Risk of Type 2 Diabetes in Japanese Men: The Japan Public Health Center–based Prospective Study. J. Nutr. 2016, 146, 1076–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavaleiro Rufo, J.; Paciência, I.; Mendes, F.C.; Farraia, M.; Rodolfo, A.; Silva, D.; de Oliveira Fernandes, E.; Delgado, L.; Moreira, A. Exhaled breath condensate volatilome allows sensitive diagnosis of persistent asthma. Allergy 2019, 74, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Thomas, P.S. Relationship between Exhaled Breath Condensate Volume and Measurements of Lung Volumes. Respiration 2006, 74, 142–145. [Google Scholar] [CrossRef]
- Lacedonia, D.; Palladino, G.P.; Barbaro, M.P.F.; Scioscia, G.; Carpagnano, G.E. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma–COPD overlap syndrome phenotype. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1811–1817. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Qin, H.-B.; Xu, B.; Zhou, H.; Zhao, D.-Y. Profiling of miRNAs in pediatric asthma: Upregulation of miRNA-221 and miRNA-485-3p. Mol. Med. Rep. 2012, 6, 1178–1182. [Google Scholar] [CrossRef] [Green Version]
- Malmhäll, C.; Johansson, K.; Winkler, C.; Alawieh, S.; Ekerljung, L.; Rådinger, M. Altered miR-155 Expression in Allergic Asthmatic Airways. Scand. J. Immunol. 2017, 85, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Panganiban, R.P.; Wang, Y.; Howrylak, J.; Chinchilli, V.M.; Craig, T.J.; August, A.; Ishmael, F.T. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J. Allergy Clin. Immunol. 2016, 137, 1423–1432. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.-B.; Xu, B.; Mei, J.-J.; Li, D.; Liu, J.-J.; Zhao, D.-Y.; Liu, F. Inhibition of miRNA-221 Suppresses the Airway Inflammation in Asthma. Inflammation 2012, 35, 1595–1599. [Google Scholar] [CrossRef]
- Suojalehto, H.; Lindström, I.; Majuri, M.-L.; Mitts, C.; Karjalainen, J.; Wolff, H.; Alenius, H. Altered MicroRNA Expression of Nasal Mucosa in Long-Term Asthma and Allergic Rhinitis. Int. Arch. Allergy Immunol. 2014, 163, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Trinh, H.K.T.; Le Pham, D.; Park, H.-S.; Kim, S.-C. Association of the miR-196a2, miR-146a, and miR-499 Polymorphisms with Asthma Phenotypes in a Korean Population. Mol. Diagn. Ther. 2017, 21, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-B.; Wang, M.-Y.; Zhu, H.-Y.; Tang, S.-Q.; You, Y.-D.; Xie, Y.-Q. Overexpression of microRNA-21 and microRNA-126 in the patients of bronchial asthma. Int. J. Clin. Exp. Med. 2014, 7, 1307–1312. [Google Scholar] [PubMed]
- Moreira, A.; Bonini, M.; Garcia-Larsen, V.; Bonini, S.; Del Giacco, S.R.; Agache, I.; Fonseca, J.; Papadopoulos, N.G.; Carlsen, K.-H.; Delgado, L.; et al. Weight loss interventions in asthma: EAACI Evidence-Based Clinical Practice Guideline (Part I). Allergy 2013, 68, 425–439. [Google Scholar] [CrossRef]
- Forno, E. Childhood obesity and asthma: To BMI or not to BMI? J. Allergy Clin. Immunol. 2017, 139, 767–768. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Su, M.; Brumpton, B.M.; Lee, Y.L. Investigating obesity-related risk factors for childhood asthma. Pediatr. Allergy Immunol. 2021, 33, e13710. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.; Severo, M.; Paciência, I.; Rufo, J.; Martins, C.; Moreira, P.; Padrão, P.; Delgado, L.; Moreira, A. Setting definitions of childhood asthma in epidemiologic studies. Pediatr. Allergy Immunol. 2019, 30, 708–715. [Google Scholar] [CrossRef]
- Kuczmarski, R.J.; Ogden, C.L.; Grummer-Strawn, L.M.; Flegal, K.M.; Guo, S.S.; Wei, R.; Mei, Z.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. CDC Growth Charts: United States; Department of Health and Human Services: Washington, DC, USA, 2000; pp. 1–27. [Google Scholar]
- Alexy, U.; Kersting, M.; Remer, T. Potential renal acid load in the diet of children and adolescents: Impact of food groups, age and time trends. Public Health Nutr. 2008, 11, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Bühlmeier, J.; Harris, C.; Koletzko, S.; Lehmann, I.; Bauer, C.-P.; Schikowski, T.; Von Berg, A.; Berdel, D.; Heinrich, J.; Hebebrand, J.; et al. Dietary Acid Load and Mental Health Outcomes in Children and Adolescents: Results from the GINIplus and LISA Birth Cohort Studies. Nutrients 2018, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Remer, T. Acid-base in renal failure: Influence of Diet on Acid-Base Balance. Semin. Dial. 2000, 13, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Adeva, M.M.; Souto, G. Diet-induced metabolic acidosis. Clin. Nutr. 2011, 30, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, N.; Alashkar Alhamwe, B.; Caraballo, L.; Ding, M.; Ferrante, A.; Garn, H.; Garssen, J.; Hii, C.S.; Irvine, J.; Llinás-Caballero, K.; et al. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021, 13, 724. [Google Scholar] [CrossRef] [PubMed]
- Kocic, H.; Damiani, G.; Stamenkovic, B.; Tirant, M.; Jovic, A.; Tiodorovic, D.; Peris, K. Dietary compounds as potential modulators of microRNA expression in psoriasis. Ther. Adv. Chronic Dis. 2019, 10, 2040622319864805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkeni, E.; Bonnet, L.; Marcotorchino, J.; Tourniaire, F.; Astier, J.; Ye, J.; Landrier, J.-F. Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: A new mechanism for the regulation of inflammation by vitamin D. Epigenetics 2018, 13, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Kempinska-Podhorodecka, A.; Milkiewicz, M.; Wasik, U.; Ligocka, J.; Zawadzki, M.; Krawczyk, M.; Milkiewicz, P. Decreased Expression of Vitamin D Receptor Affects an Immune Response in Primary Biliary Cholangitis via the VDR-miRNA155-SOCS1 Pathway. Int. J. Mol. Sci. 2017, 18, 289. [Google Scholar] [CrossRef] [Green Version]
- De Gonzalo-Calvo, D.; Van Der Meer, R.W.; Rijzewijk, L.J.; Smit, J.W.A.; Revuelta-López, E.; Nasarre, L.; Escola-Gil, J.C.; Lamb, H.J.; Llorente-Cortes, V. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci. Rep. 2017, 7, 47. [Google Scholar] [CrossRef]
- Salam, M.T.; Zhang, Y.; Begum, K. Epigenetics and childhood asthma: Current evidence and future research directions. Epigenomics 2012, 4, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Jardim, M.J.; Dailey, L.; Silbajoris, R.; Diaz-Sanchez, D. Distinct MicroRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-Associated Gene. Am. J. Respir. Cell Mol. Biol. 2012, 47, 536–542. [Google Scholar] [CrossRef]
- Zhou, H.; Li, J.; Gao, P.; Wang, Q.; Zhang, J. miR-155: A Novel Target in Allergic Asthma. Int. J. Mol. Sci. 2016, 17, 1773. [Google Scholar] [CrossRef] [Green Version]
- Spivack, S.; Han, W.; Loudig, O.; Shah, C.; Dobkin, J.; Keller, S.; Zhu, C.; Patel, D.; Desai, A.; Gombar, S.; et al. An Exhaled microRNA Panel Interrogated for Lung Cancer Case-Control Discrimination. Am. Thorac. Soc. Int. Conf. Abstr. 2021, 203, A1077. [Google Scholar]
- Foster, E.; Bradley, J. Methodological considerations and future insights for 24-hour dietary recall assessment in children. Nutr. Res. 2017, 51, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Biró, G.; Hulshof, K.F.A.M.; Ovesen, L.; Amorim Cruz, J.; EFCOSUM Group. Selection of methodology to assess food intake. Eur. J. Clin. Nutr. 2002, 56 (Suppl. S2), S25–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolper, C.; Heshka, S.; Heymsfield, S.B. Measuring Food Intake: An Overview. Handbook of Assessment Methods for Eating Behaviors and Weight-Related Problems: Measures, Theory, and Research; Sage Publications, Inc.: Thousand Oaks, CA, USA, 1995; pp. 215–240. [Google Scholar]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31 (Suppl. S3), 38–45. [Google Scholar]
- Barros, R.; Moreira, A.; Fonseca, J.; Delgado, L.; Castel-Branco, M.G.; Haahtela, T.; Lopes, C.; Moreira, P. Dietary intake of α-linolenic acid and low ratio of n-6:n-3 PUFA are associated with decreased exhaled NO and improved asthma control. Br. J. Nutr. 2011, 106, 441–450. [Google Scholar] [CrossRef] [Green Version]
Females (n = 71) | Males (n = 79) | Total (n = 150) | |
---|---|---|---|
Age (years) | 9.0 (8.0; 9.0) | 9.0 (8.0; 10.0) | 9.0 (8.0; 9.0) * |
Parental education level (years) 1, n (%) | |||
≤9 | 21 (36.84) | 27 (40.30) | 48 (32.0) |
≥10 and ≤12 | 17 (29.82) | 23 (34.33) | 40 (26.7) |
>12 | 19 (33.33) | 17 (25.37) | 36 (24.0) |
Nutritional supplementation 2, n (%) | 12 (16.90) | 8 (10.13) | 20 (13.3) |
BMI categories 3, n (%) | |||
Underweight | 4 (5.63) | 5 (6.33) | 9 (6.0) |
Normal weight | 31 (43.66) | 32 (40.51) | 63 (42.0) |
Overweight | 23 (32.39) | 17 (21.52) | 40 (26.7) |
Obese | 13 (18.31) | 25 (31.65) | 38 (25.3) |
Asthma 4, n (%) | 27 (38.03) | 25 (31.65) | 52 (34.7) |
Energy (kcal/day) | 2011.30 (1719.50; 2395.65) | 229.21 (1998.35; 2665.99) | 2186.07 (1822.60; 2555.45) ** |
Nutrient intake | |||
Protein (g/day) | 98.76 (87.42; 106.68) | 93.64 (84.91; 105.42) | 95.43 (85.26; 108.83) |
Phosphorus (mg/day) | 1469.09 (1305.62; 1653.26) | 1415.49 (1203.78: 1640.03) | 1443.84 (1250.23; 1640.03) |
Potassium (mg/day) | 3187.89 (2557.04; 3791.68) | 2969.85 (2589.47; 3502.07) | 3155.24 (2577.85; 3675.95) |
Magnesium (mg/day) | 282.33 (244.43; 310.37) | 263.32 (2.32.71; 316.83) | 269.41 (239.94; 310.36) |
Calcium (mg/day) | 1002.81 (667.37; 1251.74) | 993.10 (779.56; 1268.17) | 998.38 (718.56; 1260.81) |
Dietary Acid Load (mEq/day) | |||
PRAL | |||
Low (<14.43) | 33 (46.48) | 42 (53.16) | 75 (50.0) |
High (≥14.43) | 38 (53.52) | 37 (46.84) | 75 (50.0) |
NEAP | |||
Low (<55.79) | 35 (49.30) | 40 (50.63) | 75 (50.0) |
High (≥55.79) | 36 (50.70) | 39 (50.63) | 75 (50.0) |
MiRNAs | |||
miR-21-5p | |||
Low (<2.79) | 35 (49.30) | 40 (50.63) | 75 (50.0) |
High (≥2.79) | 36 (50.70) | 39 (49.37) | 75 (50.0) |
miR-126-3p | |||
Low (<0.0568) | 36 (50.70) | 39 (49.37) | 75 (50.0) |
High (≥0.0568) | 35 (49.30) | 40 (50.63) | 75 (50.0) |
miR-133a-3p | |||
Low (<0.0164) | 32 (45.07) | 43 (54.43) | 75 (50.0) |
High (≥0.0164) | 39 (54.93) | 36 (45.57) | 75 (50.0) |
miR-145-5p | |||
Low (<0.58) | 31 (43.66) | 44 (55.70) | 75 (50.0) |
High (≥0.58) | 40 (56.34) | 35 (44.30) | 75 (50.0) |
miR-146a-5p | |||
Low (<0.000665) | 47 (66.20) | 45 (56.90) | 92 (61.3) |
High (≥0.000665) | 24 (33.80) | 34 (43.04) | 58 (38.7) |
miR-155-5p | |||
Low (<0.000119) | 53 (74.65) | 61 (51.90) | 114 (76.0) |
High (≥0.000119) | 18 (25.35) | 18 (22.78) | 36 (24.0) |
miR-221-3p | |||
Low (<0.0831) | 34 (47.89) | 41 (51.90) | 75 (50.0) |
High (≥0.0831) | 37 (52.11) | 38 (48.10) | 75 (50.0) |
miR-328-3p | |||
Low (<0.50) | 33 (46.48) | 42 (53.16) | 75 (50.0) |
High (≥0.50) | 38 (53.52) | 37 (46.84) | 75 (50.0) |
miR-423-3p | |||
Low (<0.00107) | 51 (71.83) | 49 (62.03) | 100 (66.7) |
High (≥0.00107) | 20 (28.17) | 30 (37.97) | 50 (33.3) |
PRAL Score | NEAP Score | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
miR-21-5p | ||||||
Unadjusted | 0.77 | 0.40; 1.45 | 0.766 | 0.69 | 0.36; 1.31 | 0.254 |
Model 1 | 0.76 | 0.39; 1.49 | 0.418 | 0.71 | 0.36; 1.41 | 0.324 |
Model 2 | 0.77 | 0.36; 1.61 | 0.480 | 0.87 | 0.41; 1.84 | 0.710 |
miR-126-3p | ||||||
Unadjusted | 1.62 | 0.85; 3.09 | 0.143 | 1.62 | 0.85; 3.09 | 0.143 |
Model 1 | 1.60 | 0.81; 3.16 | 0.174 | 1.50 | 0.76; 1.00 | 0.242 |
Model 2 | 1.36 | 0.65; 2.84 | 0.420 | 1.36 | 0.65; 2.86 | 0.417 |
miR-133a-3p | ||||||
Unadjusted | 2.52 | 1.30; 4.86 | 0.006 | 2.82 | 1.45; 5.46 | 0.002 |
Model 1 | 2.78 | 1.38; 5.57 | 0.004 | 2.96 | 1.47; 5.96 | 0.002 |
Model 2 | 2.83 | 1.31; 6.11 | 0.008 | 3.00 | 1.37; 6.60 | 0.006 |
miR-145-5p | ||||||
Unadjusted | 1.06 | 0.56; 2.00 | 0.870 | 1.06 | 0.56; 2.00 | 0.870 |
Model 1 | 1.12 | 0.57; 2.21 | 0.744 | 1.06 | 0.54; 2.08 | 0.877 |
Model 2 | 0.92 | 0.44; 1.95 | 0.828 | 1.05 | 0.49; 2.25 | 0.893 |
miR-146a-5p | ||||||
Unadjusted | 1.57 | 0.81; 3.05 | 0.181 | 1.12 | 0.58; 2.16 | 0.737 |
Model 1 | 1.28 | 0.64; 2.58 | 0.495 | 0.96 | 0.47; 1.93 | 0.897 |
Model 2 | 1.56 | 0.71; 3.41 | 0.270 | 1.06 | 0.48; 2.33 | 0.880 |
miR-155-5p | ||||||
Unadjusted | 0.55 | 0.26; 1.19 | 0.129 | 0.41 | 0.19; 0.89 | 0.024 |
Model 1 | 0.46 | 0.19; 1.08 | 0.073 | 0.30 | 0.12; 0.73 | 0.008 |
Model 2 | 0.61 | 0.24; 1.59 | 0.314 | 0.41 | 0.15; 1.10 | 0.076 |
miR-221-3p | ||||||
Unadjusted | 0.77 | 0.40; 1.45 | 0.415 | 0.77 | 0.40; 1.45 | 0.415 |
Model 1 | 0.77 | 0.39; 1.51 | 0.450 | 0.73 | 0.37; 1.43 | 0.360 |
Model 2 | 0.78 | 0.37; 1.63 | 0.505 | 0.77 | 0.37; 1.63 | 0.501 |
miR-328-3p | ||||||
Unadjusted | 1.06 | 0.56; 2.00 | 0.870 | 1.31 | 0.69; 2.48 | 0.415 |
Model 1 | 1.08 | 0.55; 2.11 | 0.834 | 1.27 | 0.65; 2.51 | 0.487 |
Model 2 | 1.08 | 0.51; 2.26 | 0.848 | 1.26 | 0.59; 2.67 | 0.553 |
miR-423-3p | ||||||
Unadjusted | 1.00 | 0.51; 1.97 | 0.999 | 0.70 | 0.35; 1.38 | 0.300 |
Model 1 | 0.87 | 0.42; 1.79 | 0.708 | 0.63 | 0.30; 1.31 | 0.216 |
Model 2 | 0.88 | 0.39; 1.99 | 0.762 | 0.61 | 0.27; 1.39 | 0.609 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, F.C.; Paciência, I.; Cavaleiro Rufo, J.; Silva, D.; Delgado, L.; Moreira, A.; Moreira, P. Dietary Acid Load Modulation of Asthma-Related miRNAs in the Exhaled Breath Condensate of Children. Nutrients 2022, 14, 1147. https://doi.org/10.3390/nu14061147
Mendes FC, Paciência I, Cavaleiro Rufo J, Silva D, Delgado L, Moreira A, Moreira P. Dietary Acid Load Modulation of Asthma-Related miRNAs in the Exhaled Breath Condensate of Children. Nutrients. 2022; 14(6):1147. https://doi.org/10.3390/nu14061147
Chicago/Turabian StyleMendes, Francisca Castro, Inês Paciência, João Cavaleiro Rufo, Diana Silva, Luís Delgado, André Moreira, and Pedro Moreira. 2022. "Dietary Acid Load Modulation of Asthma-Related miRNAs in the Exhaled Breath Condensate of Children" Nutrients 14, no. 6: 1147. https://doi.org/10.3390/nu14061147
APA StyleMendes, F. C., Paciência, I., Cavaleiro Rufo, J., Silva, D., Delgado, L., Moreira, A., & Moreira, P. (2022). Dietary Acid Load Modulation of Asthma-Related miRNAs in the Exhaled Breath Condensate of Children. Nutrients, 14(6), 1147. https://doi.org/10.3390/nu14061147