Intermittent Fasting: Potential Bridge of Obesity and Diabetes to Health?
Abstract
:1. Introduction
2. Intermittent Fasting and Its Common Forms
3. Intermittent Fasting and Obesity
3.1. Body Weight
3.2. Abdominal Obesity, Visceral Obesity, and Cardiometabolic Risk
3.3. Metabolism
3.4. Muscle Function
3.5. Hippocampus-Dependent Cognition
3.6. Gut Microbiota
4. Intermittent Fasting and Type 2 Diabetes Mellitus (T2DM)
4.1. Weight Loss
4.2. Metabolism
4.3. Gut Microbiota
4.4. Lifespan
5. Comparisons to Other Regimens
5.1. Comparison to Daily Calorie Restriction
5.2. Comparison to Mediterranean Diet and Paleolithic Diet
5.3. Comparison to Ketogenic Diet
5.4. Comparison to Ramadan Intermittent Fasting
5.5. Comparison to Christian Orthodox Fasting
6. Challenges
6.1. Appetite Change
6.2. Safety and Tolerability
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaacks, J.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–241. [Google Scholar] [CrossRef]
- WHO. The Global Health Observatory [EB/OL]. Available online: https://www.who.int/data/gho/data/themes/theme-details/GHO/body-mass-index-(bmi) (accessed on 24 May 2021).
- Chobot, A.; Górowska-Kowolik, K.; Sokołowska, M.; Jarosz-Chobot, P. Obesity and diabetes-Not only a simple link between two epidemics. Diabetes/Metab. Res. Rev. 2018, 34, e3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeo, F.; Carmona-Gutierrez, D.; Hofer, S.J.; Kroemer, G. Caloric restriction mimetics against age-associated disease: Targets, mechanisms, and therapeutic potential. Cell Metab. 2019, 29, 592–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catenacci, V.A.; Pan, Z.; Ostendorf, D.; Brannon, S.; Gozansky, W.S.; Mattson, M.P.; Martin, B.; MacLean, P.S.; Melanson, E.L.; Troy Donahoo, W. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity 2016, 24, 1874–1883. [Google Scholar] [CrossRef]
- Hatori, M.; Vollmers, C.; Zarrinarp, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.J.; et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15, 848–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Javaheri, A.; Godar, R.J.; Murphy, J.; Ma, X.; Rohatgi, N.; Mahadevan, J.; Hyrc, K.; Saftig, P.; Marshall, C.; et al. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 2017, 13, 1952–1968. [Google Scholar] [CrossRef] [PubMed]
- Tallis, J.; James, R.S.; Seebacher, F. The effects of obesity on skeletal muscle contractile function. J. Exp. Biol. 2018, 221, jeb163840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, G. Intermittent fasting: Promising premises or broken promises? Int. J. Food Sci. Nutr. 2021, 72, 721–722. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Adamidou, L.; Polyzos, S.A.; Karalazou, P.; Thisiadou, K.; Zebekakis, P.; Makedou, K.; Kotsa, K. Similar late effects of a 7-week orthodox religious fasting and a time restricted eating pattern on anthropometric and metabolic profiles of overweight adults. Int. J. Food Sci. Nutr. 2021, 72, 248–258. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Adamidou, L.; Dimakopoulos, J.; Karalazou, P.; Thisiadou, K.; Makedou, K.; Zebekakis, P.; Kotsa, K. Implementation of Christian Orthodox fasting improves plasma adiponectin concentrations compared with time-restricted eating in overweight premenopausal women. Int. J. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- Currenti, W.; Buscemi, S.; Cincione, R.I.; Cernigliaro, A.; Godos, J.; Grosso, G.; Galvano, F. Time-restricted feeding and metabolic outcomes in a cohort of Italian adults. Nutrients 2021, 13, 1651. [Google Scholar] [CrossRef] [PubMed]
- Corley, B.T.; Carroll, R.W.; Hall, R.M.; Weatherall, M.; Parry-Strong, A.; Krebs, J.D. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: A randomized controlled trial. Diabet. Med. 2018, 35, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Antoni, R.; Johnston, K.L.; Collins, A.L.; Robertson, M.D. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants. Br. J. Nutr. 2016, 115, 951–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabel, K.; Hoddy, K.K.; Varady, K.A. Safety of 8-h time restricted feeding in adults with obesity. Appl. Physiol. Nutr. Metab. 2019, 44, 107–109. [Google Scholar] [CrossRef] [Green Version]
- Byrne, N.M.; Sainsbury, A.; King, N.A.; Hills, A.P.; Wood, R.E. Intermittent energy restriction improves weight loss efficiency in obese men: The MATADOR study. Int. J. Obes. 2018, 42, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.S.; Clarke, R.E.; Coulter, S.N.; Rounsefell, K.N.; Walker, R.E.; Rauch, C.E.; Huggins, C.E.; Ryan, L. Intermittent energy restriction and weight loss: A systematic review. Eur. J. Clin. Nutr. 2016, 70, 292–299. [Google Scholar] [CrossRef]
- Lundell, L.S.; Parr, E.B.; Devlin, B.L.; Ingerslev, L.R.; Altıntaş, A.; Sato, S.; Sassone-Corsi, P.; Barrès, R.; Zierath, J.R.; Hawley, J.A. Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression. Nat. Commun. 2020, 11, 4643. [Google Scholar] [CrossRef]
- Rynders, C.A.; Thomas, E.A.; Zaman, A.; Pan, Z.; Catenacci, V.A.; Melanson, E.L. Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients 2019, 11, 2442. [Google Scholar] [CrossRef] [Green Version]
- Longo, V.D.; Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.A.; Sandesara, P.B.; Dhindsa, D.S.; Mehta, A.; Arneson, L.C.; Dollar, A.L.; Taub, P.R.; Sperling, L.S. Intermittent fasting: A heart healthy dietary pattern? Am. J. Med. 2020, 133, 901–907. [Google Scholar] [CrossRef]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Nencioni, A.; Caffa, I.; Cortellino, S.; Longo, V.D. Fasting and cancer: Molecular mechanisms and clinical application. Nat. Rev. Cancer 2018, 18, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G.; Leeuwenburgh, C.; Mattson, P. Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xie, C.; Lu, S.; Ma, Y.; Brocker, C.N.; Yan, T.; Krausz, K.W.; Xiang, R.; Gavrilova, O.; Patterson, A.D.; et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metabol. 2017, 26, 672–685. [Google Scholar] [CrossRef] [Green Version]
- Ravussin, E.; Beyl, R.A.; Poggiogalle, E.; Hsia, D.S.; Peterson, C.M. Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity 2019, 27, 1244–1254. [Google Scholar] [CrossRef]
- Liu, B.; Du, Y.; Wu, Y.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Trends in obesity and adiposity measures by race or ethnicity among adults in the United States 2011–18: Population based study. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Fitzgerald, F.T. The problem of obesity. Annu. Rev. Med. 1981, 32, 221–231. [Google Scholar] [CrossRef]
- Puhl, R.; Heuer, C.A. Obesity stigma: Important considerations for public health. Am. J. Public Health 2010, 100, 1019–1028. [Google Scholar] [CrossRef]
- Park, J.; Seo, Y.G.; Paek, Y.J.; Song, H.J.; Park, K.H.; Noh, H.M. Effect of alternate-day fasting on obesity and cardiometabolic risk: A systematic review and meta-analysis. Metabolism 2020, 111, 154336. [Google Scholar] [CrossRef]
- Liu, B.; Page, A.J.; Hatzinikolas, G.; Chen, M.; Wittert, G.A.; Heilbronn, L.K. Intermittent fasting improves glucose tolerance and promotes adipose tissue remodeling in male mice fed a high-fat diet. Endocrinology 2019, 160, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, J.E.; Livelo, C.; Trujillo, A.S.; Chandran, S.; Woodworth, B.; Andrade, L.; Le, H.D.; Manor, U.; Panda, S.; Melkani, G.C. Time-restricted feeding restores muscle function in Drosophila models of obesity and circadian-rhythm disruption. Nat. Commun. 2019, 10, 2700. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Pinto, A.M.; Bordoli, C.; Buckner, L.P.; Kaplan, P.C.; Del Arenal, I.M.; Jeffcock, E.J.; Hall, W.L.; Thuret, S. Energy restriction enhances adult hippocampal neurogenesis-associated memory after four weeks in an adult human population with central obesity; a randomized controlled trial. Nutrients 2020, 12, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, R.Y.; Lee, J.H.; Oh, Y.; Sung, H.K.; Kim, K.H. Assessment of the metabolic effects of isocaloric 2:1 intermittent fasting in mice. J. Vis. Exp. 2019, 153, e60174. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.K.; Choi, M.H.; Kulseng, B.; Zhao, C.M.; Chen, D. Time-restricted feeding on weekdays restricts weight gain: A study using rat models of high-fat diet-induced obesity. Physiol. Behav. 2017, 173, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Swoap, S.J.; Bingaman, M.J.; Hult, E.M.; Sandstrom, N.J. Alternate-day feeding leads to improved glucose regulation on fasting days without significant weight loss in genetically obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 317, R461–R469. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lee, J.H.; Yeung, J.L.; Das, E.; Kim, R.Y.; Jiang, Y.; Moon, J.H.; Jeong, H.; Thakkar, N.; Son, J.E.; et al. Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice. Sci. Rep. 2019, 9, 2479. [Google Scholar] [CrossRef]
- Lanier, V.; Gillespie, C.; Leffers, M.; Daley-Brown, D.; Milner, J.; Lipsey, C.; Webb, N.; Anderson, L.M.; Newman, G.; Waltenberger, J.; et al. Leptin-induced transphosphorylation of vascular endothelial growth factor receptor increases Notch and stimulates endothelial cell angiogenic transformation. Int. J. Biochem. Cell Biol. 2016, 79, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.H.; Chen, J.C.; Hus, K.H.; Lin, C.Y.; Wang, S.W.; Wang, S.Y.; Chang, Y.S.; Tang, C.H. Leptin increases VEGF expression and enhances angiogenesis in human chondrosarcoma cells. Biochim. Biophys. Acta. 2014, 1840, 3483–3493. [Google Scholar] [CrossRef]
- Park, H.Y.; Kwon, H.M.; Lim, J.M.; Hong, B.K.; Lee, J.Y.; Park, B.E.; Jang, Y.; Cho, S.Y.; Kim, H.S. Potential role of leptin in angiogenesis: Leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp. Mol. Med. 2001, 33, 95–102. [Google Scholar] [CrossRef]
- Silveira, E.A.; Vaseghi, G.; Santos, A.S.; Kliemann, N.; Masoudkabir, F.; Noll, M.; Mohammadifard, N.; Sarrafzadegan, N.; Oliveira, C.D. Visceral obesity and its shared role in cancer and cardiovascular disease: A scoping review of the pathophysiology and pharmacological treatments. Int. J. Mol. Sci. 2020, 21, 9042. [Google Scholar] [CrossRef]
- Dorothea, K.; Petra, C.; Markus, G.; Tibor, K. Adherence to time-restricted feeding and impact on abdominal obesity in primary care patients: Results of a pilot study in a pre–post design. Nutrients 2019, 11, 2854. [Google Scholar]
- Sundfør, T.M.; Svendsen, M.; Tonstad, S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: A randomized 1-year trial. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 698–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedual, M.A.; Wueest, S.; Borsigova, M.; Konrad, D. Intermittent fasting improves metabolic flexibility in short-term high-fat diet-fed mice. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E773–E782. [Google Scholar] [CrossRef]
- Chaix, A.; Lin, T.; Le, H.D.; Chang, M.W.; Panda, S. Time-Restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab. 2019, 29, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Chaix, A.; Zarrinpar, A.; Miu, P.; Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014, 20, 991–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodie, L.N.; Luo, Y.; Wayne, M.J.; Graff, E.C.; Ahmed, B.; O’Neill, A.M.; Greene, M.W. Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice. Metab. Clin. Exp. 2018, 82, 1–13. [Google Scholar] [CrossRef]
- Jones, R.; Pabla, P.; Mallinson, J.; Nixon, A.; Taylor, T.; Bennett, A.; Tsintzas, K. Two weeks of early time-restricted feeding (eTRF) improves skeletal muscle insulin and anabolic sensitivity in healthy men. Am. J. Clin. Nutr. 2020, 112, 1015–1028. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Secor, S.M.; Carey, H.V. Integrative physiology of fasting. Compr. Physiol. 2016, 6, 773–825. [Google Scholar]
- Gabel, K.; Marcell, J.; Cares, K.; Kalam, F.; Cienfuegos, S.; Ezpeleta, M.; Varady, K. A Effect of time restricted feeding on the gut microbiome in adults with obesity: A pilot study. Nutr. Health. 2020, 26, 79–85. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; Brindal, E.; James-Martin, G.; Noakes, M. Randomized trial of a high protein, partial meal replacement program with or without alternate day fasting: Similar effects on weight loss, retention status, nutritional, metabolic, and behavioral outcomes. Nutrients 2018, 10, 1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; Ravussin, E.; et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: A randomized clinical trial. JAMA Int. Med. 2018, 177, 930–938. [Google Scholar] [CrossRef]
- Carter, S.; Clifton, P.M.; Keogh, J.B. The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial. Diabetes Res. Clin. Pract. 2019, 151, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo, F.W.D.; Buchinger, A.; Burggrabe, H.; Hölz, G.; Kuhn, C.; Lischka, E.; Lischka, N.; Lützner, H.; May, W.; Ritzmann-Widderich, M.; et al. Fasting therapy–An expert panel update of the 2002 consensus guidelines. Forsch. Komplement. 2013, 20, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Drinda, S.; Grundler, F.; Neumann, T.; Lehmann, T.; Steckhan, N.; Michalsen, A.; De Toledo, F.W. Effects of periodic fasting on fatty liver index—A prospective observational study. Nutrients 2019, 11, 2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Tremaroli, V.; Schmidt, C.; Lundqvist, A.; Olsson, L.M.; Krämer, M.; Gummesson, A.; Perkins, R.; Bergström, G.; Bäckhed, F. The gut microbiota in prediabetes and diabetes: A population-based cross-sectional study. Cell Metab. 2020, 32, 379–390. [Google Scholar] [CrossRef]
- Beli, E.; Yan, Y.; Moldovan, L.; Vieira, C.P.; Gao, R.; Duan, Y.; Prasad, R.; Bhatwadekar, A.; White, F.A.; Townsend, S.D.; et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes 2018, 67, 1867–1879. [Google Scholar] [CrossRef] [Green Version]
- Weir, H.J.; Yao, P.; Huynh, F.K.; Escoubas, C.C.; Goncalves, R.L.; Burkewitz, K.; Laboy, R.; Hirschey, M.D.; Mair, W.B. Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling. Cell Metab. 2017, 26, 884–896. [Google Scholar] [CrossRef] [Green Version]
- Gabel, K.; Kroeger, C.M.; Trepanowski, J.F.; Hoddy, K.K.; Cienfuegos, S.; Kalam, F.; Varady, K.A. Differential effects of alternate-day fasting versus daily calorie restriction on insulin resistance. Obesity 2019, 27, 1443–1450. [Google Scholar] [CrossRef]
- Smith, N.J.; Caldwell, J.L.; van der Merwe, M.; Sharma, S.; Butawan, M.; Puppa, M.; Bloomer, R.J. A comparison of dietary and caloric restriction models on body composition, physical performance, and metabolic health in young mice. Nutrients 2019, 11, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean Diet: A review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te, L. Morenga Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Jospe, M.R.; Roy, M.; Brown, R.C.; Haszard, J.J.; Meredith-Jones, K.; Fangupo, L.J.; Osborne, H.; Fleming, E.A.; Taylor, R.W. Intermittent fasting, Paleolithic, or Mediterranean diets in the real world: Exploratory secondary analyses of a weight-loss trial that included choice of diet and exercise. Am. J. Clin. Nutr. 2020, 111, 503–514. [Google Scholar] [CrossRef]
- Yannakoulia, M.; Kontogianni, M.; Scarmeas, N. Cognitive health and Mediterranean diet: Just diet or lifestyle pattern? Ageing Res. Rev. 2015, 20, 74–78. [Google Scholar] [CrossRef]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boison, D. New insights into the mechanisms of the ketogenic diet. Curr. Opin. Neurol. 2017, 30, 187. [Google Scholar] [CrossRef] [Green Version]
- D’Abbondanza, M.; Ministrini, S.; Pucci, G.; Migliola, E.N.; Martorelli, E.E.; Gandolfo, V.; Siepi, D.; Lupattelli, G.; Vaudo, G. Very low-carbohydrate ketogenic diet for the treatment of severe obesity and associated non-alcoholic fatty liver disease: The role of sex differences. Nutrients 2020, 12, 2748. [Google Scholar] [CrossRef]
- Saslow, L.R.; Mason, A.E.; Kim, S.; Goldman, V.; Ploutz-Snyder, R.; Bayandorian, H.; Daubenmier, J.; Hecht, F.M.; Moskowitz, J.T. An online intervention comparing a very low-carbohydrate ketogenic diet and lifestyle recommendations versus a plate method diet in overweight individuals with type 2 diabetes: A randomized controlled trial. J. Med. Internet Res. 2017, 19, e5806. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.; Raggi, P. The ketogenic diet: Pros and cons. Atherosclerosis 2020, 292, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Faris, M.; Madkour, M.I.; Obaideen, A.K.; Dalah, E.Z.; Hasan, H.A.; Radwan, H.; Jahrami, H.A.; Hamdy, O.; Mohammad, M.G. Effect of Ramadan diurnal fasting on visceral adiposity and serum adipokines in overweight and obese individuals. Diabetes Res. Clin. Pract. 2019, 153, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lessan, N.; Ali, T. Energy Metabolism and Intermittent Fasting: The Ramadan Perspective. Nutrients 2019, 11, 1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BaHammam, A.; Almeneessier, A.S. Recent Evidence on the Impact of Ramadan Diurnal Intermittent Fasting, Mealtime, and Circadian Rhythm on Cardiometabolic Risk: A Review. Front. Nutr. 2020, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, S.N.; Koufakis, T.; Adamidou, L.; Antonopoulou, V.; Karalazou, P.; Thisiadou, K.; Mitrofanova, E.; Mulrooney, H.; Petróczi, A.; Zebekakis, P.; et al. Effects of orthodox religious fasting versus combined energy and time restricted eating on body weight, lipid concentrations and glycaemic profile. Int. J. Food Sci. Nutr. 2021, 72, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, K.; Casanova, N.; Oustric, P.; Turicchi, J.; Gibbons, C.; Hopkins, M.; Varady, K.; Blundell, J.; Finlayson, G. Matched weight loss through intermittent or continuous energy restriction does not lead to compensatory increases in appetite and eating behavior in a randomized controlled trial in women with overweight and obesity. Nutrition 2020, 150, 623–633. [Google Scholar] [CrossRef]
- Jebeile, H.; Gow, M.L.; Lister, N.B.; Haghighi, M.M.; Ayer, J.; Cowell, C.T.; Baur, L.A.; Garnett, S.P. Intermittent energy restriction is a feasible, effective, and acceptable intervention to treat adolescents with obesity. Nutrition 2019, 149, 1189–1197. [Google Scholar] [CrossRef]
- Horne, B.D.; Grajower, M.M.; Anderson, J.L. Limited evidence for the health effects and safety of intermittent fasting among patients with type 2 diabetes. JAMA 2020, 324, 341–342. [Google Scholar] [CrossRef]
- Clayton, D.J.; Biddle, J.; Maher, T.; Funnell, M.P.; Sargeant, J.A.; King, J.A.; Hulston, C.J.; Stensel, D.J.; James, L.J. 24-h severe energy restriction impairs postprandial glycaemic control in young, lean males. Br. J. Nutr. 2018, 120, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
Features | Intermittent Energy Restriction | Time-Restricted Fasting |
Logic involved | Reduction compensatory metabolic responses | Circadian rhythms |
Main principle of weight loss | The induction of energy intakes | The induction of energy intake time |
Fasting period | A set of days, normally in a week | No more than 24 h |
Intakes in fasting period | Strictly controlled energy intake | Only water or nothing |
Common patterns | Twice-per-week fast, every-other-day fast (ADF) | 16:8 diet, 15:9 diet |
First Author, Year | n | Subject | Regimen | Duration | Key Results |
---|---|---|---|---|---|
Liu, 2019 [31] | 48 | 10-week-old male C57BL/6J mice | IF (24-h fast on 3 non-consecutive days per week) | 16 weeks (6-week diet and 6-week follow-up) | 16 weeks (6-week diet and 6-week follow-up) |
Villanueva, 2019 [32] | 100–150 per group | Drosophila melanogaster (fruit fly) | TRF (TRF flies only had access to water at 12-h night) 3 weeks | 3 weeks | Flight index ↑ (compared to control group, p < 0.05); climbing performance ↑ (compared to control group, p < 0.05) |
Kim, 2019 [34] | 10–16 | 7-week-old male C57BL/6J mice | 2:1 Isocaloric IF Regimen | 16 weeks | Weight ↓ (p < 0.05); higher insulin sensitivity under HFD (compared to control group) |
Olsen, 2017 [35] | 50 | 4-week-old male Sprague-Dawley rats | TRF (feeding in 21:00–6:00) | 9 weeks | Weight ↓ (p < 0.05) |
Swoap, 2019 [36] | 34 | 13-week-old female ob/ob mice and female ob/+ littermate mice | ADF | 19 days | Weight did not change |
Kim, 2019 [37] | 6–11 per group | 6-week-old leptin-deficient ob/ob male mice | 2:1 IF (2 days of feeding—1 day of fasting) | 16 weeks | Weight gain did not reduce (compared to control group): Glucose excursions ↓ (p < 0.05) |
Dedual, 2019 [44] | 3–5 per group | 12-week-old male C57BL/6J wild-type littermate mice | IF (fasted for eight hours during their inactive phase) | 4 days | mRNA expression of enzymes involved in lipogenesis ↑ (p < 0.05); hepatic triglyceride levels ↑ (p < 0.05); various triglyceride and diacylglycerol fractions in the liver ↑ (p < 0.05) |
Li, 2017 [52] | 7–10 mice per group | 6-week-old male C57BL/6N mice | Every-other-day fasting (fed with alternating 24 h periods) | 30 days | The ratio of Firmicutes: Bacteroidetes increased from 3.4 in AL mice to 8.9 in EODF mice; intestine length ↑ (p < 0.05) |
First Author, Year | n | Subject | Regimen | Duration | Key Results |
---|---|---|---|---|---|
Catenacci, 2016 [5] | 29 | Obese adults (aged 18–55 years, BMI 30 kg/m2) | Zero-calorie ADF; CR (−400 kcal/day) | 32 weeks (8-month diet and 24-month follow-up) | Both weight ↓ (CR −7.1 ± 1.0 kg, ADF −8.2 ± 0.9 kg, p < 0.05) |
Currenti, 2021 [12] | 1936 | Adult (>18 years old) | TRF (8 h feeding window/10 h fasting window) | 6 months | Being obese ↓ [TRF-10, OR = 0.05, 95% CI: (0.01, 0.07); TRF-8, OR = 0.08, 95% CI: (0.04, 0.15)];hypertension [TRF-10, OR = 0.24, 95% CI: (0.13, 0.45); TRF-8, OR = 0.33, 95% CI: (0.17, 0.60)] |
Antoni, 2016 [14] | 10 (3 female) | Healthy, overweight/obese participants (aged 36 ± 5 years; BMI 29.0 ± 1.1 kg/m2) | IER (total/100% ER and partial/75%ER) | 3 days | Both fasting plasma glucose ↓ (p < 0.05); TAG ↓ (p < 0.05); postprandial glucose time to peak was significantly delayed |
Kim, 2020 [33] | 43 | Individuals with central obesity (aged 35–75 years) | IER (5:2 pattern) and continuous energy restriction | 4 weeks | Both pattern separation ↑ (p = 0.0005); only the IER group recognition memory ↓ (p < 0.05) |
Dorothea, 2019 [42] | 40 (31 females) | Abdominally obese participants (waist-to-height ratio, WHtR ≥ 0.5, aged 49.1 ± 12.4 years) | TRF (limit the daily period of food intake to 8–9 h and extend nightly fasting period to 15–16 h) | 3 months | Waist circumference ↓ (−5.3 ± 3.1 cm, p < 0.001); HbA1c ↓ −1.4 ± 3.5 mmol/mol (p = 0.003) |
Sundfør, 2018 [43] | 112 (50% males and 50% females) | Obese participants (aged 21–70 years, BMI 30–45 kg/m2) | IER and continuous energy restriction | 12 months (6-month diet and 6 month maintenance phase) | Both weight ↓ (p < 0.05); waist circumference ↓ (p < 0.05); triglycerides ↓ (p < 0.05); HDL-cholesterol ↑ (p < 0.05) |
Jones, 2020 [48] | 16 (all males) | Healthy males (aged 23 ± 1 years; BMI 24.0 ± 0.6 kg/m2) | eTRF (daily energy intake was restricted to between 08:00 and 16:00) | 2 weeks | Whole-body insulin sensitivity ↑ (p < 0.05); skeletal muscle uptakeof glucose ↑ (p < 0.05) |
Gabel, 2020 [51] | 14 | Adults, obesity | TRF (8 h feeding window/16 h fasting window) | 12 weeks | Weight ↓ (−2 ± 1 kg, p < 0.05); the abundance of Firmicutes, Bacteroidetes, or any other phyla did not have significant alternation |
Bowen, 2018, [53] | 136 | Adult, obese (aged 40 ± 8 years, BMI 36 ± 6 kg/m2) | ADF + daily energy restriction/DER (alternated between the DER, a modified fasting regimen, and one day per week to eat ad libitum) | 24 weeks (16-month diet and 8-month maintenance phase) | Fasting LDL-cholesterol, triglycerides, insulin, hsCRP, glucose, and blood pressure all improved (p < 0.05) |
Trepanowski, 2017 [54] | 100 (14 males and 86 females) | Adult (aged 44 ± 11 years; BMI 25.0–39.9 kg/m2) | ADF + daily calorie restriction | 12 months (6-month diet and 6-month follow-up) | Weight ↓ (both group–6.0%, p < 0.05) ↓ (insulin, glucose) compared to control group |
First Author, Year | n | Subject | Regimen | Duration | Key Results |
---|---|---|---|---|---|
Corley, 2018 [13] | 37 | Adults [BMI of 30–45 kg/m2, type 2 diabetes treated with metformin and/or hypoglycemic medications and a HbA1c concentration of 50–86 mmol/mol (6.7–10%)] | IER (2092–2510 kJ diet on 2 days per week) | 12 weeks | The rate of hypoglycemia ↑ (p < 0.05) |
Hutchison, 2019 [22] | 15 (all men) | Adults (age 55 ± 3 years, BMI 33.9 ± 0.8 kg/m2) | TRFe (8 a.m. to 5 p.m.) and TRFd (12 p.m. to 9 p.m.) | 7 days | Glucose incremental area ↓ (p = 0.001); fasting triglycerides ↓ (p = 0.003); mean fasting glucose ↓ in TRFe (p = 0.02), but not TRFd (p = 0.17) |
Carter, 2019 [50] | 131 | Adults, type 2 diabetes | IER (2100–2500 kJ diet 2 non-consecutive days/weekand their usual diet for 5 days/week) and continuous energy restriction (5000–6300 kJ diet for 7 days/week) | 24 months (12-month diet and 12-month follow-up) | Both HbA1c level↑ (p < 0.05); weight ↓ (3.9 ± 1.1 kg, p < 0.001) |
Drinda, 2019 [57] | 697 | Adults (age ≥ 18 years; BMI ≥ 19 kg/m2, 38 with T2DM) | Low-calorie transition day (600 kcal/day mono-diet) | Adapted to the individual therapeutic goal | BMI ↓ (−1.51 ± 0.82 kg/m2, p < 0.05); FLI↓(−14.02 ± 11.67; p < 0.0001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, B.-Y.; He, L.-X.; Xue, L. Intermittent Fasting: Potential Bridge of Obesity and Diabetes to Health? Nutrients 2022, 14, 981. https://doi.org/10.3390/nu14050981
Zang B-Y, He L-X, Xue L. Intermittent Fasting: Potential Bridge of Obesity and Diabetes to Health? Nutrients. 2022; 14(5):981. https://doi.org/10.3390/nu14050981
Chicago/Turabian StyleZang, Bo-Ying, Li-Xia He, and Ling Xue. 2022. "Intermittent Fasting: Potential Bridge of Obesity and Diabetes to Health?" Nutrients 14, no. 5: 981. https://doi.org/10.3390/nu14050981
APA StyleZang, B. -Y., He, L. -X., & Xue, L. (2022). Intermittent Fasting: Potential Bridge of Obesity and Diabetes to Health? Nutrients, 14(5), 981. https://doi.org/10.3390/nu14050981