The Glycemic Response to Infant Formulas: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Study Design
2.3. Statistical Analyses
2.4. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gartner, L.M.; Morton, J.; Lawrence, R.A.; Naylor, A.J.; O’Hare, D.; Schanler, R.J.; Eidelman, A.I. American academy of Pediatrics Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics 2005, 115, 496–506. [Google Scholar] [PubMed] [Green Version]
- Department of Health and Human Services (US). HHS Blueprint for Action on Breastfeeding; HHS, Office on Women’s Health (US): Washington, DC, USA, 2000.
- Committee on Health Care for Underserved Women; Committee on Obstetric Practice. Breastfeeding: Maternal and infant aspects. Int. J. Gynaecol. Obstet. 2001, 74, 217–232. [Google Scholar]
- Whyte, R.K.; Homer, R.; Pennock, C.A. Faecal excretion of oligosaccharides and other carbohydrates in normal neonates. Arch. Dis. Child. 1978, 53, 913–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hambraeus, L. Proprietary milk versus human breast milk in infant feeding. A critical appraisal from the nutritional point of view. Pediatr. Clin. N. Am. 1977, 24, 17–36. [Google Scholar] [CrossRef]
- Östman, E.M.; Liljeberg Elmståhl, H.G.; Björck, I.M. Inconsistency between glycemic and insulinemic responses to regular and fermented milk products. Am. J. Clin. Nutr. 2001, 74, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Tan, K.W.; Siow, P.C.; Henry, C.J. Soya milk exerts different effects on plasma amino acid responses and incretin hormone secretion compared with cows’ milk in healthy, young men. Br. J. Nutr. 2016, 116, 1216–1221. [Google Scholar] [CrossRef] [Green Version]
- Gilbertson, H.R.; Brand-Miller, J.C.; Thorburn, A.W.; Evans, S.; Chondros, P.; Werther, G.A. The effect of flexible low glycemic index dietary advice versus measured carbohydrate exchange diets on glycemic control in children with type 1 diabetes. Diab. Care 2001, 24, 1137–1143. [Google Scholar] [CrossRef] [Green Version]
- Ebbeling, C.B.; Leidig, M.M.; Sinclair, K.B.; Seger-Shippee, L.G.; Feldman, H.A.; Ludwig, D.S. Effects of an ad libitum low-glycemic load diet on cardiovascular disease risk factors in obese young adults. Am. J. Clin. Nutr. 2005, 81, 976–982. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Dehghan, M.; Mente, A.; Bangdiwala, S.I.; Rangarajan, S.; Srichaikul, K.; Mohan, V.; Avezum, A.; Díaz, R.; Rosengren, A.; et al. Glycemic index, glycemic load, and cardiovascular disease and mortality. N. Eng. J. Med. 2021, 384, 1312–1322. [Google Scholar] [CrossRef] [PubMed]
- Stintzung, G.; Zetterstorm, R. Cow’s milk allergy, incidence and pathogenetic role of early exposure to cow’s milk formula. Acta Paediatr. Scand. 1979, 68, 383–387. [Google Scholar] [CrossRef]
- Kuitunen, P. Comment on soy protein intolerance. Pediatrics 1978, 61, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.J.; Atkinson, F.S.; Ramalingam, N.; Buyken, A.E.; Brand-Miller, J.C. Effects of human milk and formula on postprandial glycaemia and insulinaemia. Eur. J. Clin. Nutr. 2015, 69, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M. Glycaemic index methodology. Nutr. Res. Rev. 2005, 18, 145–171. [Google Scholar] [CrossRef] [Green Version]
- Agosti, M.; Tandoi, F.; Morlacchi, L.; Bossi, A. Nutritional and metabolic programming during the first thousand days of life. Pediatr. Med. Chir. 2017, 39, 157. [Google Scholar] [CrossRef] [Green Version]
- Mameli, C.; Mazzantini, S.; Zuccotti, G.V. Nutrition in the First 1000 Days: The Origin of Childhood Obesity. Int. J. Environ. Res. Public Health 2016, 13, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heerwagen, M.J.; Miller, M.R.; Barbour, L.A.; Friedman, J.E. Maternal obesity and fetal metabolic programming: A fertile epigenetic soil. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R711–R722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitze, B.; Bosy-Westphal, A.; Plachta-Danielzik, S.; Bielfeldt, F.; Hermanussen, M.; Müller, M.J. Long-term effects of rapid weight gain in children, adolescents and young adults with appropriate birth weight for gestational age: The Kiel Obesity Prevention Study. Acta Paediatr. 2010, 99, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S. Clinical update: The low-glycaemic-index diet. Lancet 2007, 369, 890–892. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Salmeron, J.; Manson, J.E.; Stampfer, M.J.; Colditz, G.A.; Wing, A.L.; Willett, W.C. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997, 277, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Stenberg, M.; Frid, A.H.; Holst, J.J.; Björck, I.M. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: The role of plasma amino acids and incretins. Am. J. Clin. Nutr. 2004, 80, 1246–1253. [Google Scholar] [CrossRef]
- Newsholme, P.; Bender, K.; Kiely, A.; Brennan, L. Amino acid metabolism, insulin secretion and diabetes. Biochem. Soc. Trans. 2007, 35, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, L.J. Leucine as a pharmaconutrient in health and disease. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 71–77. [Google Scholar] [CrossRef]
- Nilsson, M.; Holst, J.J.; Björck, I.M. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: Studies using glucose-equivalent drinks. Am. J. Clin. Nutr 2007, 85, 996–1004. [Google Scholar] [CrossRef] [Green Version]
- Romero-Velarde, E.; Delgado-Franco, D.; García-Gutiérrez, M.; Gurrola-Díaz, C.; Larrosa-Haro, A.; Montijo-Barrios, E.; Muskiet, F.A.; Vargas-Guerrero, B.; Geurts, J. the importance of lactose in the human diet: Outcomes of a Mexican consensus meeting. Nutrients 2019, 11, 2737. [Google Scholar] [CrossRef] [Green Version]
- Hodges, J.K.; Cao, S.; Cladis, D.P.; Weaver, C.M. Lactose intolerance and bone health: The challenge of ensuring adequate calcium intake. Nutrients 2019, 11, 718. [Google Scholar] [CrossRef] [Green Version]
- Andrieux, C.E. Sacquet. Effect of microflora and lactose on the absorption of calcium, phosphorus and magnesium in the hindgut of the rat. Repr. Nutr. Dev. 1983, 23, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Saarela, M.; Hallamaa, K.; Mattila-Sandholm, T.; Mättö, J. The effect of lactose derivatives lactulose, lactitol and lactobionic acid on the functional and technological properties of potentially probiotic Lactobacillus strains. Int. Dairy J. 2003, 13, 291–302. [Google Scholar] [CrossRef]
- Ziegler, E.E.; Fomon, S.J. Lactose enhances mineral absorption in infancy. J. Pediatr. Gastroenterol. Nutr. 1983, 2, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Abrams, S.A.; Griffin, I.J.; Davila, P.M. Calcium and zinc absorption from lactose-containing and lactose-free infant formulas. Am. J. Clin. Nutr. 2002, 76, 442–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostoni, C.; Axelsson, I.; Goulet, O.; Koletzko, B.; Michaelsen, K.F.; Puntis, J.; Rieu, D.; Rigo, J.; Shamir, R.; Szajewska, H.; et al. Soy protein infant formulae and follow-on formulae: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 352–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, J.; Greer, F. Use of soy protein-based formulas in infant feeding. Pediatrics 2008, 121, 1062–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setchell, K.D.; Zimmer-Nechemias, L.; Cai, J.; Heubi, J.E. Exposure of infants to phyto-oestrogens from soy based infant formula. Lancet 1997, 350, 23–27. [Google Scholar] [CrossRef]
- Koo, W.W.; Kaplan, L.A.; Krug-Wispe, S.K. Aluminum contamination of infant formulas. JPEN J. Parenter. Enteral. Nutr. 1988, 12, 170–173. [Google Scholar] [CrossRef]
- Heaney, R.P.; Dowell, M.S.; Rafferty, K.; Bierman, J. Bioavailability of the calcium in fortified soy imitation milk, with some observations on method. Am. J. Clin. Nutr. 2000, 71, 1166–1169. [Google Scholar] [CrossRef] [Green Version]
Formula Brand | Carbohydrate Composition * | Protein Composition * |
---|---|---|
Cow’s milk protein-based formula (Materna Extra Care Stage 1) | Lactose (100%) | Whey (60%), casein (40%) |
Soy protein-based formula (Materna Soya) | Glucose syrup solids (100%) | Soy (100%) |
Lactose-free formula (Materna Extra Care Comfort) | Glucose syrup solids (100%) | Whey (60%), casein (40%) |
Participants (n = 20) | ||
---|---|---|
Sex | ||
Male | 11 (55%) | |
Female | 9 (45%) | |
Age, year (range) | 32.8 ± 2.9 (28–38) | |
Anthropometric data | ||
Height (m) | 1.7 (1.6–1.8) | |
Weight (kg) | 61.5 (58.0–73.8) | |
BMI (range) | 21.1 (19.7–23.4) | |
Laboratory data | ||
AST (U/L) | 21.5 (18.0–25.8) | |
ALT (U/L) | 21.0 (13.3–25.0) | |
TG (mg/dL) | 74.0 (55.8–91.8) | |
Total cholesterol (mg/dL) | 172.0 (158.3–193.5) | |
HDL (mg/dL) | 56.6 (44.9–64.0) | |
LDL (mg/dL) | 103.0 (81.3–113.3) | |
HbA1C (%) | 5.3 (5.1–5.6) |
Cow’s Milk Protein Formula | Soy Protein-Based Formula | Lactose-Free Formula | p Value | |
---|---|---|---|---|
Glycemic index | 21.5 ± 21.7 | 29.1 ± 17.2 | 21.5 ± 14.5 | 0.21 |
Peak glucose level (mg/dL) | 101.8 ± 9.1 | 111.5 ± 13.7 | 105.8 ± 12.1 | 0.001 * |
Glucose changes from baseline (mg/dL) | 13.1 ± 7.2 | 21.7 ± 11.5 | 16.3 ± 10.3 | 0.006 * |
Peak insulin level (mU/mL) | 12.1 ± 6.5 | 12.1 ± 7.0 | 10.8 ± 5.5 | 0.45 |
Insulin change from baseline (mU/mL) | 5.0 ± 5.7 | 5.0 ± 5.2 | 3.4 ± 6.4 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anafy, A.; Moran-Lev, H.; Shapira, N.; Priel, M.; Oren, A.; Mangel, L.; Mandel, D.; Lubetzky, R. The Glycemic Response to Infant Formulas: A Randomized Clinical Trial. Nutrients 2022, 14, 1064. https://doi.org/10.3390/nu14051064
Anafy A, Moran-Lev H, Shapira N, Priel M, Oren A, Mangel L, Mandel D, Lubetzky R. The Glycemic Response to Infant Formulas: A Randomized Clinical Trial. Nutrients. 2022; 14(5):1064. https://doi.org/10.3390/nu14051064
Chicago/Turabian StyleAnafy, Adi, Hadar Moran-Lev, Niva Shapira, Meital Priel, Asaf Oren, Laurence Mangel, Dror Mandel, and Ronit Lubetzky. 2022. "The Glycemic Response to Infant Formulas: A Randomized Clinical Trial" Nutrients 14, no. 5: 1064. https://doi.org/10.3390/nu14051064
APA StyleAnafy, A., Moran-Lev, H., Shapira, N., Priel, M., Oren, A., Mangel, L., Mandel, D., & Lubetzky, R. (2022). The Glycemic Response to Infant Formulas: A Randomized Clinical Trial. Nutrients, 14(5), 1064. https://doi.org/10.3390/nu14051064