Associations between Plasma Folate and Vitamin B12, Blood Lead, and Bone Mineral Density among Adults and Elderly Who Received a Health Examination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Questionnaire Interview and Specimens Collection
2.3. Measurement of Bone Mineral Density
2.4. Measurement of Environmental Metal Exposure, Homocysteine, Vitamin B12, and Folate
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Edwards, M.H.; Dennison, E.M.; Aihie, S.A.; Fielding, R.; Cooper, C. Osteoporosis and sarcopenia in older age. Bone 2015, 80, 126–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.P.; Huang, T.S.; Fu, T.S.; Sun, C.C.; Chao, A.S.; Tsai, T.L. Secular trends in incidence of osteoporosis in Taiwan: A nationwide population-based study. Biomed. J. 2018, 41, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Al Hamam, N.M.; Al-Moaibed, G.F.; Alfayez, E.H.; Alfayez, E.H.; Al-Mubaddil, M.S.; Alramadhan, N.A. Prevalence and risk factors for osteoporotic fracture among adults with comorbidities in Al-Ahsaa, Saudi Arabia. J. Family Med. Prim. Care 2020, 9, 877–882. [Google Scholar] [PubMed]
- Yang, C.Y.; Cheng-Yen, L.J.; Huang, W.L.; Hsu, C.L.; Chen, S.J. Effects of sex, tobacco smoking, and alcohol consumption osteoporosis development: Evidence from Taiwan biobank participants. Tob. Induc. Dis. 2021, 19, 52. [Google Scholar] [CrossRef]
- Scimeca, M.; Feola, M.; Romano, L.; Rao, C.; Gasbarra, E.; Bonanno, E.; Brandi, M.L.; Tarantino, U. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients. Environ. Toxicol. 2017, 32, 1333–1342. [Google Scholar] [CrossRef]
- Jalili, C.; Kazemi, M.; Taheri, E.; Mohammadi, H.; Boozari, B.; Hadi, A.; Moradi, S. Exposure to heavy metals and the risk of osteopenia or osteoporosis: A systematic review and meta-analysis. Osteoporos. Int. 2020, 31, 1671–1682. [Google Scholar] [CrossRef]
- Li, D.; Lin, H.; Zhang, M.; Meng, J.; Hu, L.; Yu, B. Urine Cadmium as a Risk Factor for Osteoporosis and Osteopenia: A Meta-Analysis. Front. Med. 2021, 8, 648902. [Google Scholar] [CrossRef]
- Puerto-Parejo, L.M.; Aliaga, I.; Canal-Macias, M.L.; Leal-Hernandez, O.; Roncero-Martin, R.; Rico-Martin, S.; Moran, J.M. Evaluation of the Dietary Intake of Cadmium, Lead and Mercury and Its Relationship with Bone Health among Postmenopausal Women in Spain. Int. J. Environ. Res. Public Health 2017, 14, 564. [Google Scholar] [CrossRef] [Green Version]
- Akbal, A.; Yilmaz, H.; Tutkun, E. Arsenic exposure associated with decreased bone mineralization in male. Aging Male 2014, 17, 256–258. [Google Scholar] [CrossRef]
- Wu, C.T.; Lu, T.Y.; Chan, D.C.; Tsai, K.S.; Yang, R.S.; Liu, S.H. Effects of arsenic on osteoblast differentiation in vitro and on bone mineral density and microstructure in rats. Environ. Health Perspect. 2014, 122, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tao, X.; Wu, J. Association of homocysteine, vitamin B12, and folate with bone mineral density in postmenopausal women: A meta-analysis. Arch. Gynecol. Obstet. 2014, 289, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X. Associations of serum vitamins levels with bone mineral density in the different race-ethnicities US adults. BMC Musculoskelet. Disord. 2021, 22, 137. [Google Scholar] [CrossRef]
- Van de Lagemaat, E.E.; de Groot, L.C.P.G.; van den Heuvel, E.G.H.M. Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. Nutrients 2019, 11, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyazit, F.; Pek, E. Effects of vitamin B12, folate, uric acid, and serum biomarkers of inflammation on bone mineral density in postmenopausal women. Prz. Menopauzalny 2018, 17, 69–76. [Google Scholar]
- Ledda, C.; Cannizzaro, E.; Lovreglio, P.; Vitale, E.; Stufano, A.; Montana, A.; Li, V.G.; Rapisarda, V. Exposure to Toxic Heavy Metals Can Influence Homocysteine Metabolism? Antioxidants 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Melton, L.J., III; Christiansen, C.; Johnston, C.C.; Khaltaev, N. The diagnosis of osteoporosis. J. Bone Miner. Res. 1994, 9, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.M.; Huang, Y.L.; Huang, C.C.; Wu, W.L.; Chen, H.M.; Yang, M.H.; Lue, L.C.; Chen, C.J. Urinary levels of inorganic and organic arsenic metabolites among residents in an arseniasis-hyperendemic area in Taiwan. J. Toxicol. Environ. Health A 1998, 54, 431–444. [Google Scholar]
- Wu, C.Y.; Wong, C.S.; Chung, C.J.; Wu, M.Y.; Huang, Y.L.; Ao, P.L.; Lin, Y.F.; Lin, Y.C.; Shiue, H.S.; Su, C.T.; et al. The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. J. Hazard. Mater. 2019, 375, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Chung, C.J.; Huang, Y.L.; Hsieh, R.L.; Huang, P.T.; Wu, M.Y.; Ao, P.L.; Shiue, H.S.; Huang, S.R.; Su, C.T.; et al. Association of plasma folate, vitamin B12 levels, and arsenic methylation capacity with developmental delay in preschool children in Taiwan. Arch. Toxicol. 2019, 93, 2535–2544. [Google Scholar] [CrossRef]
- Hu, Y.C.; Cheng, H.L.; Hsieh, B.S.; Huang, L.W.; Huang, T.C.; Chang, K.L. Arsenic trioxide affects bone remodeling by effects on osteoblast differentiation and function. Bone 2012, 50, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Wang, S.; Zhang, X.; Li, X.; Li, B.; Zhang, Z. Long-Term Exposure to Low-Dose Lead Induced Deterioration in Bone Microstructure of Male Mice. Biol. Trace Elem. Res. 2020, 195, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Wu, C.C.; Jung, W.T.; Lin, C.Y. The associations among lead exposure, bone mineral density, and FRAX score: NHANES, 2013 to 2014. Bone 2019, 128, 115045. [Google Scholar] [CrossRef] [PubMed]
- Dowd, T.L.; Rosen, J.F.; Mints, L.; Gundberg, C.M. The effect of Pb(2+) on the structure and hydroxyapatite binding properties of osteocalcin. Biochim. Biophys. Acta 2001, 1535, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Lloret, P.; Lee, C.M.; Conti, M.I.; Terrizzi, A.R.; Gonzalez-Lopez, S.; Martinez, M.P. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats. Toxicology 2017, 377, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, A.; Vahter, M.; Dencker, L. Autoradiographic studies on the distribution of arsenic in mice and hamsters administered 74As-arsenite or -arsenate. Acta Pharmacol. Toxicol. 1982, 51, 253–265. [Google Scholar] [CrossRef]
- De, M.M.; Sirufo, M.M.; Nocelli, C.; Fontanella, L.; Ginaldi, L. Hyperhomocysteinemia is Associated with Inflammation, Bone Resorption, Vitamin B12 and Folate Deficiency and MTHFR C677T Polymorphism in Postmenopausal Women with Decreased Bone Mineral Density. Int. J. Environ. Res. Public Health 2020, 17, 4260. [Google Scholar]
- Cagnacci, A.; Baldassari, F.; Rivolta, G.; Arangino, S.; Volpe, A. Relation of homocysteine, folate, and vitamin B12 to bone mineral density of postmenopausal women. Bone 2003, 33, 956–959. [Google Scholar] [CrossRef]
- Bozkurt, N.; Erdem, M.; Yilmaz, E.; Erdem, A.; Biri, A.; Kubatova, A.; Bozkurt, M. The relationship of homocyteine, B12 and folic acid with the bone mineral density of the femur and lumbar spine in Turkish postmenopausal women. Arch. Gynecol. Obstet. 2009, 280, 381–387. [Google Scholar] [CrossRef]
- Ouzzif, Z.; Oumghar, K.; Sbai, K.; Mounach, A.; Derouiche, E.M.; El, M.A. Relation of plasma total homocysteine, folate and vitamin B12 levels to bone mineral density in Moroccan healthy postmenopausal women. Rheumatol. Int. 2012, 32, 123–128. [Google Scholar] [CrossRef]
- Roman-Garcia, P.; Quiros-Gonzalez, I.; Mottram, L.; Lieben, L.; Sharan, K.; Wangwiwatsin, A.; Tubio, J.; Lewis, K.; Wilkinson, D.; Santhanam, B.; et al. Vitamin B(1)(2)-dependent taurine synthesis regulates growth and bone mass. J. Clin. Investig. 2014, 124, 2988–3002. [Google Scholar] [CrossRef]
- McCarty, M.F. Supplemental arginine and high-dose folate may promote bone health by supporting the activity of endothelial-type nitric oxide synthase in bone. Med. Hypotheses 2005, 64, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A.; Paoletta, M.; Liguori, S.; Bertone, M.; Toro, G.; Iolascon, G. Choline: An Essential Nutrient for Skeletal Muscle. Nutrients 2020, 12, 2144. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, L.; Lei, S.F. Causal effects of homocysteine levels on the changes of bone mineral density and risk for bone fracture: A two-sample mendelian randomization study. Clin. Nutr. 2021, 40, 1588–1595. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alfaro, P.; Rodriguez, I.; Pascual, M.A. Evaluation of the relationship between homocysteine levels and bone mineral density in postmenopausal women. Climacteric 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Verma, R.; Mishra, A.; Singh, A.; Kumar, V.; Sawlani, K.K.; Ahmad, M.K.; Mishra, P.; Gaur, R. Relation of Bone Mineral Density with Homocysteine and Cathepsin K levels in Postmenopausal Women. Indian J. Endocrinol. Metab. 2018, 22, 261–266. [Google Scholar] [CrossRef] [PubMed]
Variables | Bone Loss (N = 185) N (%) | Normal Bone Mineral Density (N = 262) N (%) | Age–Sex Adjusted OR (95% CI) |
---|---|---|---|
Age (years) | 56.02 ± 9.66 *** | 51.85 ± 10.23 *** | |
≤50 | 38 (20.54) | 109 (41.60) | 1.00 a,§,*** |
>50–65 | 122 (65.95) | 136 (51.91) | 2.43 (1.55–3.81) *** |
>65 | 25 (13.51) | 17 (6.49) | 4.00 (1.94–8.24) *** |
Sex | |||
Male | 106 (57.30) | 178 (67.94) | 1.00 b |
Female | 79 (42.70) | 84 (32.06) | 1.37 (0.92–2.05) |
BMI (kg/m2) | |||
≤24 | 119 (64.32) | 149 (56.87) | 1.00 |
>24–27 | 37 (20.00) | 65 (24.81) | 0.62 (0.38–1.02) + |
>27 | 29 (15.68) | 48 (18.32) | 0.72 (0.42–1.24) |
Educational level | |||
Illiterate/elementary | 37 (20.00) | 28 (10.69) | 1.00 |
Junior/senior high | 56 (30.27) | 73 (27.86) | 0.79 (0.42–1.49) |
College and above | 92 (49.73) | 161 (61.45) | 0.65 (0.36–1.18) |
Cigarette smoking | |||
Non-smoker | 135 (72.97) | 182 (69.73) | 1.00 |
Smoker | 50 (27.03) | 79 (30.27) | 1.06 (0.66–1.69) |
Alcohol consumption | |||
Never | 109 (58.93) | 165 (62.98) | 1.00 §,** |
Frequent | 31 (16.76) | 52 (19.85) | 2.14 (1.27–3.61) ** |
Occasional | 45 (24.31) | 45 (17.18) | 1.36 (0.75–2.26) |
Frequent or occasional | 76 (41.07) | 97 (37.03) | 1.70 (1.10–2.63) * |
Coffee consumption | |||
No | 103 (55.68) | 114 (43.51) | 1.00 |
Frequent | 45 (24.32) | 94 (35.88) | 0.81 (0.49–1.35) |
Occasional | 37 (20.00) | 54 (20.61) | 0.54 (0.34–0.85) ** |
Frequent or occasional | 82 (44.32) | 148 (56.49) | 0.64 (0.43–0.94) * |
Tea consumption | |||
No | 76 (41.08) | 82 (31.64) | 1.00 |
Frequent | 67 (36.22) | 132 (51.56) | 0.65 (0.42–1.01) + |
Occasional | 42 (22.70) | 43 (16.80) | 1.29 (0.75–2.22) |
Frequent or occasional | 109 (58.92) | 175 (68.36) | 0.81 (0.54–1.21) |
Diabetes | |||
No | 173 (93.51) | 243 (92.75) | 1.00 |
Yes | 12 (6.49) | 19 (7.25) | 0.67 (0.31–1.46) |
Hypertension | |||
No | 149 (89.54) | 206 (79.54) | 1.00 |
Yes | 36 (19.46) | 53 (20.46) | 0.76 (0.47–1.26) |
Variables | Bone Loss N (%) | Normal Bone Mineral Density N (%) | Age–Sex Adjusted OR (95% CI) | Multivariate Adjusted OR (95% CI) |
---|---|---|---|---|
Total urinary arsenic (μg/g creatinine) | 14.33 (0.13, 62.46) a,** | 11.25 (0.06, 92.99) a,** | ||
≤9.30 | 41 (22.16) | 87 (33.21) | 1.00 §,* | 1.00 §,+ |
>9.30–14.91 | 63 (34.05) | 88 (33.58) | 1.39 (0.84–2.31) | 1.27 (0.76–2.12) |
>14.91 | 81 (43.78) | 87 (33.21) | 1.72 (1.05–2.81) * | 1.55 (0.94–2.56) + |
Blood lead (μg/dL) | 4.91 (1.30, 19.25) a,* | 4.29 (0.92, 14.97) a,* | ||
≤33.82 | 44 (23.78) | 88 (33.58) | 1.00 §,** | 1.00 §,* |
>33.82–56.14 | 66 (35.68) | 87 (33.21) | 1.60 (0.97–2.62) + | 1.52 (0.92–2.53) * |
>56.14 | 75 (40.54) | 87 (33.21) | 1.95 (1.20–3.20) ** | 1.82 (1.10–3.01) * |
Blood cadmium (μg/L) | 1.26 (0.08, 10.86) | 1.16 (0.12, 14.82) | ||
≤0.84 | 54 (29.19) | 89 (33.97) | 1.00 | 1.00 |
>0.84–1.58 | 64 (34.59) | 87 (33.21) | 1.06 (0.65–1.73) | 1.00 (0.61–1.64) |
>1.58 | 67 (36.22) | 86 (32.82) | 1.16 (0.72–1.89) | 0.97 (0.59–1.61) |
Plasma folate (ng/mL) | 6.98 (2.28, 28.70) | 6.95 (1.87, 18.50) | ||
≤5.83 | 55 (30.39) | 88 (33.58) | 1.00 | 1.00 |
>5.83–8.46 | 59 (32.60) | 87 (33.21) | 0.87 (0.54–1.41) | 0.84 (0.52–1.36) |
>8.46 | 67 (37.02) | 87 (33.21) | 0.70 (0.43–1.16) | 0.71 (0.43–1.17) |
Plasma vitamin B12 (pg/mL) | 530.0 (113.0, 3666.0) | 522.50 (198.0, 3608.0) | ||
≤442 | 58 (31.35) | 87 (33.21) | 1.00 | 1.00 |
>442–610 | 71 (38.38) | 88 (33.58) | 1.23 (0.77–1.96) | 1.24 (0.77–1.99) |
>610 | 56 (30.27) | 87 (33.21) | 0.85 (0.52–1.38) | 0.87 (0.53–1.42) |
Homocysteine (μmole/L) | 10.52 (4.99, 31.06) a,+ | 10.80 (4.50, 33.10) a,+ | ||
≤9.03 | 63 (34.05) | 89 (33.79) | 1.00 | 1.00 |
>9.03–12.78 | 80 (43.24) | 87 (33.21) | 1.31 (0.82–2.07) | 1.34 (0.84–2.15) |
>12.78 | 42 (22.70) | 86 (32.82) | 0.68 (0.41–1.15) | 0.70 (0.41–1.19) |
Variables | Overall | Bone Loss | Normal Bone Mineral Density |
---|---|---|---|
Low/low group for plasma folate and vitamin B12 (N = 141) | |||
Total urinary arsenic (μg/g creatinine) | 12.97 (1.18, 62.46) | 15.22 (4.77, 62.46) a,* | 11.10 (1.18, 52.68) a,* |
Blood lead (μg/dL) | 4.79 (1.10, 14.51) | 5.20 (1.31, 14.49) d,+ | 4.50 (1.10, 14.51) d,+ |
Plasma homocysteine (μmole/L) | 11.42 (5.53, 31.06) e,* | 11.30 (5.53, 31.06) | 11.40 (6.21, 26.34) |
Low/high or high/low groups for plasma folate and vitamin B12 (N = 164) | |||
Total urinary arsenic (μg/g creatinine) | 12.69 (0.13, 54.90) | 14.57 (0.13, 44.0) b,+ | 11.38 (3.35, 54.90) b,+ |
Blood lead (μg/dL) | 4.74 (0.92, 19.25) | 5.08 (1.44, 19.25) | 4.31 (0.92, 13.40) |
Plasma homocysteine (μmole/L) | 10.82 (4.99, 33.10) f,* | 10.49 (4.99, 18.81) | 10.49 (5.62, 33.11) |
High/high group for plasma folate and vitamin B12 (N = 142) | |||
Total urinary arsenic (μg/g creatinine) | 12.26 (0.06, 92.99) | 13.32 (2.53, 35.66) c,+ | 11.51 (0.06, 92.99) c,+ |
Blood lead (μg/dL) | 4.46 (1.13, 16.23) | 4.67 (1.30, 16.23) | 4.24 (1.13, 14.97) |
Plasma homocysteine (μmole/L) | 9.44 (4.50, 24.40) e,f,* | 8.84 (5.19, 16.38) g,* | 9.87 (4.50, 24.40) g,* |
Variables | Case/Control | Age–Sex Adjusted ORs (95% CI) | Multivariate Adjusted ORs (95% CI) a | |
---|---|---|---|---|
Low/low group for plasma folate and vitamin B12 (N = 141) | ||||
Total urinary arsenic (μg/g creatinine) | Low | 13/29 | 1.00 §,+ | 1.00 |
Moderate | 15/28 | 1.33 (0.52–3.37) | 1.17 (0.45–3.02) | |
High | 28/28 | 2.10 (0.89–4.94) + | 1.97 (0.82–4.97) | |
Blood lead (μg/dL) | Low | 7/29 | 1.00 | 1.00 |
Moderate | 30/28 | 4.44 (1.65–11.97) ** | 4.24 (1.53–11.73) ** | |
High | 19/28 | 2.64 (0.94–7.42) + | 2.44 (0.85–6.96) + | |
Plasma homocysteine (μmole/L) | Low | 19/29 | 1.00 | 1.00 |
Moderate | 29/29 | 1.38 (0.62–3.09) | 1.31 (0.58–2.96) | |
High | 8/27 | 0.44 (0.16–1.21) | 0.45 (0.16–1.26) | |
Low/high or high/low groups for plasma folate and vitamin B12 (N = 164) | ||||
Total urinary arsenic (μg/g creatinine) | Low | 16/30 | 1.00 | 1.00 |
Moderate | 27/33 | 1.34 (0.59–3.01) | 1.32 (0.37–3.06) | |
High | 28/30 | 1.54 (0.68–3.47) | 1.43 (0.62–3.29) | |
Blood lead (μg/dL) | Low | 18/31 | 1.00 §,+ | 1.00 |
Moderate | 23/32 | 1.33 (0.59–3.98) | 1.19 (0.52–2.73) | |
High | 30/30 | 2.09 (0.93–4.66) + | 1.82 (0.80–4.15) | |
Plasma homocysteine (μmole/L) | Low | 20/32 | 1.00 | 1.00 |
Moderate | 31/31 | 1.77 (0.81–3.85) | 1.77 (0.81–3.92) | |
High | 20/30 | 1.17 (0.50–2.74) | 1.21 (0.51–2.89) | |
High/high group for plasma folate and vitamin B12 (N = 142) | ||||
Total urinary arsenic (μg/g creatinine) | Low | 9/27 | 1.00 | 1.00 |
Moderate | 27/29 | 2.52 (0.96–6.63) + | 2.63 (0.96–7.24) + | |
High | 22/28 | 1.85 (0.68–5.03) | 1.61 (0.57–4.57) | |
Blood lead (μg/dL) | Low | 15/28 | 1.00 | 1.00 |
Moderate | 24/29 | 1.35 (0.57–3.20) | 1.48 (0.59–3.67) | |
High | 19/27 | 1.73 (0.69–4.36) | 1.73 (0.65–4.56) | |
Plasma homocysteine (μmole/L) | Low | 27/29 | 1.00 | 1.00 |
Moderate | 19/28 | 0.65 (0.28–1.49) | 0.72 (0.30–1.71) | |
High | 12/27 | 0.41 (0.16–1.06) + | 0.42 (0.16–1.10) + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, R.-L.; Huang, Y.-L.; Chen, W.-J.; Chen, H.-H.; Shiue, H.-S.; Lin, Y.-C.; Hsueh, Y.-M. Associations between Plasma Folate and Vitamin B12, Blood Lead, and Bone Mineral Density among Adults and Elderly Who Received a Health Examination. Nutrients 2022, 14, 911. https://doi.org/10.3390/nu14040911
Hsieh R-L, Huang Y-L, Chen W-J, Chen H-H, Shiue H-S, Lin Y-C, Hsueh Y-M. Associations between Plasma Folate and Vitamin B12, Blood Lead, and Bone Mineral Density among Adults and Elderly Who Received a Health Examination. Nutrients. 2022; 14(4):911. https://doi.org/10.3390/nu14040911
Chicago/Turabian StyleHsieh, Ru-Lan, Ya-Li Huang, Wei-Jen Chen, Hsi-Hsien Chen, Horng-Sheng Shiue, Ying-Chin Lin, and Yu-Mei Hsueh. 2022. "Associations between Plasma Folate and Vitamin B12, Blood Lead, and Bone Mineral Density among Adults and Elderly Who Received a Health Examination" Nutrients 14, no. 4: 911. https://doi.org/10.3390/nu14040911
APA StyleHsieh, R. -L., Huang, Y. -L., Chen, W. -J., Chen, H. -H., Shiue, H. -S., Lin, Y. -C., & Hsueh, Y. -M. (2022). Associations between Plasma Folate and Vitamin B12, Blood Lead, and Bone Mineral Density among Adults and Elderly Who Received a Health Examination. Nutrients, 14(4), 911. https://doi.org/10.3390/nu14040911