Why and How the Indo-Mediterranean Diet May Be Superior to Other Diets: The Role of Antioxidants in the Diet
Abstract
:1. Introduction
2. Comparison of Various Types of Healthy Diets
3. Antioxidants in Foods of Various Diets
3.1. Flavonoids in Foods and Diets
3.2. Flavonoid Intake and Risk of Cardiovascular Diseases
4. Determinants of Superiority of the Indo-Mediterranean Diet
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keys, A. Coronary Heart Disease in Seven Countries 1970. Nutrition 1997, 3, 249–253. [Google Scholar] [CrossRef]
- Hertog, M.G.; Kromhout, D.; Aravanis, C.; Blackburn, H.; Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S.; et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 1995, 155, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Zhang, S.; Tomata, Y.; Tsuduki, T.; Sugawara, Y.; Tsuji, I. Japanese diet and survival time: The Ohsaki Cohort 1994 study. Clin. Nutr. 2019, 39, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Rahimlou, M.; Grau, N.; Banaie-Jahromi, N.; Taheri, M.; Khosravi, A.; Mavrommatis, Y.; Mohammadifard, N. Association of adher-ence to the dietary approach to stop hypertension and Mediterranean diets with blood pressure in a non-hypertensive popu-lation: Results from Isfahan Salt Study (ISS). Nutr. Metab. Cardiovasc. Dis. 2022, 32, 109–116. [Google Scholar] [CrossRef]
- Zhang, N.; Xiao, X.; Xu, J.; Zeng, Q.; Li, J.; Xie, Y.; Guo, B.; Dai, S.; Zhu, X.; Lei, Y.; et al. Dietary Approaches to Stop Hypertension (DASH) diet, Mediterranean diet and blood lipid profiles in less-developed ethnic minority regions. Br. J. Nutr. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Takahashi, T.; Fatima, G.; Horiuchi, R.; Fedacko, J.; Huzova, Z.; Gurin, D. Effects of Antioxidant-rich Indo-mediterranean Foods on Pre-heart Failure: Results from the Meta-analysis of Randomized Controlled Trials. Open Inflamm. J. 2020, 8, 1–6. [Google Scholar] [CrossRef]
- Singh, R.B.; Bawareed, O.A.; Chibisov, S.; Kharliskaya, E.; Abramova, M.; Magomed, M. The ten characteristics of a high quality diet with reference to circadian dysfunction? World Heart J. 2021, 13, 207–212. [Google Scholar]
- Singh, R.B.; Dubnov, G.; Niaz, M.A.; Ghosh, S.; Singh, R.; Rastogi, S.S.; Manor, O.; Pella, D.; Berry, E.M. Effect of an Indo-Mediterranean diet on progression of coronary disease in high risk patients: A randomized single blind trial. Lancet 2002, 360, 1455–1461. [Google Scholar] [CrossRef]
- Singh, R.B.; Rastogi, S.S.; Verma, R.; Laxmi, B.; Singh, R.; Ghosh, S.; Niaz, M.A. Randomized, controlled trial of cardio protective diet in patients with acute myocardial infarction: Results of one year follow up. BMJ 1992, 304, 1015–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Stamler, J.; Dennis, B.; Moag-Stahlberg, A.; Okuda, N.; Robertson, C.; Zhao, L.; Chan, Q.; Elliott, P. for the INTERMAP Research Group. Nutrient intakes of middle-aged men and women in China, Japan, United Kingdom, and United States in the late 1990s: The INTERMAP Study. J. Hum. Hypertens. 2003, 17, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Wang, Z.; Fei, Y.; Zhou, B.; Zheng, S.; Wang, L.; Huang, L.; Jiang, S.; Liu, Z.; Jiang, J.; et al. The Difference in Nutrient Intakes between Chinese and Mediterranean, Japanese and American Diets. Nutrients 2015, 7, 4661–4688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burr, M.L.; Fehily, A.M.; Gilbert, J.F. Effects of changes in fat, fish and fiber intakes on death and myocardial infarction: Diet and Re-infarction Trial (DART). Lancet 1989, 2, 757–761. [Google Scholar] [CrossRef]
- Singh, R.B.; Watanabe, S.; Isaza, A. Fish, fish oil and fish peptides and other sea foods. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Singh, R.B., Watanabe, S., Isaza, A., Eds.; Elsevier: Cambridge, MA, USA, 2022; p. 248. [Google Scholar] [CrossRef]
- Chibisov, S.; Kharlitskaya, E.; Singh, R.B. Polyphenols in health and disease. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Singh, R.B., Watanabe, S., Isaza, A., Eds.; Elsevier: Cambridge, MA, USA, 2022; p. 671. [Google Scholar] [CrossRef]
- Fedacko, J.; Takahashi, T.; Singh, R.B.; Pella, D.; Chibisov, S.; Hristova, K.; Pella, D.; Elkilany, G.N.; Juneja, L.R.; Behl, S.; et al. Western diets and risk of non-communicable diseases. In Functional Foods and Nutraceuticals in Metabolic and Non-communicable diseases; Singh, R.B., Watanabe, S., Isaza, A., Eds.; Elsevier: Cambridge, MA, USA, 2022; p. 3. [Google Scholar]
- Ogce, F.; Ceber, E.; Genc, R.E.; Oran, N.T. Comparison of Mediterranean, Western and Japanese diets and some recommendations. APJCP 2008, 9, 351–356. [Google Scholar] [PubMed]
- Tokudome, S.; Okuyama, H.; Ichikawa, S.; Tokudome, Y. The Mediterranean vs. the Japanese diet. Eur. J. Clin. Nutr. 2004, 58, 1323. [Google Scholar] [CrossRef] [PubMed]
- Bendokas, V.; Stanys, V.; Mažeikienė, I.; Trumbeckaite, S.; Baniene, R.; Liobikas, J. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants 2020, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef]
- Liu, J.; Hefni, M.E.; Witthöft, C.M. Characterization of Flavonoid Compounds in Common Swedish Berry Species. Foods 2020, 9, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haytowitz, D.B.; Bhagwat, S.; Harnly, J.; Holden, J.M.; Gebhard, S.E. Sources of Flavonoids in the U.S. Diet Using USDA’s Updated Database on the Flavonoid Content of Selected Foods. Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/AICR06_flav (accessed on 18 January 2022).
- Del Bo’, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients 2019, 11, 1355. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Cévoli, R.; Castro-Espín, C.; Béraud, G.B.V.; Buckland, G.; Zamora-Ros, R. An Overview of Global Flavonoid Intake and its Food Sources. Annu. Rev. Nutr. 2021, 41, 433–445. [Google Scholar] [CrossRef] [Green Version]
- Otaki, N.; Kimira, M.; Katsumata, S.-I.; Uehara, M.; Watanabe, S.; Suzuki, K. Distribution and Major Sources of Flavonoid Intakes in the Middle-Aged Japanese Women. J. Clin. Biochem. Nutr. 2009, 44, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborn, L.J.; Claesen, J.; Brown, J.M. Microbial Flavonoid Metabolism: A Cardiometabolic Disease Perspective. Annu. Rev. Nutr. 2021, 41, 433–454. [Google Scholar] [CrossRef] [PubMed]
- Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose–Response Meta-Analysis. Mol. Nutr. Food Res. 2021, 65, 2001019. [Google Scholar] [CrossRef] [PubMed]
- Parmenter, B.H.; Croft, K.D.; Hodgson, J.M. An overview and update on the epidemiology of flavonoid intake and cardio-vascular disease risk. Food Funct. 2020, 11, 6777–6806. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Li, Y.; Willett, W.C.; Sun, Q.; Sampson, L.; Salas-Salvadó, J.; Martínez-González, M.A.; Stampfer, M.J.; Hu, F.B. Consumption of Olive Oil and Risk of Total and Cause-Specific Mortality Among U.S. Adults. J. Am. Coll. Cardiol. 2022, 79, 101–112. [Google Scholar] [CrossRef]
- Miranda, A.M.; Steluti, J.; Fisberg, R.M.; Marchioni, D.M. Association between Polyphenol Intake and Hypertension in Adults and Older Adults: A Population-Based Study in Brazil. PLoS ONE 2016, 11, e0165791. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Forouhi, N.G.; Sharp, S.J.; González, C.A.; Buijsse, B.; Guevara, M.; van der Schouw, Y.T.; Amiano, P.; Boeing, H.; Bredsdorff, L. The Association Between Dietary Flavonoid and Lignan Intakes and Incident Type 2 Diabetes in European Populations. Diabetes Care 2013, 36, 3961–3970. [Google Scholar] [CrossRef] [Green Version]
- Jennings, A.; Welch, A.A.; Spector, T.; MacGregor, A.; Cassidy, A. Intakes of Anthocyanins and Flavones Are Associated with Biomarkers of Insulin Resistance and Inflammation in Women. J. Nutr. 2013, 144, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Ponzo, V.; Goitre, I.; Fadda, M.; Gambino, R.; De Francesco, A.; Soldati, L.; Gentile, L.; Magistroni, P.; Cassader, M.; Bo, S. Dietary flavonoid intake and cardiovascular risk: A population-based cohort study. J. Transl. Med. 2015, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wedick, N.M.; Pan, A.; Cassidy, A.; Rimm, E.B.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F.B.; Sun, Q.; van Dam, R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr. 2012, 95, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tresserra-Rimbau, A.; Medina-Remón, A.; Salas-Salvadó, J.; Estruch, R.; Lamuela-Raventó, R.M.; Rimm, E.B.; Ruiz-Gutiérrez, V.; Corella, D.; Sorlí, J.V.; Vinyoles, E.; et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef]
- Grosso, G.; Stepaniak, U.; Micek, A.; Kozela, M.; Stefler, D.; Bobak, M.; Pajak, A. Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the health, alcohol and psychosocial factors in Eastern Europe (HAPIEE) study. Br. J. Nutr. 2017, 118, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedacko, J.; Singh, R.B.; Niaz, M.A.; Ghosh, S.; Fedakova, P.; Tripathi, A.D.; Etharat, A.; Onsaard, E.; Singh, V.K.; Shastun, S. Fenugreek seeds decrease blood cholesterol and blood glucose as adjunct to diet therapy, in patients with hypercholesterolemia. World Heart J. 2016, 8, 239–249. [Google Scholar]
- Kumar, A.; Kumari, P.; Kumar, M. Role of millets in disease prevention and health promotion. In Functional Foods and Nutraceuticals in Metabolic and Non-communicable Diseases; Singh, R.B., Watanabe, S., Isaza, A., Eds.; Elsevier: Cambridge, MA, USA, 2022; p. 341. [Google Scholar]
- Watanabe, S.; Takahashi, M.; Hashimoto, H.; Kikuchi, K.; Matsuo, M.; Otsubo, K. Medical rice: Discovery of a New Food. In Functional Foods and Nutraceuticals in Metabolic and Non-communicable, Diseases; Singh, R.B., Watanabe, S., Isaza, A., Eds.; Elsevier: Cambridge, MA, USA, 2022. [Google Scholar]
- Singh, R.B.; Watanabe, S.; Isaza, A. Functional and Therapeutic Applications of Some General and Rare Spices. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Singh, R.B., Watanabe, S., Isaza, A., Eds.; Elsevier: Cambridge, MA, USA, 2022; p. 411. [Google Scholar] [CrossRef]
- Zhong, V.W.; Van Horn, L.; Greenland, P.; Carnethon, M.R.; Ning, H.; Wilkins, J.T.; Lloyd-Jones, D.M.; Allen, N. Associations of Processed Meat, Unprocessed Red Meat, Poultry, or Fish Intake With Incident Cardiovascular Disease and All-Cause Mortality. JAMA Intern. Med. 2020, 180, 503–512. [Google Scholar] [CrossRef] [PubMed]
- English, L.K.; Ard, J.D.; Bailey, R.L.; Bates, M.; Bazzano, L.A.; Boushey, C.J.; Brown, C.; Butera, G.; Callahan, E.H.; De Jesus, J.; et al. Evaluation of Dietary Patterns and All-Cause Mortality: A Systematic Review. JAMA Netw. Open 2021, 4, e2122277. [Google Scholar] [CrossRef] [PubMed]
- Itharat, A.; Onsaard, E.; Singh, R.B.; Chauhan, A.K.; Shehab, O. Flavonoids consumption and the heart. World Heart J. 2016, 8, 103–108. [Google Scholar]
- Kaplan, A.; Zelicha, H.; Meir, A.Y. The effect of a high-polyphenol Mediterranean diet (GREEN-MED) combined with physical activity on age-related brain atrophy: The DIRECT PLUS randomized controlled trial. Amer. J. Clin. Nutr. 2022, nqac001. [Google Scholar] [CrossRef] [PubMed]
- FAO; UNO. The State of Food and Agriculture: Sustainable Food Systems for Food Security and Nutrition. 2020. Available online: http://www.fao.org/docrep/meeting/028/mg413e01 (accessed on 18 January 2022).
- Magomedova, A.G.; Kovalenko, V.V.; Tyshkevich, V.P.; Alieva, A.M. Features of Nutrition and Health of School Children. In Proceedings of the XXIII World Congress on Clinical Nutrition, Machachkala, Russia; 2019; pp. 145–147. [Google Scholar]
- Kurotani, K.; Honjo, K.; Nakaya, T.; Ikeda, A.; Mizoue, T.; Sawada, N.; Tsugane, S. Japan Public Health Center-based Prospective Study Group Diet Quality Affects the Association between Census-Based Neighborhood Deprivation and All-Cause Mortality in Japanese Men and Women: The Japan Public Health Center-Based Prospective Study. Nutrients 2019, 11, 2194. [Google Scholar] [CrossRef] [Green Version]
- Okada, E.; Nakamura, K.; Ukawa, S.; Wakai, K.; Date, C.; Iso, H.; Tamakoshi, A. The Japanese food score and risk of all-cause, CVD and cancer mortality: The Japan Collaborative Cohort Study. Br. J. Nutr. 2018, 120, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Okuda, N.; Okamura, T.; Kadota, A.; Miyagawa, N.; Hayakawa, T.; Kita, Y.; Fujiyoshi, A.; Nagai, M.; Takashima, N. Low-carbohydrate diets and cardiovascular and total mortality in Japanese: A 29-year follow-up of NIPPON DATA80. Br. J. Nutr. 2014, 112, 916–924. [Google Scholar] [CrossRef]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; de Deus Mendonça, R.; De La Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019, 365, l1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.B.; Fedacko, J.; Vargova, V.; Pella, D.; Niaz, M.A.; Ghosh, S. Effects of low w-6/w-3 fatty acid ratio Paleolithic style diet in patients with acute coronary syndromes: A randomized, single blind, controlled trial. World Heart J. 2012, 4, 71–84. [Google Scholar]
- Omidvar, S.; Pati, S.; Singh, R.B.; Takahashi, T.; Shin, H.H.; Lee, M.K.; Kim, S.A.; Fedacko, J.; Singh, R.; Tribulova, N.; et al. Association of cocoa consumption and risk of cardiovascular diseases and other chronic diseases. World Heart J. 2013, 5, 47–68. [Google Scholar]
- Shastun, S.; Chauhan, A.K.; Singh, R.B.; Singh, M.; Singh, R.P.; Itharat, A.; Chibisov, S.M.; Meester, F.M.; Wilson, D.W.; Halabi, G. Can functional food security decrease the epidemic of obesity and metabolic syndrome? A viewpoint. World Heart J. 2016, 8, 273–280. [Google Scholar]
Foods | Indo-Mediterranean Diet | Mediterranean Diet | DASH Diet | Japanese Diet |
---|---|---|---|---|
Vegetables, fruits | 400 g/day | High | High | High |
Nuts | 50–100 g/day | High | Moderate | Low |
Whole grains, beans | 400 g/day, high; beans millets, porridge, grams, soybean, green beans | Moderate, legumes | Moderate, legumes | High rice, soya bean, tofu |
Vegetable oil | 30–80 g/day, mustard oil or blend of olive oil | Olive oil, high (100 g/day) | Low saturated fat foods, oils | Low rice bran oil |
Fish | 100–150 g, twice/week | Moderate | Moderate | High, raw |
Dairy products | Buttermilk and curd | Low fat | Low fat | Low |
Wine | Not advised but allowed | Moderate | Not advised | Sake, rice wine |
Spices (coriander, cumin, turmeric, cloves, cardamom) | High (50–150 g/day), coriander, cumin, turmeric, fenugreek | Not advised | Not advised | Not advised |
Poultry | Not advised | Moderate | Low | Low |
Red meat | Not advised | Low | Low | Low |
Preserved meat | Not advised | Low | Not advised | Low |
Sweets and sugar | Not advised | Low | Low | Low |
Nutrients | High flavonoids, fiber, K, Mg, Ca, iron, proteins | No specific advice for protein | High K, Mg, Ca, fiber, protein | High n-3, K, Mg, Ca, high protein |
Food diversity | Marked | Moderate | Moderate | Moderate |
Glycemic index | Very low | Lower | Lower | Very low |
Qualities of Foods | Examples of Foods |
---|---|
1. Low glycemic index | Nuts, vegetables, whole grains |
2. High nutrient density. | Whole grains, beans, vegetables |
3. Food diversity. | Nuts, vegetables, whole grains |
4. No trans fat | Grilled foods, boiled foods |
5. No/low sugar refined | Guava, apples, papaya, oranges |
6. Low salt | Fruits, vegetables, nuts |
7. Moderate healthy fat | Olive oil, mustard oil, nuts. |
8. High fiber | Vegetables, whole grains, fruits |
9. Beneficial effects on gut microbiota. | Vegetables, whole grains, fruits |
10. No peroxidation of foods | Fresh foods, without frying. |
Foods requiring mastication | Whole grains, nuts, fruits, fish |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.B.; Fedacko, J.; Fatima, G.; Magomedova, A.; Watanabe, S.; Elkilany, G. Why and How the Indo-Mediterranean Diet May Be Superior to Other Diets: The Role of Antioxidants in the Diet. Nutrients 2022, 14, 898. https://doi.org/10.3390/nu14040898
Singh RB, Fedacko J, Fatima G, Magomedova A, Watanabe S, Elkilany G. Why and How the Indo-Mediterranean Diet May Be Superior to Other Diets: The Role of Antioxidants in the Diet. Nutrients. 2022; 14(4):898. https://doi.org/10.3390/nu14040898
Chicago/Turabian StyleSingh, Ram B., Jan Fedacko, Ghizal Fatima, Aminat Magomedova, Shaw Watanabe, and Galal Elkilany. 2022. "Why and How the Indo-Mediterranean Diet May Be Superior to Other Diets: The Role of Antioxidants in the Diet" Nutrients 14, no. 4: 898. https://doi.org/10.3390/nu14040898
APA StyleSingh, R. B., Fedacko, J., Fatima, G., Magomedova, A., Watanabe, S., & Elkilany, G. (2022). Why and How the Indo-Mediterranean Diet May Be Superior to Other Diets: The Role of Antioxidants in the Diet. Nutrients, 14(4), 898. https://doi.org/10.3390/nu14040898