Consumption of Dairy Foods and Cardiovascular Disease: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meta-Analyses of Prospective Cohort Studies on Cardiovascular Hard Endpoints and All-Cause Mortality: Literature Search Strategy and Data Extraction
2.2. Meta-Analyses of RCTs on the Effect of Dairy Products on Major CV Risk Factor: Literature Search Strategy and Data Extraction
3. Results
3.1. Association of Dairy Products with All-Cause Death, CVD or CHD
3.1.1. Total Dairy Foods
3.1.2. Full-Fat and Low-Fat Dairy Foods
3.1.3. Milk
3.1.4. Fermented Dairy Foods, Cheese and Yogurt
3.2. Effects of Dairy Foods on Cardiovascular Risk Factors
3.2.1. Body Weight/Waist Circumference
3.2.2. Fasting Glucose/Glycated Hemoglobin
3.2.3. Insulin/Insulin Resistance
3.2.4. Blood Pressure
3.2.5. Plasma Lipids
3.2.6. Subclinical Inflammation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- Kyu, H.H.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 359 Diseases and Injuries and Healthy Life Expectancy (HALE) for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef] [Green Version]
- Forouhi, N.G.; Krauss, R.M.; Taubes, G.; Willett, W. Dietary Fat and Cardiometabolic Health: Evidence, Controversies, and Consensus for Guidance. BMJ 2018, 361, k2139. [Google Scholar] [CrossRef] [Green Version]
- Keys, A.; Anderson, J.T.; Grande, F. Prediction of Serum-Cholesterol Responses of Man to Changes in Fats in the Diet. Lancet 1957, 273, 959–966. [Google Scholar] [CrossRef]
- Hegsted, D.M.; McGandy, R.B.; Myers, M.L.; Stare, F.J. Quantitative Effects of Dietary Fat on Serum Cholesterol in Man. Am. J. Clin. Nutr. 1965, 17, 281–295. [Google Scholar] [CrossRef]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [Green Version]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Van Horn, L.; Carson, J.A.; Appel, L.J.; Burke, L.E.; Economos, C.; Karmally, W.; Lancaster, K.; Lichtenstein, A.H.; Johnson, R.K.; Thomas, R.J.; et al. Recommended Dietary Pattern to Achieve Adherence to the American Heart Association/American College of Cardiology (AHA/ACC) Guidelines: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e505–e529. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A.; Rock, E. From a Reductionist to a Holistic Approach in Preventive Nutrition to Define New and More Ethical Paradigms. Healthcare 2015, 3, 1054–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestel, P.J.; Beilin, L.J.; Clifton, P.M.; Watts, G.F.; Mori, T.A. Practical Guidance for Food Consumption to Prevent Cardiovascular Disease. Heart Lung Circ. 2021, 30, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Gulati, M.; Michos, E.D.; Potts, J.; Wu, P.; Watson, L.; Loke, Y.K.; Mallen, C.; Mamas, M.A. Dietary Components and Risk of Cardiovascular Disease and All-Cause Mortality: A Review of Evidence from Meta-Analyses. Eur. J. Prev. Cardiol. 2019, 26, 1415–1429. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Riccardi, G.; Giosuè, A.; Calabrese, I.; Vaccaro, O. Dietary Recommendations for Prevention of Atherosclerosis. Cardiovasc. Res. 2021, cvab173. [Google Scholar] [CrossRef]
- Riccardi, G.; Vitale, M.; Vaccaro, O. Are Europeans Moving towards Dietary Habits More Suitable for Reducing Cardiovascular Disease Risk? Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1857–1860. [Google Scholar] [CrossRef] [PubMed]
- Eilander, A.; Harika, R.K.; Zock, P.L. Intake and Sources of Dietary Fatty Acids in Europe: Are Current Population Intakes of Fats Aligned with Dietary Recommendations? Eur. J. Lipid Sci. Technol. EJLST 2015, 117, 1370–1377. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, T.A.; Hafekost, K.; Mitrou, F.; Lawrence, D. Food Sources of Saturated Fat and the Association with Mortality: A Meta-Analysis. Am. J. Public Health 2013, 103, e31–e42. [Google Scholar] [CrossRef]
- Eleftheriou, D.; Benetou, V.; Trichopoulou, A.; La Vecchia, C.; Bamia, C. Mediterranean Diet and Its Components in Relation to All-Cause Mortality: Meta-Analysis. Br. J. Nutr. 2018, 120, 1081–1097. [Google Scholar] [CrossRef]
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and Dairy Consumption and Risk of Cardiovascular Diseases and All-Cause Mortality: Dose-Response Meta-Analysis of Prospective Cohort Studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of All-Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.-Q.; Xu, J.-Y.; Han, S.-F.; Zhang, Z.-L.; Zhao, Y.-Y.; Szeto, I.M. Dairy Consumption and Risk of Cardiovascular Disease: An Updated Meta-Analysis of Prospective Cohort Studies. Asia Pac. J. Clin. Nutr. 2015, 24, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.D.; Bylsma, L.C.; Vargas, A.J.; Cohen, S.S.; Doucette, A.; Mohamed, M.; Irvin, S.R.; Miller, P.E.; Watson, H.; Fryzek, J.P. Dairy Consumption and CVD: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2016, 115, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Soedamah-Muthu, S.S.; Ding, E.L.; Al-Delaimy, W.K.; Hu, F.B.; Engberink, M.F.; Willett, W.C.; Geleijnse, J.M. Milk and Dairy Consumption and Incidence of Cardiovascular Diseases and All-Cause Mortality: Dose-Response Meta-Analysis of Prospective Cohort Studies. Am. J. Clin. Nutr. 2011, 93, 158–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soedamah-Muthu, S.S.; de Goede, J. Dairy Consumption and Cardiometabolic Diseases: Systematic Review and Updated Meta-Analyses of Prospective Cohort Studies. Curr. Nutr. Rep. 2018, 7, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food Groups and Risk of Coronary Heart Disease, Stroke and Heart Failure: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazidi, M.; Mikhailidis, D.P.; Sattar, N.; Howard, G.; Graham, I.; Banach, M. Consumption of Dairy Product and Its Association with Total and Cause Specific Mortality—A Population-Based Cohort Study and Meta-Analysis. Clin. Nutr. 2019, 38, 2833–2845. [Google Scholar] [CrossRef]
- Mullie, P.; Pizot, C.; Autier, P. Daily Milk Consumption and All-Cause Mortality, Coronary Heart Disease and Stroke: A Systematic Review and Meta-Analysis of Observational Cohort Studies. BMC Public Health 2016, 16, 1236. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, M.U.; Trolle, E.; Outzen, M.; Mejborn, H.; Grønberg, M.G.; Lyndgaard, C.B.; Stockmarr, A.; Venø, S.K.; Bysted, A. Intake of Dairy Products and Associations with Major Atherosclerotic Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Cohort Studies. Sci. Rep. 2021, 11, 1303. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, X.; Zhang, L.; Deng, Z. Fermented Dairy Foods Intake and Risk of Cardiovascular Diseases: A Meta-Analysis of Cohort Studies. Crit. Rev. Food Sci. Nutr. 2020, 60, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Chen, G.-C.; Zhang, Z.; Wei, Y.-L.; Xu, J.-Y.; Qin, L.-Q. Cheese Consumption and Risk of All-Cause Mortality: A Meta-Analysis of Prospective Studies. Nutrients 2017, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-C.; Wang, Y.; Tong, X.; Szeto, I.M.Y.; Smit, G.; Li, Z.-N.; Qin, L.-Q. Cheese Consumption and Risk of Cardiovascular Disease: A Meta-Analysis of Prospective Studies. Eur. J. Nutr. 2017, 56, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Jia, H.-Y.; Chen, G.-C.; Li, C.-Y.; Hao, M. Yogurt Intake Reduces All-Cause and Cardiovascular Disease Mortality: A Meta-Analysis of Eight Prospective Cohort Studies. Chin. J. Integr. Med. 2020, 26, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, D. Consumption of Yogurt and the Incident Risk of Cardiovascular Disease: A Meta-Analysis of Nine Cohort Studies. Nutrients 2017, 9, 315. [Google Scholar] [CrossRef] [Green Version]
- Um, C.Y.; Prizment, A.; Hong, C.-P.; Lazovich, D.; Bostick, R.M. Associations of Calcium and Dairy Product Intakes with All-Cause, All-Cancer, Colorectal Cancer and CHD Mortality among Older Women in the Iowa Women’s Health Study. Br. J. Nutr. 2019, 121, 1188–1200. [Google Scholar] [CrossRef]
- Pala, V.; Sieri, S.; Chiodini, P.; Masala, G.; Palli, D.; Mattiello, A.; Panico, S.; Tumino, R.; Frasca, G.; Fasanelli, F.; et al. Associations of Dairy Product Consumption with Mortality in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Italy Cohort. Am. J. Clin. Nutr. 2019, 110, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Li, J.; Qi, L.; Ellervik, C.; Zhang, X.; Manson, J.E.; Stampfer, M.; Chavarro, J.E.; Rexrode, K.M.; Kraft, P.; et al. Associations of Dairy Intake with Risk of Mortality in Women and Men: Three Prospective Cohort Studies. BMJ 2019, 367, l6204. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, T.T.; Virtanen, H.E.K.; Voutilainen, S.; Tuomainen, T.-P.; Mursu, J.; Virtanen, J.K. Intake of Fermented and Non-Fermented Dairy Products and Risk of Incident CHD: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2018, 120, 1288–1297. [Google Scholar] [CrossRef] [Green Version]
- Johansson, I.; Esberg, A.; Nilsson, L.M.; Jansson, J.-H.; Wennberg, P.; Winkvist, A. Dairy Product Intake and Cardiometabolic Diseases in Northern Sweden: A 33-Year Prospective Cohort Study. Nutrients 2019, 11, 284. [Google Scholar] [CrossRef] [Green Version]
- Sochol, K.M.; Johns, T.S.; Buttar, R.S.; Randhawa, L.; Sanchez, E.; Gal, M.; Lestrade, K.; Merzkani, M.; Abramowitz, M.K.; Mossavar-Rahmani, Y.; et al. The Effects of Dairy Intake on Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019, 11, 2237. [Google Scholar] [CrossRef] [Green Version]
- Geng, T.; Qi, L.; Huang, T. Effects of Dairy Products Consumption on Body Weight and Body Composition Among Adults: An Updated Meta-Analysis of 37 Randomized Control Trials. Mol. Nutr. Food Res. 2018, 62, 1700410. [Google Scholar] [CrossRef]
- Stonehouse, W.; Wycherley, T.; Luscombe-Marsh, N.; Taylor, P.; Brinkworth, G.; Riley, M. Dairy Intake Enhances Body Weight and Composition Changes during Energy Restriction in 18-50-Year-Old Adults-A Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Booth, A.O.; Huggins, C.E.; Wattanapenpaiboon, N.; Nowson, C.A. Effect of Increasing Dietary Calcium through Supplements and Dairy Food on Body Weight and Body Composition: A Meta-Analysis of Randomised Controlled Trials. Br. J. Nutr. 2015, 114, 1013–1025. [Google Scholar] [CrossRef] [Green Version]
- Benatar, J.R.; Sidhu, K.; Stewart, R.A.H. Effects of High and Low Fat Dairy Food on Cardio-Metabolic Risk Factors: A Meta-Analysis of Randomized Studies. PLoS ONE 2013, 8, e76480. [Google Scholar] [CrossRef] [Green Version]
- Abargouei, A.S.; Janghorbani, M.; Salehi-Marzijarani, M.; Esmaillzadeh, A. Effect of Dairy Consumption on Weight and Body Composition in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Int. J. Obes. 2012, 36, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Pan, A.; Malik, V.S.; Hu, F.B. Effects of Dairy Intake on Body Weight and Fat: A Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2012, 96, 735–747. [Google Scholar] [CrossRef] [Green Version]
- Companys, J.; Pedret, A.; Valls, R.M.; Solà, R.; Pascual, V. Fermented Dairy Foods Rich in Probiotics and Cardiometabolic Risk Factors: A Narrative Review from Prospective Cohort Studies. Crit. Rev. Food Sci. Nutr. 2021, 61, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.; Robertson, K.; Yung, A.; Que, M.; Randall, H.; Wellalagodage, D.; Cox, T.; Robertson, D.; Chi, C.; Sun, J. Efficacy of Probiotics in Patients of Cardiovascular Disease Risk: A Systematic Review and Meta-Analysis. Curr. Hypertens. Rep. 2020, 22, 74. [Google Scholar] [CrossRef]
- O’Connor, S.; Turcotte, A.-F.; Gagnon, C.; Rudkowska, I. Increased Dairy Product Intake Modifies Plasma Glucose Concentrations and Glycated Hemoglobin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2019, 10, 262–279. [Google Scholar] [CrossRef]
- Usinger, L.; Reimer, C.; Ibsen, H. Fermented Milk for Hypertension. Cochrane Database Syst. Rev. 2012, CD008118. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.-Y.; Szeto, I.M.Y.; Makinen, K.; Gao, Q.; Wang, J.; Qin, L.-Q.; Zhao, Y. Effect of Probiotic Fermented Milk on Blood Pressure: A Meta-Analysis of Randomised Controlled Trials. Br. J. Nutr. 2013, 110, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Iqbal, K.; Schwedhelm, C.; Boeing, H. Food Groups and Intermediate Disease Markers: A Systematic Review and Network Meta-Analysis of Randomized Trials. Am. J. Clin. Nutr. 2018, 108, 576–586. [Google Scholar] [CrossRef] [PubMed]
- De Goede, J.; Geleijnse, J.M.; Ding, E.L.; Soedamah-Muthu, S.S. Effect of Cheese Consumption on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Rev. 2015, 73, 259–275. [Google Scholar] [CrossRef]
- Ziaei, R.; Ghavami, A.; Khalesi, S.; Ghiasvand, R.; Mokari Yamchi, A. The Effect of Probiotic Fermented Milk Products on Blood Lipid Concentrations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. NMCD 2021, 31, 997–1015. [Google Scholar] [CrossRef] [PubMed]
- Pourrajab, B.; Fatahi, S.; Dehnad, A.; Kord Varkaneh, H.; Shidfar, F. The Impact of Probiotic Yogurt Consumption on Lipid Profiles in Subjects with Mild to Moderate Hypercholesterolemia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Buys, N. Effects of Probiotics Consumption on Lowering Lipids and CVD Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann. Med. 2015, 47, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.A.; Kim, J. Effect of Probiotics on Blood Lipid Concentrations: A Meta-Analysis of Randomized Controlled Trials. Medicine 2015, 94, e1714. [Google Scholar] [CrossRef]
- Shimizu, M.; Hashiguchi, M.; Shiga, T.; Tamura, H.; Mochizuki, M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS ONE 2015, 10, e0139795. [Google Scholar] [CrossRef] [PubMed]
- Moosavian, S.P.; Rahimlou, M.; Saneei, P.; Esmaillzadeh, A. Effects of Dairy Products Consumption on Inflammatory Biomarkers among Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 872–888. [Google Scholar] [CrossRef]
- Van Aerde, M.A.; Soedamah-Muthu, S.S.; Geleijnse, J.M.; Snijder, M.B.; Nijpels, G.; Stehouwer, C.D.A.; Dekker, J.M. Dairy Intake in Relation to Cardiovascular Disease Mortality and All-Cause Mortality: The Hoorn Study. Eur. J. Nutr. 2013, 52, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A.; Geiker, N.R.W.; Magkos, F. Effects of Full-Fat and Fermented Dairy Products on Cardiometabolic Disease: Food Is More Than the Sum of Its Parts. Adv. Nutr. 2019, 10, 924S–930S. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.; Masulli, M.; Calabrese, I.; Rivellese, A.A.; Bonora, E.; Signorini, S.; Perriello, G.; Squatrito, S.; Buzzetti, R.; Sartore, G.; et al. Impact of a Mediterranean Dietary Pattern and Its Components on Cardiovascular Risk Factors, Glucose Control, and Body Weight in People with Type 2 Diabetes: A Real-Life Study. Nutrients 2018, 10, 1067. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A.; Rice Bradley, B.H.; Brenna, J.T.; Delplanque, B.; Ferry, M.; Torres-Gonzalez, M. Regular-Fat Dairy and Human Health: A Synopsis of Symposia Presented in Europe and North America (2014–2015). Nutrients 2016, 8, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, E.; Hu, F.B. Dairy Products, Dairy Fatty Acids, and the Prevention of Cardiometabolic Disease: A Review of Recent Evidence. Curr. Atheroscler. Rep. 2018, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Bhupathi, V.; Mazariegos, M.; Cruz Rodriguez, J.B.; Deoker, A. Dairy Intake and Risk of Cardiovascular Disease. Curr. Cardiol. Rep. 2020, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Kimura, N.; Keys, A. Coronary Heart Disease in Seven Countries. X. Rural Southern Japan. Circulation 1993, 88, 2524–2531. [Google Scholar]
- Simons, L.A. Interrelations of Lipids and Lipoproteins with Coronary Artery Disease Mortality in 19 Countries. Am. J. Cardiol. 1986, 57, 5G–10G. [Google Scholar] [CrossRef]
- Renaud, S.; de Lorgeril, M. Dietary Lipids and Their Relation to Ischaemic Heart Disease: From Epidemiology to Prevention. J. Intern. Med. Suppl. 1989, 731, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Artaud-Wild, S.M.; Connor, S.L.; Sexton, G.; Connor, W.E. Differences in Coronary Mortality Can Be Explained by Differences in Cholesterol and Saturated Fat Intakes in 40 Countries but Not in France and Finland. A Paradox. Circulation 1993, 88, 2771–2779. [Google Scholar] [CrossRef] [Green Version]
- Mulet-Cabero, A.-I.; Wilde, P.J. Role of Calcium on Lipid Digestion and Serum Lipids: A Review. Crit. Rev. Food Sci. Nutr. 2021, 1–14. [Google Scholar] [CrossRef]
- Sutanto, H.; Lyon, A.; Lumens, J.; Schotten, U.; Dobrev, D.; Heijman, J. Cardiomyocyte Calcium Handling in Health and Disease: Insights from in Vitro and in Silico Studies. Prog. Biophys. Mol. Biol. 2020, 157, 54–75. [Google Scholar] [CrossRef]
- Anderson, J.J.B.; Kruszka, B.; Delaney, J.A.C.; He, K.; Burke, G.L.; Alonso, A.; Bild, D.E.; Budoff, M.; Michos, E.D. Calcium Intake from Diet and Supplements and the Risk of Coronary Artery Calcification and Its Progression among Older Adults: 10-Year Follow-up of the Multi-Ethnic Study of Atherosclerosis (MESA). J. Am. Heart Assoc. 2016, 5, e003815. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H.Y. Flavonoids, Dairy Foods, and Cardiovascular and Metabolic Health: A Review of Emerging Biologic Pathways. Circ. Res. 2018, 122, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.I.A.; Gibson, G.R. Effects of Consumption of Probiotics and Prebiotics on Serum Lipid Levels in Humans. Crit. Rev. Biochem. Mol. Biol. 2002, 37, 259–281. [Google Scholar] [CrossRef] [PubMed]
- Dove, E.R.; Hodgson, J.M.; Puddey, I.B.; Beilin, L.J.; Lee, Y.P.; Mori, T.A. Skim Milk Compared with a Fruit Drink Acutely Reduces Appetite and Energy Intake in Overweight Men and Women. Am. J. Clin. Nutr. 2009, 90, 70–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp-Plantenga, M.S.; Nieuwenhuizen, A.; Tomé, D.; Soenen, S.; Westerterp, K.R. Dietary Protein, Weight Loss, and Weight Maintenance. Annu. Rev. Nutr. 2009, 29, 21–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemel, M.B.; Richards, J.; Milstead, A.; Campbell, P. Effects of Calcium and Dairy on Body Composition and Weight Loss in African-American Adults. Obes. Res. 2005, 13, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of Dairy Foods and Diabetes Incidence: A Dose-Response Meta-Analysis of Observational Studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- McGrane, M.M.; Essery, E.; Obbagy, J.; Lyon, J.; Macneil, P.; Spahn, J.; Van Horn, L. Dairy Consumption, Blood Pressure, and Risk of Hypertension: An Evidence-Based Review of Recent Literature. Curr. Cardiovasc. Risk Rep. 2011, 5, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouin-Chartier, J.-P.; Côté, J.A.; Labonté, M.-È.; Brassard, D.; Tessier-Grenier, M.; Desroches, S.; Couture, P.; Lamarche, B. Comprehensive Review of the Impact of Dairy Foods and Dairy Fat on Cardiometabolic Risk. Adv. Nutr. 2016, 7, 1041–1051. [Google Scholar] [CrossRef]
- Månsson, H.L. Fatty Acids in Bovine Milk Fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran-Ressler, R.R.; Bae, S.; Lawrence, P.; Wang, D.H.; Brenna, J.T. Branched-Chain Fatty Acid Content of Foods and Estimated Intake in the USA. Br. J. Nutr. 2014, 112, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Bozzetto, L.; Costabile, G.; Della Pepa, G.; Ciciola, P.; Vetrani, C.; Vitale, M.; Rivellese, A.A.; Annuzzi, G. Dietary Fibre as a Unifying Remedy for the Whole Spectrum of Obesity-Associated Cardiovascular Risk. Nutrients 2018, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Cai, X.; Fei, W.; Ye, Y.; Zhao, M.; Zheng, C. The Role of Short-Chain Fatty Acids in Immunity, Inflammation and Metabolism. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–12. [Google Scholar] [CrossRef] [PubMed]
Meta-Analysis | Neutral Relation | Inverse Relation (% Risk Reduction) | Positive Relation (% Risk Increase) | |
---|---|---|---|---|
TOTAL DAIRY | ||||
All-cause mortality | O’Sullivan 2013 [17] | ✓ | ||
Guo 2017 [19] | ✓ | |||
Eleftheriou 2018 [18] | ✓ | |||
Schwingshackl 2018 [20] | ✓ | |||
CVD incidence | Qin 2015 [21] | ✓ (−12% high vs. low intake) | ||
Alexander 2016 [22] | ✓ | |||
Guo 2017 [19] | ✓ | |||
CVD mortality | O’ Sullivan 2013 [17] | ✓ | ||
CHD incidence | Soedamah-Muthu 2011 [23] | ✓ | ||
Qin 2015 [21] | ✓ | |||
Alexander 2016 [22] | ✓ (high vs. low intake) | ✓ (−14% per > 3 s/d) | ||
Guo 2017 [19] | ✓ | |||
Soedamah-Muthu 2018 [24] | ✓ | |||
Bechthold 2019 [25] | ✓ | |||
CHD mortality | Mazidi 2019 [26] | ✓ | ||
FULL-FAT DAIRY | ||||
All-cause mortality | Guo 2017 [19] | ✓ | ||
CVD incidence | Guo 2017 [19] | ✓ | ||
CHD incidence | Soedamah-Muthu 2011 [23] | ✓ | ||
Qin 2015 [21] | ✓ | |||
Alexander 2016 [22] | ✓ | |||
Guo 2017 [19] | ✓ | |||
CHD mortality | Mazidi 2019 [26] | ✓ | ||
LOW-FAT DAIRY | ||||
All-cause mortality | Guo 2017 [19] | ✓ | ||
CVD incidence | Guo 2017 [19] | ✓ | ||
CHD incidence | Soedamah-Muthu 2011 [23] | ✓ | ||
Qin 2015 [21] | ✓ | |||
Alexander 2016 [22] | ✓ (−10% high vs. low intake) | |||
Guo 2017 [19] | ✓ | |||
MILK | ||||
All-cause mortality | Soedamah-Muthu 2011 [23] | ✓ | ||
O’Sullivan 2013 [17] | ✓ | |||
Mullie 2016 [27] | ✓ | |||
Guo 2017 [19] | ✓ | |||
CVD incidence | Soedamah-Muthu 2011 [23] | ✓ (−6% per 200 mL/d) | ||
Alexander 2016 [22] | ✓ | |||
Guo 2017 [19] | ✓ | |||
CVD mortality | O’Sullivan 2013 [17] | ✓ | ||
CHD incidence | Soedamah-Muthu 2011 [23] | ✓ | ||
Alexander 2016 [22] | ✓ | |||
Mullie 2016 [27] | ✓ | |||
Guo 2017 [19] | ✓ | |||
Soedamah-Muthu 2018 [24] | ✓ | |||
Jakobsen 2021 [28] | ✓ | |||
CHD mortality | Mazidi 2019 [26] | ✓ (+4% high vs. low intake) | ||
FERMENTED DAIRY PRODUCTS | ||||
All-cause mortality | Guo 2017 [19] | ✓ (−2% per 20 g/d) | ||
CVD incidence | Guo 2017 [19] | ✓ (−2% per 20 g/d) | ||
Zhang 2020 [29] | ✓ (−20% high vs. low intake) | |||
CVD mortality | Zhang 2020 [29] | ✓ | ||
CHD incidence | Guo 2017 [19] | ✓ | ||
Zhang 2020 [29] | ✓ | |||
CHEESE | ||||
All-cause mortality | O’Sullivan 2013 [17] | ✓ | ||
Guo 2017 [19] | ✓ | |||
Tong 2017 [30] | ✓ | |||
CVD incidence | Alexander 2016 [22] | ✓ | ||
Chen 2017 [31] | ✓ per 50 g/d | ✓ (−10% high vs. low intake) | ||
Guo 2017 [19] | ✓ (−2% per 10 g/d) | |||
Zhang 2020 [29] | ✓ (−13% high vs. low intake) | |||
CVD mortality | O’Sullivan 2013 [17] | ✓ | ||
CHD incidence | Qin 2015 [21] | ✓ (−16% high vs. low intake) | ||
Alexander 2016 [22] | ✓ (−14% per 50 g/d) | |||
Chen 2017 [31] | ✓ (−10% per 50 g/d) | |||
Guo 2017 [19] | ✓ | |||
Jakobsen 2021 [28] | ✓ (−4% per 20 g/d) | |||
YOGURT | ||||
All-cause mortality | Guo 2017 [19] | ✓ | ||
Gao 2020 [32] | ✓ high vs. low intake | ✓ (−5% per 200 g/d) | ||
CVD incidence | Alexander 2016 [22] | ✓ | ||
Guo 2017 [19] | ✓ | |||
Wu 2017 [33] | ✓ high vs. low intake | ✓ (−8% per ≥ 200 g/d) | ||
Zhang 2020 [29] | ✓ (−22% high vs. low intake) | |||
CVD mortality | Gao 2020 [32] | ✓ high vs. low intake | ✓ (−8% per 200 g/d) | |
CHD incidence | Qin 2015 [21] | ✓ | ||
Alexander 2016 [22] | ✓ | |||
Wu 2017 [33] | ✓ | |||
Guo 2017 [19] | ✓ | |||
Jakobsen 2021 [28] | ✓ |
No. of Meta-Analyses Reporting No Effect | No. of Meta-Analyses Reporting a Significant Reduction | No. of Meta-Analyses Reporting a Significant Increase | |
---|---|---|---|
TOTAL DAIRY | |||
Body weight | 3 | 5 * | 2 |
Waist circumference | 3 | 3 | 0 |
Fasting glucose | 0 | 0 | 2 |
Glycated hemoglobin | 0 | 1 | 0 |
Insulin resistance (HOMA-IR) | 2 | 1 | 0 |
Systolic blood pressure | 1 | 0 | 0 |
Diastolic blood pressure | 1 | 0 | 0 |
Total cholesterol | 1 | 0 | 0 |
LDL cholesterol | 2 | 0 | 0 |
HDL cholesterol | 1 | 0 | 0 |
Triglycerides | 1 | 0 | 0 |
C-reactive protein | 1 | 1 | 0 |
TNF-α | 0 | 1 | 0 |
IL-6 | 0 | 1 | 0 |
Adiponectin | 0 | 0 | 1 |
FULL-FAT DAIRY PRODUCTS | |||
Body weight | 0 | 0 | 1 |
Waist circumference | 1 | 0 | 0 |
Fasting glucose | 0 | 0 | 1 |
Systolic blood pressure | 1 | 0 | 0 |
Diastolic blood pressure | 1 | 0 | 0 |
LDL cholesterol | 1 | 0 | 0 |
HDL cholesterol | 1 | 0 | 0 |
C-reactive protein | 1 | 0 | 0 |
LOW-FAT DAIRY PRODUCTS | |||
Body weight | 0 | 0 | 1 |
Waist circumference | 1 | 0 | 0 |
Fasting glucose | 1 | 0 | 1 |
Glycated hemoglobin | 1 | 0 | 0 |
Insulin resistance (HOMA-IR) | 1 | 0 | 0 |
Systolic blood pressure | 1 | 0 | 0 |
Diastolic blood pressure | 1 | 0 | 0 |
LDL cholesterol | 1 | 0 | 0 |
HDL cholesterol | 1 | 0 | 0 |
C-reactive protein | 1 | 0 | 0 |
MILK AND/OR YOGURT | |||
Fasting glucose | 0 | 0 | 1 |
Glycated hemoglobin | 0 | 1 | 0 |
Insulin resistance (HOMA-IR) | 1 | 0 | 0 |
C-reactive protein | 1 | 0 | 0 |
TNF-α | 0 | 1 | 0 |
IL-6 | 1 | 0 | 0 |
Adiponectin | 0 | 0 | 1 |
CHEESE | |||
Fasting glucose | 1 | 0 | 0 |
Insulin resistance (HOMA-IR) | 1 | 0 | 0 |
Total cholesterol | 0 | 1 | 0 |
LDL cholesterol | 0 | 1 | 0 |
HDL cholesterol | 0 | 1 | 0 |
Triglycerides | 1 | 0 | 0 |
FERMENTED DAIRIES OR DAIRIES PLUS PROBIOTICS | |||
Waist circumference | 0 | 1 | 0 |
Fasting glucose | 2 | 2 | 0 |
Glycated hemoglobin | 1 | 1 | 0 |
Insulin resistance (HOMA-IR) | 1 | 0 | 0 |
Systolic blood pressure | 2 | 1 | 0 |
Diastolic blood pressure | 3 | 1 | 0 |
Total cholesterol | 0 | 7 | 0 |
LDL cholesterol | 0 | 7 | 0 |
HDL cholesterol | 5 | 0 | 1 |
Triglycerides | 3 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giosuè, A.; Calabrese, I.; Vitale, M.; Riccardi, G.; Vaccaro, O. Consumption of Dairy Foods and Cardiovascular Disease: A Systematic Review. Nutrients 2022, 14, 831. https://doi.org/10.3390/nu14040831
Giosuè A, Calabrese I, Vitale M, Riccardi G, Vaccaro O. Consumption of Dairy Foods and Cardiovascular Disease: A Systematic Review. Nutrients. 2022; 14(4):831. https://doi.org/10.3390/nu14040831
Chicago/Turabian StyleGiosuè, Annalisa, Ilaria Calabrese, Marilena Vitale, Gabriele Riccardi, and Olga Vaccaro. 2022. "Consumption of Dairy Foods and Cardiovascular Disease: A Systematic Review" Nutrients 14, no. 4: 831. https://doi.org/10.3390/nu14040831
APA StyleGiosuè, A., Calabrese, I., Vitale, M., Riccardi, G., & Vaccaro, O. (2022). Consumption of Dairy Foods and Cardiovascular Disease: A Systematic Review. Nutrients, 14(4), 831. https://doi.org/10.3390/nu14040831