Glycomacropeptide in PKU—Does It Live Up to Its Potential?
Abstract
:1. Introduction
2. Protein Substitutes Pharmacological Benefits
3. The Role of Functional Amino Acids in Protein Substitutes
4. What Is a Casein Glycomacropeptide (CGMP)?
5. Potential Clinical Properties of CGMP
6. Potential Commercial Use of CGMP
7. Adaptation of CGMP for Use as a Low Phenylalanine Protein Substitute in PKU
8. The Impact of CGMP on Blood Phenylalanine Control in PKU
9. Kinetic Properties of Protein Substitutes
10. The Impact of CGMP on Growth and Body Composition in Children with PKU
11. Impact of CGMP Compared to L-AAs on Bone Mass, Density and Geometry in Children with PKU
12. Does Glycomacropeptide Improve Palatability of Protein Substitutes?
13. Impact of CGMP on Breath Malodour in Children with PKU
14. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hillert, A.; Anikster, Y.; Belanger-Quintana, A.; Burlina, A.; Burton, B.K.; Carducci, C.; Chiesa, A.E.; Christodoulou, J.; Đorđević, M.; Desviat, L.R.; et al. The Genetic Landscape and Epidemiology of Phenylketonuria. Am. J. Hum. Genet. 2020, 107, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Bickel, H.; Gerrard, J.; Hickmans, E.M. Influence of phenylalanine intake on phenylketonuria. Lancet 1953, 265, 812–813. [Google Scholar] [CrossRef] [Green Version]
- Woolf, L.I.; Griffiths, R.; Moncrieff, A. Treatment of Phenylketonuria with a Diet Low in Phenylalanine. Br. Med. J. 1955, 1, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, A.; Evans, S.; Pinto, A.; Ashmore, C.; MacDonald, A. Protein Substitutes in PKU: Their Historical Evolution. Nutrients 2021, 13, 484. [Google Scholar] [CrossRef]
- Gardiner, K.; Barbul, A. Review: Intestinal Amino Acid Absorption during Sepsis. J. Parenter. Enter. Nutr. 1993, 17, 277–283. [Google Scholar] [CrossRef]
- MacDonald, A.; Chakrapani, A.; Hendriksz, C.; Daly, A.; Davies, P.; Asplin, D.; Hall, K.; Booth, I.W. Protein substitute dosage in PKU: How much do young patients need? Arch. Dis. Child. 2006, 91, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, A.; Rylance, G.; Davies, P.; Asplin, D.; Hall, S.K.; Booth, I.W. Administration of protein substitute and quality of control in phenylketonuria: A randomized study. J. Inherit. Metab. Dis. 2003, 26, 319–326. [Google Scholar] [CrossRef]
- Van Wegberg, A.M.J.; Macdonald, A.; Ahring, K.; BéLanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Van Spronsen, F.J.; Smit, P.G.A.; Koch, R. Phenylketonuria: Tyrosine beyond the phenylalanine-restricted diet. J. Inherit. Metab. Dis. 2001, 24, 1–4. [Google Scholar] [CrossRef]
- Elango, R.; Ball, R.O.; Pencharz, P.B. Amino acid requirements in humans: With a special emphasis on the metabolic availability of amino acids. Amino Acids 2009, 37, 19–27. [Google Scholar] [CrossRef]
- Gropper, S.S.; Acosta, P.B. Effect of Simultaneous Ingestion of L-Amino Acids and Whole Protein on Plasma Amino Acid and Urea Nitrogen Concentrations in Humans. J. Parenter. Enter. Nutr. 1991, 15, 48–53. [Google Scholar] [CrossRef]
- Gropper, S.S.; Gropper, D.M.; Acosta, P.B. Plasma Amino Acid Response to Ingestion of L-Amino Acids and Whole Protein. J. Pediatr. Gastroenterol. Nutr. 1993, 16, 143–150. [Google Scholar] [CrossRef]
- Metges, C.C.; El-Khoury, A.E.; Selvaraj, A.B.; Tsay, R.H.; Atkinson, A.; Regan, M.M.; Bequette, B.J.; Young, V.R. Kinetics of L-[1-(13)C]leucine when ingested with free amino acids, unlabeled or intrinsically labeled casein. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E1000–E1009. [Google Scholar] [CrossRef] [Green Version]
- Jahja, R.; Huijbregts, S.; de Sonneville, L.; van der Meere, J.J.; van Spronsen, F.J. Neurocognitive Evidence for Revision of Treatment Targets and Guidelines for Phenylketonuria. J. Pediatr. 2014, 164, 895–899.e2. [Google Scholar] [CrossRef]
- Scala, I.; Riccio, M.P.; Marino, M.; Bravaccio, C.; Parenti, G.; Strisciuglio, P. Large Neutral Amino Acids (LNAAs) Supplementation Improves Neuropsychological Performances in Adult Patients with Phenylketonuria. Nutrients 2020, 12, 1092. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, D.; Bruinenberg, V.M.; Mazzola, P.N.; van Faassen, M.H.; de Blaauw, P.; Kema, I.P.; Heiner-Fokkema, M.R.; van Anholt, R.D.; van der Zee, E.A.; van Spronsen, F.J. Large Neutral Amino Acid Supplementation Exerts Its Effect through Three Synergistic Mechanisms: Proof of Principle in Phenylketonuria Mice. PLoS ONE 2015, 10, e0143833. [Google Scholar]
- Hidalgo, I.J.; Borchardt, R.T. Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line: Caco-2. Biochim. Biophys. Acta 1990, 1028, 25–30. [Google Scholar] [CrossRef]
- Matalon, R.; Michals-Matalon, K.; Bhatia, G.; Grechanina, E.; Novikov, P.; McDonald, J.D.; Grady, J.; Tyring, S.K.; Güttler, F. Large neutral amino acids in the treatment of phenylketonuria (PKU). J. Inherit. Metab. Dis. 2006, 29, 732–738. [Google Scholar] [CrossRef]
- Wapnir, R.A.; Hawkins, R.L.; Lifshitz, F. Local and Systemic Effects of Phenylalanine on Intestinal Transport of Tyrosine and Tryptophan. Proc. Soc. Exp. Biol. Med. 1972, 140, 661–666. [Google Scholar] [CrossRef]
- Schuck, P.F.; Malgarin, F.; Cararo, J.H.; Cardoso, F.; Streck, E.L.; Ferreira, G.C. Phenylketonuria Pathophysiology: On the Role of Metabolic Alterations. Aging Dis. 2015, 6, 390–399. [Google Scholar]
- Thiele, A.G.; Gausche, R.; Lindenberg, C.; Beger, C.; Arelin, M.; Rohde, C.; Mütze, U.; Weigel, J.F.; Mohnike, K.; Baerwald, C.; et al. Growth and Final Height among Children with Phenylketonuria. Pediatrics 2017, 140, e20170015. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- MacDonald, A.; Rylance, G.; Hall, S.K.; Asplin, D.; Booth, I.W. Factors affecting the variation in plasma phenylalanine in patients with phenylketonuria on diet. Arch. Dis. Child. 1996, 74, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, A.; Lee, P.; Davies, P.; Daly, A.; Lilburn, M.; Ozel, H.G.; Preece, M.A.; Hendriksz, C.; Chakrapani, A. Long-term compliance with a novel vitamin and mineral supplement in older people with PKU. J. Inherit. Metab. Dis. 2008, 31, 718–723. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.-L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef] [Green Version]
- Patti, M.E.; Brambilla, E.; Luzi, L.; Landaker, E.J.; Kahn, C.R. Bidirectional modulation of insulin action by amino acids. J. Clin. Investig. 1998, 101, 1519–1529. [Google Scholar] [CrossRef]
- Patti, M.-E.; Kahn, C.R. The Insulin Receptor—A Critical Link in Glucose Homeostasis and Insulin Action. J. Basic Clin. Physiol. Pharmacol. 1998, 9, 89–110. [Google Scholar] [CrossRef]
- Millward, D.J.; Layman, D.K.; Tomé, D.; Schaafsma, G. Protein quality assessment: Impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr. 2008, 87, 1576S–1581S. [Google Scholar] [CrossRef]
- György, P.; Kuhn, R.; Rose, C.S.; Zilliken, F. Bifidus factor. II. Its occurrence in milk from different species and in other natural products. Arch. Biochem. Biophys. 1954, 48, 202–208. [Google Scholar] [CrossRef]
- Delfour, A.; Jollès, J.; Alais, C.; Jolles, P. Caseino-glycopeptides: Characterization of a methionine residue and of the N-terminal sequence. Biochem. Biophys. Res. Commun. 1965, 19, 452–455. [Google Scholar] [CrossRef]
- Brody, E.P. Biological activities of bovine glycomacropeptide. Br. J. Nutr. 2000, 84 (Suppl. S1), 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idota, T.; Kawakami, H.; Nakajima, I. Growth promoting effects of N-actylneuraminic acid containing substances on Bifidobacteria. Biosci. Biotechnol. Biochem. 1994, 58, 413–416. [Google Scholar] [CrossRef]
- Sharma, R.; Rajput, Y.S.; Mann, B. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: A review. Dairy Sci. Technol. 2013, 93, 21–43. [Google Scholar]
- Thomä-Worringer, C.; Søensen, J.; López-Fandiño, R. Health effecs and technological features of caseingmacropeptide. Int. Dairy J. 2006, 16, 1324–1333. [Google Scholar] [CrossRef]
- Vance, B.A.; Wu, W.; Ribaudo, R.K.; Segal, D.M.; Kearse, K.P. Multiple Dimeric Forms of Human CD69 Result from Differential Addition of N-Glycans to Typical (Asn-X-Ser/Thr) and Atypical (Asn-X-Cys) Glycosylation Motifs. J. Biol. Chem. 1997, 272, 23117–23122. [Google Scholar] [CrossRef] [Green Version]
- Vreeman, H.J.; Visser, S.; Slangen, C.J.; Van Riel, J.A. Characterization of bovine kappa-casein fractions and the kinetics of chymosin-induced macropeptide release from carbohydrate-free and carbohydrate-containing fractions determined by high-performance gel-permeation chromatography. Biochem. J. 1986, 240, 87–97. [Google Scholar] [CrossRef]
- Holland, J.W.; Deeth, H.C.; Alewood, P.F. Analysis of O-glycosylation site occupancy in bovine kappa-casein glycoforms separated by two-dimensional gel electrophoresis. Proteomics 2005, 5, 990–1002. [Google Scholar] [CrossRef]
- O’Riordan, N.; Kane, M.; Joshi, L.; Hickey, R.M. Structural and functional characteristics of bovine milk protein glycosylation. Glycobiology 2014, 24, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Ntemiri, A.; Chonchúir, F.N.; O’Callaghan, T.; Stanton, C.; Ross, R.; O’Toole, P.W. Glycomacropeptide Sustains Microbiota Diversity and Promotes Specific Taxa in an Artificial Colon Model of Elderly Gut Microbiota. J. Agric. Food Chem. 2017, 65, 1836–1846. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Isoda, H.; Tanimoto, M.; Dosako, S.I.; Idota, T.; Ahiko, K. Inhibition by lactoferrin and kappa-casein glycomacropeptide of binding of Cholera toxin to its receptor. Biosci. Biotechnol. Biochem. 1992, 56, 195–198. [Google Scholar] [CrossRef]
- Oh, S.; Worobo, R.W.; Kim, B.; Rheem, S.; Kim, S. Detection of the cholera toxin-binding activity of kappa-casein macropeptide and optimization of its production by the response surface methodology. Biosci. Biotechnol. Biochem. 2000, 64, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, H.; Yamazaki, M.; Kariya, H.; Ohata, R. Isolation of enteroaggregative escherichia coli (EAggEC) from patients with diarrheal disease in an outbreak case of overseas tour. Kansenshogaku Zasshi 2005, 79, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Aimutis, W.R. Bioactive Properties of Milk Proteins with Particular Focus on Anticariogenesis. J. Nutr. 2004, 134, 989S–995S. [Google Scholar] [CrossRef] [Green Version]
- Rose, R. Binding Characteristics of Streptococcus mutans for Calcium and Casein Phosphopeptide. Caries Res. 2000, 34, 427–431. [Google Scholar] [CrossRef]
- Wang, H.X.; Chen, Y.; Haque, Z.; de Veer, M.; Egan, G.; Wang, B. Sialylated milk oligosaccharides alter neurotransmitters and brain metabolites in piglets: An In vivo magnetic resonance spectroscopic (MRS) study. Nutr. Neurosci. 2019, 24, 885–895. [Google Scholar] [CrossRef]
- Ney, D.M.; Hull, A.K.; Van Calcar, S.C.; Liu, X.; Etzel, M.R. Dietary Glycomacropeptide Supports Growth and Reduces the Concentrations of Phenylalanine in Plasma and Brain in a Murine Model of Phenylketonuria. J. Nutr. 2008, 138, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine, F.N.B. Dietary Reference Intakes for Energy, Carbohydrates, Fibre, Fat, Protein and Amino Acids; National Academy Press: Washington, DC, USA, 2002. [Google Scholar]
- Van Calcar, S.C.; MacLeod, E.L.; Gleason, S.T.; Etzel, M.R.; Clayton, M.K.; Wolff, J.A.; Ney, D.M. Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am. J. Clin. Nutr. 2009, 89, 1068–1077. [Google Scholar] [CrossRef] [Green Version]
- Humayun, M.A.; Turner, J.M.; Elango, R.; Rafii, M.; Langos, V.; Ball, R.O.; Pencharz, P.B. Minimum methionine requirement and cysteine sparing of methionine in healthy school-age children. Am. J. Clin. Nutr. 2006, 84, 1080–1085. [Google Scholar] [CrossRef] [Green Version]
- Ahring, K.K.; Lund, A.; Jensen, E.; Jensen, T.G.; Brøndum-Nielsen, K.; Pedersen, M.; Bardow, A.; Holst, J.J.; Rehfeld, J.F.; Møller, L. Comparison of Glycomacropeptide with Phenylalanine Free-Synthetic Amino Acids in Test Meals to PKU Patients: No Significant Differences in Biomarkers, Including Plasma Phe Levels. J. Nutr. Metab. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ney, D.M.; Stroup, B.M.; Clayton, M.K.; Murali, S.G.; Rice, G.M.; Rohr, F.; Levy, H.L. Glycomacropeptide for nutritional management of phenylketonuria: A randomized, controlled, crossover trial. Am. J. Clin. Nutr. 2016, 104, 334–345. [Google Scholar] [CrossRef] [Green Version]
- Pena, M.J.; Pinto, A.; Daly, A.; Macdonald, A.; Azevedo, L.; Rocha, J.C.; Borges, N. The Use of Glycomacropeptide in Patients with Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Zaki, O.K.; El-Wakeel, L.; Ebeid, Y.; Elarab, H.E.; Moustafa, A.; Abdulazim, N.; Karara, H.; Elghawaby, A. The Use of Glycomacropeptide in Dietary Management of Phenylketonuria. J. Nutr. Metab. 2016, 2016, 2453027. [Google Scholar] [CrossRef] [Green Version]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; MacDonald, A. Glycomacropeptide in children with phenylketonuria: Does its phenylalanine content affect blood phenylalanine control? J. Hum. Nutr. Diet 2017, 30, 515–523. [Google Scholar] [CrossRef]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; Pinto, A.; Jackson, R.; Gingell, C.; Rocha, J.; Van Spronsen, F.J.; Macdonald, A. Glycomacropeptide: Long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU. Orphanet J. Rare Dis. 2019, 14, 44. [Google Scholar] [CrossRef]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; Pinto, A.; Gingell, C.; Rocha, J.C.; Van Spronsen, F.; Jackson, R.; Macdonald, A. The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial. Nutrients 2019, 11, 520. [Google Scholar] [CrossRef] [Green Version]
- Pena, M.J.; Pinto, A.; de Almeida, M.F.; Barbosa, C.D.S.; Ramos, P.C.; Rocha, S.; Guimas, A.; Ribeiro, R.; Martins, E.; Bandeira, A.; et al. Continuous use of glycomacropeptide in the nutritional management of patients with phenylketonuria: A clinical perspective. Orphanet J. Rare Dis. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Pinto, A.; Almeida, M.; Ramos, P.C.; Rocha, S.; Guimas, A.; Ribeiro, R.; Martins, E.; Bandeira, A.; MacDonald, A.; Rocha, J.C. Nutritional status in patients with phenylketonuria using glycomacropeptide as their major protein source. Eur. J. Clin. Nutr. 2017, 71, 1230–1234. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Giarratana, N.; Gallina, G.; Panzeri, V.; Frangi, A.; Canobbio, A.; Reiner, G. A New Phe-Free Protein Substitute Engineered to Allow a Physiological Absorption of Free Amino Acids for Phenylketonuria. J. Inborn Errors Metab. Screen. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.-P.; Maubois, J.-L.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [Green Version]
- Dangin, M.; Boirie, Y.; Garcia-Rodenas, C.; Gachon, P.; Fauquant, J.; Callier, P.; Ballèvre, O.; Beaufrère, B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E340–E348. [Google Scholar] [CrossRef] [Green Version]
- Mönch, E.; Herrmann, M.E.; Brösicke, H.; Schöffer, A.; Keller, M. Utilisation of amino acid mixtures in adolescents with phenylketonuria. Eur. J. Pediatr. 1996, 155 (Suppl. S1), S115–S120. [Google Scholar] [CrossRef]
- Silk, D.B.A.; Fairclough, P.D.; Clark, M.L.; Hegarty, J.E.; Addison, J.M.; Burston, D.; Clegg, K.M.; Matthews, D.M. Use of a Peptide Rather Than Free Amino Acid Nitrogen Source in Chemically Defined “Elemental” Diets. J. Parenter. Enter. Nutr. 1980, 4, 548–553. [Google Scholar] [CrossRef]
- Herrmann, M.E.; Brösicke, H.G.; Keller, M.; Monch, E.; Helge, H. Dependence of the utilization of a phenylalanine-free amino acid mixture on different amounts of single dose ingested. A case report. Eur. J. Pediatr. 1994, 153, 501–503. [Google Scholar] [CrossRef]
- Daly, A.; Evans, S.; Pinto, A.; Jackson, R.; Ashmore, C.; Rocha, J.C.; Macdonald, A. Preliminary Investigation to Review If a Glycomacropeptide Compared to L-Amino Acid Protein Substitute Alters the Pre- and Postprandial Amino Acid Profile in Children with Phenylketonuria. Nutrients 2020, 12, 2443. [Google Scholar] [CrossRef]
- Dobbelaere, D.; Michaud, L.; DeBrabander, A.; Vanderbecken, S.; Gottrand, F.; Turck, D.; Farriaux, J.P. Evaluation of nutritional status and pathophysiology of growth retardation in patients with phenylketonuria. J. Inherit. Metab. Dis. 2003, 26, 1–11. [Google Scholar] [CrossRef]
- Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; Motzfeldt, K.; Robert, M.; Rocha, J.C.; van Rijn, M.; Ahring, K.; Bélanger-Quintana, A.; MacDonald, A. Optimising growth in phenylketonuria: Current state of the clinical evidence base. Clin. Nutr. 2011, 31, 16–21. [Google Scholar] [CrossRef]
- Ilgaz, F.; Pinto, A.; Gökmen-Özel, H.; Rocha, J.C.; Van Dam, E.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Karabulut, E.; Macdonald, A. Long-Term Growth in Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2070. [Google Scholar] [CrossRef] [Green Version]
- Zaffanello, M.; Zamboni, G.; Tatò, L. Growth parameters in newborns with hyperphenylalaninaemia. Paediatr. Périnat. Epidemiol. 2002, 16, 274–277. [Google Scholar] [CrossRef]
- Kindt, E.; Motzfeldt, K.; Halvorsen, S.; Lie, S.O. Protein requirements in infants and children: A longitudinal study of children treated for phenylketonuria. Am. J. Clin. Nutr. 1983, 37, 778–785. [Google Scholar] [CrossRef]
- FAO; WHO. Energy and Protein Requirements; Report of a Joint FAO/WHO Ad Hoc Expert Committee, in Technical Report Series 1973; FAO: Quebec City, QC, Canada; WHO: Geneva, Switzerland, 1973; p. 118. [Google Scholar]
- Smith, J.L.; Arteaga, C.; Heymsfield, S.B. Increased Ureagenesis and Impaired Nitrogen Use during Infusion of a Synthetic Amino Acid Formula. N. Engl. J. Med. 1982, 306, 1013–1018. [Google Scholar] [CrossRef]
- Holm, V.A.; Kronmal, R.A.; Williamson, M.; Roche, A.F. Physical growth in phenylketonuria: II. Growth of treated children in the PKU collaborative study from birth to 4 years of age. Pediatrics 1979, 63, 700–707. [Google Scholar] [CrossRef]
- McBurnie, M.; Kronmal, R.; Schuett, V.; Koch, R.; Azeng, C. Physical growth of children treated for phenylketonuria. Ann. Hum. Biol. 1991, 18, 357–368. [Google Scholar] [CrossRef]
- Dhondt, J.L.; Moreno, L.; Farriaux, J.P. Physical growth in patients with phenylketonuria. J. Inherit. Metab. Dis. 1995, 18, 135–137. [Google Scholar] [CrossRef]
- Schaefer, F.; Burgard, P.; Batzler, U.; Rupp, A.; Schmidt, H.; Gilli, G.; Bickel, H.; Bremer, H.J. Growth and skeletal maturation in children with phenylketonuria. Acta Paediatr. 1994, 83, 534–541. [Google Scholar] [CrossRef]
- Verkerk, P.H.; van Spronsen, F.J.; Smit, G.P.; Sengers, R.C. Impaired prenatal and postnatal growth in Dutch patients with phenylketonuria. The National PKU Steering Committee. Arch. Dis. Child. 1994, 71, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Belanger-Quintana, A.; Martínez-Pardo, M. Physical development in patients with phenylketonuria on dietary treatment: A retrospective study. Mol. Genet. Metab. 2011, 104, 480–484. [Google Scholar] [CrossRef]
- Couce, M.L.; Guler, I.; Anca-Couce, A.; Lojo, M.; Mirás, A.; Leis, R.; Pérez-Muñuzuri, A.; Fraga, J.M.; Gude, F. New insights in growth of phenylketonuric patients. Eur. J. Pediatr. 2015, 174, 651–659. [Google Scholar] [CrossRef]
- Evans, M.; Truby, H.; Boneh, A. The relationship between dietary intake, growth and body composition in Phenylketonuria. Mol. Genet. Metab. 2017, 122, 36–42. [Google Scholar] [CrossRef]
- Hoeksma, M.; Van Rijn, M.; Verkerk, P.H.; Bosch, A.M.; Mulder, M.F.; De Klerk, J.B.C.; De Koning, T.J.; Rubio-Gozalbo, E.; De Vries, M.; Sauer, P.J.J.; et al. The intake of total protein, natural protein and protein substitute and growth of height and head circumference in Dutch infants with phenylketonuria. J. Inherit. Metab. Dis. 2005, 28, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Young, V.R.; El-Khoury, A.E.; Raguso, C.A.; Forslund, A.; Hambraeus, L. Rates of Urea Production and Hydrolysis and Leucine Oxidation Change Linearly over Widely Varying Protein Intakes in Healthy Adults. J. Nutr. 2000, 130, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Ney, D.M.; Etzel, M.R. Designing medical foods for inherited metabolic disorders: Why intact protein is superior to amino acids. Curr. Opin. Biotechnol. 2017, 44, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sailer, M.; Elizondo, G.; Martin, J.; Harding, C.O.; Gillingham, M.B. Nutrient intake, body composition, and blood phenylalanine control in children with phenylketonuria compared to healthy controls. Mol. Genet. Metab. Rep. 2020, 23, 100599. [Google Scholar] [CrossRef] [PubMed]
- Albersen, M.; Bonthuis, M.; De Roos, N.M.; Hurk, D.A.M.V.D.; Weber, E.C.; Hendriks, M.M.W.B.; Velden, M.G.M.D.S.-V.D.; De Koning, T.J.; Visser, G. Whole body composition analysis by the BodPod air-displacement plethysmography method in children with phenylketonuria shows a higher body fat percentage. J. Inherit. Metab. Dis. 2010, 33 (Suppl. S3), 283–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Despres, J.P. Is visceral obesity the cause of the metabolic syndrome? Ann. Med. 2006, 38, 52–63. [Google Scholar] [CrossRef]
- Després, J.-P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Forte, N.; Fernández-Rilo, A.C.; Palomba, L.; Di Marzo, V.; Cristino, L. Obesity Affects the Microbiota-Gut-Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. Int. J. Mol. Sci. 2020, 21, 1554. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.R.; Baur, L.; Waters, D.L.; Humphries, I.R.; Allen, B.J.; Roberts, D.C.; Gaskin, K.J. Body protein in prepubertal children with phenylketonuria. Eur. J. Clin. Nutr. 1996, 50, 178–186. [Google Scholar]
- Huemer, M.; Huemer, C.; Möslinger, D.; Huter, D.; Stöckler-Ipsiroglu, S. Growth and body composition in children with classical phenylketonuria: Results in 34 patients and review of the literature. J. Inherit. Metab. Dis. 2007, 30, 694–699. [Google Scholar] [CrossRef]
- Adamczyk, P.; Morawiec-Knysak, A.; Płudowski, P.; Banaszak, B.; Karpe, J.; Pluskiewicz, W. Bone metabolism and the muscle-bone relationship in children, adolescents and young adults with phenylketonuria. J. Bone Miner. Metab. 2011, 29, 236–244. [Google Scholar] [CrossRef]
- Douglas, T.D.; Kennedy, M.J.; Quirk, M.E.; Yi, S.H.; Singh, R.H. Accuracy of Six Anthropometric Skinfold Formulas Versus Air Displacement Plethysmography for Estimating Percent Body Fat in Female Adolescents with Phenylketonuria. JIMD Rep. 2013, 10, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.C.; MacDonald, A.; Trefz, F. Is overweight an issue in phenylketonuria? Mol. Genet. Metab. 2013, 110, S18–S24. [Google Scholar] [CrossRef]
- Rocha, J.C.; van Spronsen, F.J.; Almeida, M.; Soares, G.; Quelhas, D.; Ramos, E.; Guimarães, J.T.; Borges, N. Dietary treatment in phenylketonuria does not lead to increased risk of obesity or metabolic syndrome. Mol. Genet. Metab. 2012, 107, 659–663. [Google Scholar] [CrossRef] [Green Version]
- Doulgeraki, A.; Skarpalezou, A.; Theodosiadou, A.; Monopolis, I.; Schulpis, K. Body Composition Profile of Young Patients With Phenylketonuria and Mild Hyperphenylalaninemia. Int. J. Endocrinol. Metab. 2014, 12, e16061. [Google Scholar] [CrossRef] [Green Version]
- Mazzola, P.N.; Nalin, T.; Castro, K.; van Rijn, M.; Derks, T.G.; Perry, I.D.; Mainieri, A.S.; Schwartz, I.V.D. Analysis of body composition and nutritional status in Brazilian phenylketonuria patients. Mol. Genet. Metab. Rep. 2016, 6, 16–20. [Google Scholar] [CrossRef]
- Daly, A.; Högler, W.; Crabtree, N.; Shaw, N.; Evans, S.; Pinto, A.; Jackson, R.; Strauss, B.; Wilcox, G.; Rocha, J.; et al. Growth and Body Composition in PKU Children—A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes. Nutrients 2021, 13, 1323. [Google Scholar] [CrossRef]
- Duan, Y.; Li, F.; Tan, K.; Liu, H.; Li, Y.; Liu, Y.; Kong, X.; Tang, Y.; Wu, G.; Yin, Y. Key mediators of intracellular amino acids signaling to mTORC1 activation. Amino Acids 2015, 47, 857–867. [Google Scholar] [CrossRef]
- Frost, H.; Schönau, E. The “Muscle-Bone Unit” in Children and Adolescents: A 2000 Overview. J. Pediatr. Endocrinol. Metab. 2000, 13, 571–590. [Google Scholar] [CrossRef]
- Bachrach, L.K. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol. Metab. 2001, 12, 22–28. [Google Scholar] [CrossRef]
- Dimitri, P. Fat and bone in children—Where are we now? Ann. Pediatr. Endocrinol. Metab. 2018, 23, 62–69. [Google Scholar] [CrossRef]
- Clark, E.M.; Ness, A.; Bishop, N.J.; Tobias, J. Association between Bone Mass and Fractures in Children: A Prospective Cohort Study. J. Bone Miner. Res. 2006, 21, 1489–1495. [Google Scholar] [CrossRef] [Green Version]
- Rauch, F.; Bailey, D.A.; Baxter-Jones, A.; Mirwald, R.; Faulkner, R. The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 2004, 34, 771–775. [Google Scholar] [CrossRef]
- Russell, M.; Mendes, N.; Miller, K.K.; Rosen, C.J.; Lee, H.; Klibanski, A.; Misra, M. Visceral Fat Is a Negative Predictor of Bone Density Measures in Obese Adolescent Girls. J. Clin. Endocrinol. Metab. 2010, 95, 1247–1255. [Google Scholar] [CrossRef]
- Carbone, J.W.; Pasiakos, S.M. Dietary Protein and Muscle Mass: Translating Science to Application and Health Benefit. Nutrients 2019, 11, 1136. [Google Scholar] [CrossRef] [Green Version]
- Crabtree, N.; Kibirige, M.; Fordham, J.; Banks, L.; Muntoni, F.; Chinn, D.; Boivin, C.; Shaw, N. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 2004, 35, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Bianchi, M.L.; Garabédian, M.; McKay, H.A.; Moreno, L.A. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010, 46, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.-P. Calcium and Phosphate: A Duet of Ions Playing for Bone Health. J. Am. Coll. Nutr. 2011, 30 (Suppl. S1), 438S–448S. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.-P.; Ammann, P.; Chevalley, T.; Rizzoli, R. Protein Intake and Bone Growth. Can. J. Appl. Physiol. 2001, 26, S153–S166. [Google Scholar] [CrossRef]
- Al-Qadreh, A.; Schulpis, K.; Athanasopoulou, H.; Mengreli, C.; Skarpalezou, A.; Voskaki, I. Bone mineral status in children with phenylketonuria under treatment. Acta Paediatr. 2007, 87, 1162–1166. [Google Scholar] [CrossRef]
- Ambroszkiewicz, J.; Gajewska, J.; Chełchowska, M.; Oltarzewski, M.; Laskowska-Klita, T.; Nowacka, M.; Milanowski, A. Concentration of osteoprotegerin, bone formation and resorption markers in patients with phenylketonuria. Pol. Merkur. Lekarski. 2008, 25, 57–60. [Google Scholar]
- Barat, P.; Barthe, N.; Redonnet-Vernhet, I.; Parrot, F. The impact of the control of serum phenylalanine levels on osteopenia in patients with phenylketonuria. Eur. J. Pediatr. 2002, 161, 687–688. [Google Scholar] [CrossRef]
- De Groot, M.J.; Hoeksma, M.; van Rijn, M.; Slart, R.H.; van Spronsen, F.J. Relationships between lumbar bone mineral density and biochemical parameters in phenylketonuria patients. Mol. Genet. Metab. 2012, 105, 566–570. [Google Scholar] [CrossRef]
- Greeves, L.; Magee, A. Fractures and phenylketonuria. Acta Paediatr. 1997, 86, 242–244. [Google Scholar] [CrossRef]
- McMurry, M.P.; Chan, G.M.; Leonard, C.O.; Ernst, S.L. Bone mineral status in children with phenylketonuria—Relationship to nutritional intake and phenylalanine control. Am. J. Clin. Nutr. 1992, 55, 997–1004. [Google Scholar] [CrossRef]
- Zeman, J.; Bayer, M.; Stepan, J. Bone mineral density in patients with phenylketonuria. Acta Paediatr. 1999, 88, 1348–1351. [Google Scholar] [CrossRef]
- Demirdas, S.; Coakley, K.E.; Bisschop, P.H.; Hollak, C.E.M.; Bosch, A.M.; Singh, R.H. Bone health in phenylketonuria: A systematic review and meta-analysis. Orphanet J. Rare Dis. 2015, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- De Castro, M.J.; de Lamas, C.; Sánchez-Pintos, P.; González-Lamuño, D.; Couce, M.L. Bone Status in Patients with Phenylketonuria: A Systematic Review. Nutrients 2020, 12, 2154. [Google Scholar] [CrossRef]
- Solverson, P.; Murali, S.G.; Litscher, S.J.; Blank, R.D.; Ney, D.M. Low Bone Strength Is a Manifestation of Phenylketonuria in Mice and Is Attenuated by a Glycomacropeptide Diet. PLoS ONE 2012, 7, e45165. [Google Scholar] [CrossRef] [Green Version]
- Daly, A.; Högler, W.; Crabtree, N.; Shaw, N.; Evans, S.; Pinto, A.; Jackson, R.; Ashmore, C.; Rocha, J.; Strauss, B.; et al. A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes. Nutrients 2021, 13, 2075. [Google Scholar] [CrossRef]
- Tiele, A.; Daly, A.; Hattersley, J.; Pinto, A.; Evans, S.; Ashmore, C.; Macdonald, A.; Covington, J.A. Investigation of paediatric PKU breath malodour, comparing glycomacropeptide with phenylalanine free L-amino acid supplements. J. Breath Res. 2019, 14, 016001. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, E.L.; Clayton, M.K.; van Calcar, S.C.; Ney, D.M. Breakfast with glycomacropeptide compared with amino acids suppresses plasma ghrelin levels in individuals with phenylketonuria. Mol. Genet. Metab. 2010, 100, 303–308. [Google Scholar] [CrossRef] [Green Version]
Functional Properties | Action | References |
---|---|---|
Large neutral amino acids (LNAAs) | Phenylalanine transport from the plasma into the brain is via the LNAA transporter (LAT1). Competition at the blood brain barrier using LNAAs for LAT1 prevents excess phenylalanine from entering the brain, preventing neurocognitive damage | [14,15,16] |
LNAAs and cationic amino acids cross the intestinal mucosa via a carrier protein system. The affinity of the amino acids for the intestinal carrier is higher than at the blood brain barrier. By providing LNAAs, there is a decreased entry of phenylalanine across the intestinal mucosa | [17,18,19] | |
Normal growth and cellular function | Provide nitrogen to maintain and improve muscle mass and promote growth | [20,21] |
Provide a source of nitrogen for the synthesis of nitrogen containing compounds | Nitrogen is necessary for the manufacture of small molecular substances, e.g., nitric oxide | [22] |
Provide tyrosine | Phenylalanine to tyrosine conversion is severely limited or absent in classical PKU. Tyrosine becomes a surrogate essential amino acid, and adequate amounts must be provided by protein substitutes to prevent deficiency. Tyrosine is important for the biosynthesis of neurotransmitters, thyroxine and melanin | [8,9] |
Optimise blood phenylalanine control | Protein substitutes support stabilisation of blood phenylalanine concentrations by providing a complement of amino acids (except phenylalanine) allowing protein anabolism and nitrogen retention. For maximum effectiveness, they must be given frequently throughout the day | [7,23] |
Prevent nutritional deficiencies | Most protein substitutes are supplemented with vitamins, minerals and trace elements. Adherence with separate vitamin and mineral supplements is poor in patients with PKU | [24] |
Author/ Year | Country | Study Design Age (Range) | Nos of Subjects/ Gender | PKU Phenotype | Study Intervention | Mean/Median Phenylalanine Concentrations in L-AAs Compared to CGMP (μmol/L) |
---|---|---|---|---|---|---|
Van Calcar [49] 2009 | United States | Cross-sectiona l23 y ± 7 (11–31) | 11 4 F, 7 M | 10 Classical 1 Variant | 100% L-AAs vs. 100% CGMP 4 days on each product | L-AAs = 619 CGMP = 676, p = ns |
MacLeod [60] 2010 | United States | Cross-sectional 23 y ± 7 (11–31) | 11 4 F, 7 M | 11 Classical | 100% L-AAs vs. 100% CGMP 4 days on each product | L-AAs = 619 CGMP = 676, p = ns |
Ney [52] 2016 | United States | Randomised crossover clinical study (15–49) | 301 8 F,12 M | 20 Classical 10 Variant | 21 days: 100% CGMP or 100% L-AAs | L-AAs = 655 CGMP = 777, p = ns |
Zaki [54] 2016 | Egypt | Clinical study 6.7 y (5.0–11.8) | 10 4 F, 6 M | 10 Classical | 9 weeks: 50% CGMP + 50% L-AA 9 weeks: 100% L-AA | 100% L-AA s = 490 CGMP 50% + 50% L-AAs = 376, p = ns |
Pinto [59] 2017 | Portugal | Retrospective longitudinal study 27 y ± 10 (13–42) | 11 8 F, 3 M | 6 Classical 4 Mild 1 HPA | Median 20 months: n = 11 CGMP, n = 11 L-AAs | L-AAs = 516 CGMP = 540, p = ns |
Daly [55] 2017 | UK | Prospective clinical study 11 y (6–16) | 21 9 F, 12 M | 20 Classical 1 Mild | 6 months n = 12 CGMP n = 9 L-AAs | L-AAs: pre study 325, end of study 280, p = ns CGMP: pre study 275, end of study 317, p < 0.02 |
Ahring [51] 2018 | Denmark | Randomised crossover clinical study. 4 PS given over 4 visits 33.3 y ± 11.2 (15–48) | 8 7 F, 1 M | 8 Classical | PS1 = CGMP, PS2 = L-AAs PS1 and PS2 same AA profilePS3 = CGMP + L-AAs, PS4 = L-AAs PS3 and PS4 same L-AA profile but no Phe | L-AAs = 688 CGMP = 819, p = ns |
Daly [56] 2019 | UK | Prospective clinical study over 12 months 9.2 y (5–16) | 48 21 F, 27 M | 46 Classical 2 Mild | 12 months n = 29 CGMP n = 19 L-AAs | L-AAs pre study 315, 52 weeks 340, p = 0.236 CGMP pre study 270, 52 weeks 300, p = 0.001 |
Daly [57] 2019 | UK | Randomised control study (RCT) 10 y (6–16) | 18 11 F, 7 M | 17 Classical 2 Mild | 6-week RCT
| Median phenylalanine R1: 290 (30–580) R2: 220 (10–670) R3: 165 (10–640) R1 vs. R2, R1 vs. R3 p < 0.0001 R2 vs. R3, p = 0.0009 |
Pena [58] 2021 | Portugal | Retrospective longitudinal study 28 y (15–43) | 11 8 F, 3 M | 3 Classical 3 Late diagnosed 3 Mild 2 HPA | 29 months CGMP 66%, L-AAs 34% n = 4 CGMP 100% n = 4 CGMP 50 < 100% n = 2 CGMP < 50% | Pre study on L-AAs: 562 ± 289 Post study L-AAs and CGMP 628 ± 317, p = ns |
Author/Year | Number/Age of Subjects Body Composition Measurement Technique | Parameters Measured | Main Outcome | Limitations |
---|---|---|---|---|
Allen 1996 [91] Australia | n = 30 PKU (classical) Mean age: 9.6 y n = 65 control Mean age: 11.2 y Skinfold thickness |
|
| Skinfold measurements provide no information on lean mass. |
Dobbelaere 2003 [68] France | n = 20 PKU (classical) n = 20 control Mean age: 4.5 y Age- and gender-matched Skinfold thickness Bioelectrical impedance |
|
| Body mass index measures nutritional status, not body composition Impedance associated with poor accuracy for individuals and groups |
Huemer 2007 [92] Study over 12 months Austria | n = 34 PKU (classical) n = 34 control Mean age: 8.7 y Age/gender-matched Total body electrical conductivity (TOBEC) |
|
| TOBEC rarely used and unknown accuracy compared to other body composition measurements |
Albersen 2010 [87] The Netherlands | n = 20 PKU (classical) n = 20 control Mean age: 10 y Age/gender-matched BodPod/whole-body air displacement plethysmograph |
|
| 4/20 PKU children were from different ethnic background |
Adamczyk 2011 [93] Poland | n = 45 PKU (classical) Mean age: 13.8 y Group 1 = 15 prepubertal Group 2 = 18 pubertal good control Group 3 = 12 pubertal poor control Dual X-ray absorptiometry (DXA) |
|
| No control group DXA radiation exposure, whole-body bias dependent on size, gender and amount of fat |
Douglas 2013 [94] USA | n = 59 PKU (classical and mild) Mean age: 14.4 y BodPod/whole-body air displacement plethysmograph Tricep, subscapular, suprailiac, thigh skinfold |
|
| Mixed PKU phenotype No control group Agreement between skinfold depends on equations used to convert measurement to body fat |
Rocha 2012 Rocha 2013 [95,96] Portugal | n = 89 PKU (classical, mild, hyperphenylalaninemia) Mean age: 14.4 y n = 78 controls Mean age: 15.9 y Bioelectrical impedance analysis (BIA) |
|
| Impedance is associated with poor accuracy for individuals and groups Mixed PKU phenotype |
|
| |||
Doulgeraki 2014 [97] Greece | n = 48 PKU (classical) Mean age: 10.9 y 32 HPA (mild hyperphenylalaninemia) Mean age: 10.9 y n = 57 control Age/gender-matched Dual X-ray absorptiometry (DXA) |
|
| Mixed PKU phenotype Control group not reported in study DXA radiation exposure, whole-body bias dependent on size, gender and amount of fat |
Mazzola 2016 [98] Brazil | n = 27 PKU n = 11 early diagnosed n = 16 late-diagnosed (classical and mild) n = 27 control Mean age: 12 y Age/gender-matched Bioelectrical impedance analysis (BIA) |
|
| Age at diagnosis variable, some early and late-treated PKU Mixed PKU phenotype |
Sailer 2020 [86] USA | n = 30 PKU n = 30 control Mean age: 11.6 y Age/gender-matched 4 subjects on Kuvan Dual X-ray absorptiometry (DXA) |
|
| Mixed PKU phenotype 13% on sapropterin DXA radiation exposure, whole-body bias dependent on size, gender and amount of fat |
Daly 2021 [99] UK | n = 48 PKU Mean age: 9.2 y (5–16) 3 groups taking different protein substitutes n = 19 L-AAs only n = 16 CGMP and L-AAs (CGMP50) n = 13 CGMP only (CGMP100) Dual X-ray absorptiometry (DXA) |
|
| DXA radiation exposure, whole body bias dependent on size, gender and amount of fat No control non PKU group Different intake of CGMP protein substitute |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daly, A.; Pinto, A.; Evans, S.; MacDonald, A. Glycomacropeptide in PKU—Does It Live Up to Its Potential? Nutrients 2022, 14, 807. https://doi.org/10.3390/nu14040807
Daly A, Pinto A, Evans S, MacDonald A. Glycomacropeptide in PKU—Does It Live Up to Its Potential? Nutrients. 2022; 14(4):807. https://doi.org/10.3390/nu14040807
Chicago/Turabian StyleDaly, Anne, Alex Pinto, Sharon Evans, and Anita MacDonald. 2022. "Glycomacropeptide in PKU—Does It Live Up to Its Potential?" Nutrients 14, no. 4: 807. https://doi.org/10.3390/nu14040807
APA StyleDaly, A., Pinto, A., Evans, S., & MacDonald, A. (2022). Glycomacropeptide in PKU—Does It Live Up to Its Potential? Nutrients, 14(4), 807. https://doi.org/10.3390/nu14040807