Food Security, Dietary Diversity, Dietary Patterns and the Double Burden of Malnutrition among School-Aged Children and Adolescents in Two Nigerian States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Study Design, Population and Size
2.3. Sampling Technique
2.4. Data Collection
2.5. Outcome Variable
2.6. Explanatory Variables
2.6.1. Household Food Insecurity
2.6.2. Dietary Diversity (DD)
2.6.3. Dietary Patterns (DP)
2.6.4. Other Explanatory Variables
2.7. Data Analysis
2.8. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Speiser, P.W.; Rudolf, M.C.J.; Anhalt, H.; Camacho-Hubner, C.; Chiarelli, F.; Eliakim, A.; Freemark, M.; Gruters, A.; Hershkovitz, E.; Iughetti, L.; et al. Consesus Statement: Childhood Obesity. J. Clin. Endocrinol. Metab. 2005, 90, 1871–1887. [Google Scholar] [CrossRef]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- De Onis, M.; Blössner, M. Prevalence and trends of overweight among preschool children in developing countries. Am. J. Clin. Nutr. 2000, 72, 1032–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2019, 6736, 1–10. [Google Scholar] [CrossRef]
- Wariri, O.; Akhimienho, K.I.; Albin, J.; Alhassan, K. Population and individual-level double burden of malnutrition among adolescents in two emerging cities in Northern and Southern Nigeria: A Comparative Cross-Sectional Study. Ann. Glob. Health 2020, 86, 1–11. [Google Scholar]
- Walker, J.L.; Ardouin, S.; Burrows, T. The validity of dietary assessment methods to accurately measure energy intake in children and adolescents who are overweight or obese: A systematic review. Eur. J. Clin. Nutr. 2018, 72, 185–197. [Google Scholar] [CrossRef]
- Esimai, O.A.; Ojofeitimi, E. Nutrition and Health Status of Adolescents in a Private Secondary School in Port Harcourt. Health Sci. J. 2015, 9, 2–6. [Google Scholar]
- Aigbiremolen, A.; Duru, C.; Awunor, N.; Abejegah, C.; Abah, S.; Asogun, A.; Eguavoen, O. Knowledge and Application of Infectious Disease Control Measures among Primary Care Workers in Nigeria: The Lassa fever example. Int. J. Basic Appl. Innov. Res. 2012, 1, 122–129. [Google Scholar]
- Ekpo, U.F.; Omotayo, A.M.; Dipeolu, M.A. Prevalence of malnutrition among settled pastoral Fulani children in Southwest Nigeria. BMC Res. Notes 2008, 1, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winpenny, E.M.; Corder, K.L.; Jones, A.; Ambrosini, G.L.; White, M.; van Sluijs, E.M.F. Changes in diet from age 10 to 14 years and prospective associations with school lunch choice. Appetite 2017, 116, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. The nutrition transition: An overview of world patterns of change. Nutr. Rev. 2004, 62, S140–S143. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Horton, S.; Kim, S.; Mahal, A.; Shuigo, J. Trends in diet, nutritional status and diet related communicable diseases in China and India: The economic costs of the nutrition transition. Nutr. Rev. 2001, 59, 379–390. [Google Scholar] [CrossRef]
- Ajao, K.; Ojofeitimi, E.; Adebayo, A.; Fatusi, A.; Afolabi, O. Influence of family size, household food security status, and child care practices on the nutritional status of under-five children in Ile-Ife, Nigeria. Afr. J. Reprod. Health 2010, 14, 123–132. [Google Scholar]
- Kennedy, G.; Ballard, T.; Marie Claude, D. Guidelines for Measuring Household and Individual Dietary Diversity; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; ISBN 978-92-5-106749-9. [Google Scholar]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Oldewage-Theron, W.H.; Abu, B.A.Z. Is there an association between food insecurity and dietary diversity among seniors in Lubbock? J. Aging Res. Lifestyle 2017, 6, 238–245. [Google Scholar]
- Morales, M.E.; Berkowitz, S.A. The Relationship Between Food Insecurity, Dietary Patterns, and Obesity. Curr. Nutr. Rep. 2016, 5, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Nnakwe, N.; Onyemaobi, G. Prevalence of Food Insecurity and Inadequate Dietary Pattern Among Households with and without Children in Imo State Nigeria. Int. J. Sociol. Anthropol. 2013, 5, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Akindola, R. Household food insecurity and nutritional status: Implications for child’s survival in South-western Nigeria. Asian J. Agric. Rural Dev. 2020, 10, 120–140. [Google Scholar] [CrossRef]
- Olumakaiye, M.F. Dietary Diversity as a Correlate of Undernutrition Among School-Age Children in Southwestern Nigeria. J. Child. Nutr. Manag. 2013, 37, 1–9. [Google Scholar]
- Ajani, S. An Assessment of Dietary Diversity in Six Nigerian States. Afr. J. Biomed. Res. 2010, 13, 161–167. [Google Scholar]
- Ayogu, R. Energy and Nutrient Intakes of Rural Nigerian Schoolchildren: Relationship with Dietary Diversity. Food Nutr. Bull. 2019, 40, 241–253. [Google Scholar] [CrossRef]
- Ogunsile, S.E. The Effect of Dietary Pattern and Body Mass Index on the Academic Performance of In-school Adolescents. Int. Educ. Stud. 2012, 5, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Bamidele, B.; Oyenike, E.; Olusegun, T.A. Dietary pattern and nutritional status of primary school pupils in a South Western Nigerian state: A rural urban Comparison. Afr. J. Food Sci. 2016, 10, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Agofure, O.; Odjimogho, S.; Okandeji-Barry, O.; Moses, V. Dietary Pattern and Nutritional Status of Female Adolescents in Amai Secondary School, Delta State, Nigeria. Available online: https://www.panafrican-med-journal.com//content/article/38/32/full%0D (accessed on 27 June 2021).
- Samuel, F.O.; Adenekan, R.A.; Adeoye, I.A.; Okekunle, A.P. Nutritional Status, Dietary Patterns and associated factors among out-of-school Adolescents in Ibadan, Nigeria. World Nutr. 2021, 12, 51–64. [Google Scholar] [CrossRef]
- National Population Commission (NPC), The Federal Republic of Nigeria. Nigeria Demographic and Health Survey; ICF: Rockville, MA, USA, 2018.
- United Nations Children’s Fund (UNICEF). Primary Education. Available online: https://data.unicef.org/topic/education/primary-education/ (accessed on 20 October 2021).
- World Health Organization (WHO). WHO Guideline on School Health Services. Available online: https://www.who.int/publications/i/item/9789240029392 (accessed on 20 October 2021).
- Dean, A.; Arner, T.; Sunki, G.; Friedman, R.; Lantinga, M.; Sangam, S.; Zubieta, J.C.; Sullivan, K.M.; Brendel, K.A.; Gao, Z.; et al. Epi InfoTM. A Database and Statistics Program for Public Health Professionals; CDC: Atlanta, GA, USA, 2011.
- United Nations Children’s Fund (UNICEF). Children in a Digital World. Available online: https://www.unicef.org/publications/files/UNICEF_SOWC_2016.pdf (accessed on 19 May 2018).
- Adeomi, A.; Fatusi, A.; Klipstein-Grobusch, K. Double burden of malnutrition among school-aged children and adolescents: Evidence from a community-based cross- sectional survey in two Nigerian States. AAS Open Res. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Society for the Advancement of Kinanthropometry (ISAK). International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Potchefstroom, South Africa, 2001; pp. 53–55. [Google Scholar]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.; Swindale, A.; Bilinsky, P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide; FANTA: Washington, DC, USA, 2007. [Google Scholar]
- Aryeetey, R.; Lartey, A.; Marquis, G.S.; Nti, H.; Colecraft, E.; Brown, P. Prevalence and predictors of overweight and obesity among school-aged children in urban Ghana. BMC Obes. 2017, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, M.; Bokor, B. Tanner Stages; StatPearls Publishing: Treasure Island, FL, USA, 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470280/ (accessed on 4 March 2021).
- Kowalski, K.C.; Crocker, P.R.; Donen, R.M. The Physical Activity Questionnaire for Older Children (PAQ-C) and Adolescents (PAQ-A) Manual; College of Kinesiology, University of Saskatchewan: Saskatoon, SK, Canada, 2004. [Google Scholar]
- Ijarotimi, O.S.; Oyeneyin, O.O. Effect of economy restructuring on household food security and nutritional status of Nigerian children. J. Food Agric. Environ. 2005, 3, 27–32. [Google Scholar]
- Olumakaiye, M.F. Adolescent Girls with Low Dietary Diversity Score Are Predisposed to Iron Deficiency in Southwestern. Infant Child Adolesc. Nutr. 2013, 5, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Thorne-Lyman, A.L.; Shaikh, S.; Mehra, S.; Wu, L.S.F.; Ali, H.; Alland, K.; Schultze, K.J.; Mitra, M.; Hur, J.; Christian, P.; et al. Dietary patterns of >30,000 adolescents 9–15 years of age in rural Bangladesh. Ann. N. Y. Acad. Sci. 2020, 1468, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Bodega, P.; Fernández-Alvira, J.M.; Santos-Beneit, G.; de Cos-Gandoy, A.; Fernández-Jiménez, R.; Moreno, L.A.; de Miguel, M.; Orrit, X.; Carvajal, I.; Storniolo, C.E.; et al. Dietary Patterns and Cardiovascular Risk Factors in Spanish Adolescents: A Cross-Sectional Analysis of the SI! Program for Health Promotion in Secondary Schools. Nutrients 2019, 11, 2297. [Google Scholar] [CrossRef] [Green Version]
- Ogum Alangea, D.; Aryeetey, R.N.; Gray, H.L.; Laar, A.K.; Adanu, R.M.K. Dietary patterns and associated risk factors among school age children in urban Ghana. BMC Nutr. 2018, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Boateng, D.; Galbete, C.; Nicolaou, M.; Meeks, K.; Beune, E.; Smeeth, L.; Osei-Kwasi, H.A.; Bahendeka, S.; Agyei-Baffour, P.; Mockenhaupt, F.P.; et al. Dietary patterns are associated with predicted 10-year risk of cardiovascular disease among Ghanaian populations: The Research on Obesity and Diabetes in African Migrants (RODAM) study. J. Nutr. 2019, 149, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Abizari, A.-R.; Ali, Z. Dietary patterns and associated factors of schooling Ghanaian adolescents. J. Health Popul. Nutr. 2019, 38, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pestoni, G.; Krieger, J.P.; Sych, J.M.; Faeh, D.; Rohrmann, S. Cultural differences in diet and determinants of diet quality in switzerland: Results from the national nutrition survey menuch. Nutrients 2019, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Petrenya, N.; Rylander, C.; Brustad, M. Dietary patterns of adults and their associations with Sami ethnicity, sociodemographic factors, and lifestyle factors in a rural multiethnic population of northern Norway—The SAMINOR 2 clinical survey. BMC Public Health 2019, 19, 1632. [Google Scholar] [CrossRef]
- Bronfenbrenner, U. Ecology of the Family as a Context for Human Development: Research Perspectives. Dev. Psychol. 1986, 22, 723–742. [Google Scholar] [CrossRef]
- Ettekal, A.; Mahoney, J.L. Ecological Systems Theory. In The SAGE Encyclopedia of Out-of-School Learning; Peppler, K., Ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2017; pp. 239–241. ISBN 978-1-48338-519-8. [Google Scholar]
- Adekanmbi, V.T.; Kayode, G.A.; Uthman, O.A. Individual and contextual factors associated with childhood stunting in Nigeria: A multilevel analysis. Matern. Child Nutr. 2013, 9, 244–259. [Google Scholar] [CrossRef] [PubMed]
- Uthman, O.A. A multilevel analysis of individual and community effect on chronic childhood malnutrition in rural Nigeria. J. Trop. Pediatr. 2009, 55, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Muthuri, S.K.; Francis, C.E.; Wachira, L.J.M.; LeBlanc, A.G.; Sampson, M.; Onywera, V.O.; Tremblay, M.S. Evidence of an overweight/obesity transition among school-aged children and youth in Sub-Saharan Africa: A systematic review. PLoS ONE 2014, 9, e92846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Goel, K.; Shah, P.; Misra, A. Childhood obesity in developing countries: Epidemiology, determinants, and prevention. Endocr. Rev. 2012, 33, 48–70. [Google Scholar] [CrossRef] [Green Version]
- Omigbodun, O.O.; Adediran, K.I.; Akinyemi, J.O.; Omigbodun, A.O.; Adedokun, B.O.; Esan, O. Gender and rural-urban differences in the nutritional status of in-school adolescents in south-western Nigeria. J. Biosoc. Sci. 2010, 42, 653–676. [Google Scholar] [CrossRef] [PubMed]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lissner, L.; Troiano, R.P.; Midthune, D.; Heitmann, B.L.; Kipnis, V.; Subar, A.F.; Potischman, N. OPEN about obesity: Recovery biomarkers, dietary reporting errors and BMI. Int. J. Obes. 2007, 31, 956–961. [Google Scholar] [CrossRef] [Green Version]
Variables | States | ||
---|---|---|---|
f Gombe n (%) | f Osun n (%) | Total n (%) | |
Age of the child (IR) | 12.0 (7.0) | 11.0 (5.0) | 11.0 (6.0) |
a BMI-for-age | |||
Thinness | 83 (13.8) | 40 (6.7) | 123 (10.3) |
Normal | 476 (79.3) | 464 (77.3) | 940 (78.3) |
Overweight/Obesity | 41 (6.8) | 96 (16.0) | 137 (11.4) |
Sex | |||
Male | 323 (53.8) | 278 (46.3) | 601 (50.1) |
Female | 277 (46.2) | 322 (53.7) | 599 (49.9) |
Pubertal staging | |||
Early puberty | 379 (63.2) | 355 (59.2) | 734 (61.2) |
Mid puberty | 221 (36.8) | 245 (40.8) | 466 (38.8) |
Ethnicity | |||
Yoruba | 65 (10.8) | 574 (95.7) | 639 (53.3) |
Igbo | 23 (3.8) | 15 (2.5) | 38 (3.2) |
Hausa | 150 (25.0) | 0 (0.0) | 150 (12.5) |
Fulani | 144 (24.0) | 3 (0.5) | 147 (12.3) |
Minorities | 218 (36.3) | 8 (1.3) | 226 (18.8) |
b Household wealth index | |||
Low | 205 (34.2) | 195 (32.5) | 400 (33.3) |
Middle | 189 (31.5) | 211 (35.2) | 400 (33.3) |
High | 206 (34.3) | 194 (32.3) | 400 (33.3) |
Residence | |||
Rural | 300 (50.0) | 300 (50.0) | 600 (50.0) |
Urban | 300 (50.0) | 300 (50.0) | 600 (50.0) |
c Food security | |||
Food secure | 320 (53.3) | 312 (52.0) | 632 (52.7) |
Food insecure | 280 (46.7) | 288 (48.0) | 568 (47.3) |
d Dietary diversity | |||
Low | 244 (41.1) | 341 (57.0) | 585 (49.1) |
High | 350 (58.9) | 257 (43.0) | 607 (50.9) |
e Diversified dietary pattern | |||
Quartile 1 | 249 (41.5) | 52 (8.7) | 301 (25.1) |
Quartile 2 | 150 (25.0) | 149 (24.8) | 299 (24.9) |
Quartile 3 | 112 (18.7) | 188 (31.3) | 300 (25.0) |
Quartile 4 | 89 (14.8) | 211 (35.2) | 300 (25.0) |
e Traditional dietary pattern | |||
Quartile 1 | 32 (5.3) | 268 (44.7) | 300 (25.0) |
Quartile 2 | 165 (27.5) | 135 (22.5) | 300 (25.0) |
Quartile 3 | 195 (32.5) | 105 (17.5) | 300 (25.0) |
Quartile 4 | 208 (34.7) | 92 (15.3) | 300 (25.0) |
Variables | Diversified Dietary Pattern | p-Value | Traditional Dietary Pattern | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | |||
a Age | 11.0 (6.0) | 11.0 (5.0) | 12.0 (7.0) | 12 (6.0) | 0.926 | 10.0 (5.0) | 11.0 (6.0) | 11.5 (6.0) | 12.0 (6.0) | <0.001 * |
a Physical Activity Scores | 2.1 (1.0) | 2.0 (1.0) | 2.4 (1.1) | 2.6 (0.9) | <0.001 * | 2.2 (1.2) | 2.4 (1.0) | 2.2 (1.1) | 2.3 (0.9) | 0.034 * |
Sex | 0.571 | <0.001 * | ||||||||
Male | 152 (25.3) | 159 (26.5) | 143 (23.8) | 147 (24.5) | 121 (20.1) | 158 (26.3) | 151 (25.1) | 171 (28.5) | ||
Female | 149 (24.9) | 140 (23.4) | 157 (26.2) | 153 (25.5) | 179 (29.9) | 142 (23.7) | 149 (24.9) | 129 (21.5) | ||
Pubertal Staging | 0.001 * | 0.637 | ||||||||
Early Puberty | 211 (28.7) | 184 (25.1) | 168 (22.9) | 171 (23.3) | 187 (25.5) | 187 (25.5) | 186 (25.3) | 174 (23.7) | ||
Mid Puberty | 90 (19.3) | 115 (24.7) | 132 (28.3) | 129 (27.7) | 113 (24.2) | 113 (24.2) | 114 (24.5) | 126 (27.0) | ||
Ethnicity | <0.001 * | <0.001 * | ||||||||
Yoruba | 65 (10.2) | 159 (24.9) | 203 (31.8) | 212 (33.2) | 264 (41.3) | 139 (21.8) | 125 (19.6) | 111 (17.4) | ||
Igbo | 3 (7.9) | 11 (28.9) | 9 (23.7) | 15 (39.5) | 7 (18.4) | 18 (47.4) | 2 (5.3) | 11 (28.9) | ||
Hausa | 62 (41.3) | 35 (23.3) | 28 (18.7) | 25 (16.7) | 12 (8.0) | 51 (34.0) | 37 (24.7) | 50 (33.3) | ||
Fulani | 83 (56.5) | 25 (17.0) | 23 (1.6) | 16 (10.9) | 7 (4.8) | 42 (28.6) | 48 (32.7) | 50 (34.0) | ||
Minorities | 88 (38.9) | 69 (30.5) | 37 (16.4) | 32 (14.2) | 10 (4.4) | 50 (22.1) | 88 (38.9) | 78 (34.5) | ||
Household Wealth Index | <0.001 * | <0.001 * | ||||||||
Low | 170 (42.5) | 68 (17.0) | 75 (18.8) | 87 (21.8) | 75 (18.8) | 125 (31.3) | 94 (23.5) | 106 (26.5) | ||
Middle | 88 (22.0) | 115 (28.7) | 116 (29.0) | 81 (20.3) | 116 (29.0) | 86 (21.5) | 122 (30.5) | 76 (19.0) | ||
High | 43 (10.8) | 116 (29.0) | 109 (27.3) | 132 (33.0) | 109 (27.3) | 89 (22.3) | 84 (21.0) | 118 (29.5) | ||
State | <0.001 * | <0.001 * | ||||||||
Gombe | 249 (41.5) | 150 (25.0) | 112 (18.7) | 89 (14.8) | 32 (5.3) | 165 (27.5) | 195 (32.5) | 208 (34.7) | ||
Osun | 52 (8.7) | 149 (24.8) | 188 (31.3) | 211 (35.2) | 268 (44.7) | 135 (22.5) | 105 (17.5) | 92 (15.3) | ||
Residence | <0.001 * | <0.001 * | ||||||||
Rural | 109 (18.2) | 123 (20.5) | 181 (30.2) | 187 (31.2) | 174 (29.0) | 135 (22.5) | 129 (21.5) | 162 (27.0) | ||
Urban | 192 (32.0) | 176 (29.3) | 119 (19.8) | 113 (18.8) | 126 (21.0) | 165 (27.5) | 171 (28.5) | 138 (23.0) | ||
Food Security | <0.001 * | 0.403 | ||||||||
Food Secure | 291 (26.3) | 259 (23.4) | 271 (24.5) | 286 (25.8) | 280 (25.3) | 278 (25.1) | 279 (25.2) | 270 (24.4) | ||
Food Insecure | 10 (10.8) | 40 (43.0) | 29 (31.2) | 14 (15.1) | 20 (21.5) | 22 (23.7) | 21 (22.6) | 30 (32.3) | ||
Dietary Diversity | <0.001 * | <0.001 * | ||||||||
Low | 198 (33.8) | 153 (26.2) | 130 (22.2) | 104 (17.8) | 175 (29.9) | 171 (29.2) | 150 (15.6) | 89 (15.2) | ||
High | 97 (16.0) | 146 (24.1) | 168 (27.7) | 196 (32.3) | 125 (20.6) | 127 (20.9) | 144 (23.7) | 211 (34.8) | ||
a Dietary Diversity Score | 5.0 (4.0) | 6.0 (3.0) | 7.0 (4.0) | 8.0 (7.0) | <0.001 * | 6.0 (3.0) | 6.0 (4.0) | 6.0 (5.0) | 9.0 (6.0) | <0.001 * |
a Models | b Ref | OR | 95% CI | p-Value |
---|---|---|---|---|
Food Insecurity | ||||
Model 0 (Empty/Crude) | 1 | 1.33 | 0.71, 2.51 | 0.381 |
Model 1 | 1 | 1.35 | 0.72, 2.57 | 0.351 |
Model 2 | 1 | 1.34 | 0.70, 2.58 | 0.377 |
Model 3 | 1 | 1.34 | 0.70, 2.57 | 0.382 |
Dietary Diversity | ||||
Model 0 (Empty/Crude) | 1 | 0.85 | 0.58, 1.23 | 0.378 |
Model 1 | 1 | 0.83 | 0.57, 1.21 | 0.324 |
Model 2 | 1 | 0.91 | 0.61, 1.36 | 0.645 |
Model 3 | 1 | 0.91 | 0.61, 1.35 | 0.637 |
Food Insecurity | ||||
Model 0 (Empty/Crude) | 1 | 0.71 | 0.34, 1.51 | 0.376 |
Model 1 | 1 | 0.7 | 0.33, 1.50 | 0.358 |
Model 2 | 1 | 0.79 | 0.37, 1.70 | 0.546 |
Model 3 | 1 | 0.73 | 0.33, 1.60 | 0.433 |
Dietary iversity | ||||
Model 0 (Empty/Crude) | 1 | 1.04 | 0.73, 1.49 | 0.822 |
Model 1 | 1 | 1.23 | 0.85, 1.77 | 0.275 |
Model 2 | 1 | 1.31 | 0.90, 1.92 | 0.158 |
Model 3 | 1 | 1.34 | 0.91, 1.96 | 0.134 |
a Models | Q1 (Ref) | Q2 | Q3 | Q4 | p-Trend | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OR | p-Value | 95% CI | OR | p-Value | 95% CI | OR | p-Value | 95% CI | |||
Thinness | |||||||||||
Diversified Dietary Pattern | |||||||||||
Model 0 (Empty/Crude) | 1 | 0.28 | <0.001 * | 0.16, 0.49 | 0.51 | 0.006 * | 0.31, 0.82 | 0.36 | <0.001 * | 0.21, 0.61 | 0.009 * |
Model 1 | 1 | 0.27 | <0.001 * | 0.15, 0.48 | 0.51 | 0.006 * | 0.32, 0.82 | 0.36 | <0.001 * | 0.21, 0.61 | 0.008 * |
Model 2 | 1 | 0.44 | 0.007 * | 0.24, 0.80 | 0.89 | 0.675 | 0.52, 1.53 | 0.72 | 0.285 | 0.40, 1.31 | 0.915 |
Model 3 | 1 | 0.44 | 0.007 * | 0.24, 0.80 | 0.91 | 0.737 | 0.53, 1.57 | 0.75 | 0.343 | 0.41, 1.37 | 0.827 |
Traditional Dietary Pattern | |||||||||||
Model 0 (Empty/Crude) | 1 | 2.96 | 0.001 * | 1.57, 5.59 | 2.61 | 0.004 * | 1.37, 4.97 | 2.87 | 0.001 * | 1.52, 5.44 | 0.002 * |
Model 1 | 1 | 2.98 | 0.001 * | 1.57, 5.63 | 2.63 | 0003 * | 1.38, 5.04 | 2.91 | 0.001 * | 1.52,5.55 | 0.002 * |
Model 2 | 1 | 1.94 | 0.059 | 0.97, 3.86 | 1.63 | 0.177 | 0.80, 3.32 | 1.95 | 0.065 | 0.96, 3.96 | 0.114 |
Model 3 | 1 | 1.99 | 0.051 | 1.00, 3.98 | 1.64 | 0.171 | 0.81, 3.98 | 1.98 | 0.059 | 0.97, 4.03 | 0.106 |
Overweight/Obesity | |||||||||||
Diversified Dietary Pattern | |||||||||||
Model 0 (Empty/Crude) | 1 | 1.01 | 0.978 | 0.60, 1.70 | 1.42 | 0.166 | 0.86, 2.32 | 1.08 | 0.781 | 0.64, 1.81 | 0.871 |
Model 1 | 1 | 1.01 | 0.957 | 0.60, 1.73 | 1.39 | 0.193 | 0.84, 2.30 | 1.09 | 0.742 | 0.65, 1.85 | 0.935 |
Model 2 | 1 | 0.66 | 0.164 | 0.36, 1.19 | 0.83 | 0.529 | 0.47, 1.48 | 0.6 | 0.1 | 0.33, 1.10 | 0.1 |
Model 3 | 1 | 0.62 | 0.119 | 0.34, 1.13 | 0.92 | 0.78 | 0.51, 1.65 | 0.78 | 0.421 | 0.42, 1.44 | 0.581 |
Traditional Dietary Pattern | |||||||||||
Model 0 (Empty/Crude) | 1 | 0.97 | 0.901 | 0.59, 1.58 | 0.7 | 0.188 | 0.42, 1.19 | 1 | 1 | 0.61, 1.63 | 0.865 |
Model 1 | 1 | 1.14 | 0.606 | 0.69, 1.88 | 0.83 | 0.488 | 0.49, 1.41 | 1.31 | 0.29 | 0.79, 2.17 | 0.444 |
Model 2 | 1 | 1.7 | 0.048 * | 1.01, 2.87 | 1.33 | 0.316 | 0.76, 2.34 | 2.14 | 0.006 * | 1.24, 3.67 | 0.017 * |
Model 3 | 1 | 2.06 | 0.009 * | 1.20, 3.55 | 1.5 | 0.169 | 0.84, 2.66 | 2.5 | 0.001 * | 1.43, 4.35 | 0.007 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeomi, A.A.; Fatusi, A.; Klipstein-Grobusch, K. Food Security, Dietary Diversity, Dietary Patterns and the Double Burden of Malnutrition among School-Aged Children and Adolescents in Two Nigerian States. Nutrients 2022, 14, 789. https://doi.org/10.3390/nu14040789
Adeomi AA, Fatusi A, Klipstein-Grobusch K. Food Security, Dietary Diversity, Dietary Patterns and the Double Burden of Malnutrition among School-Aged Children and Adolescents in Two Nigerian States. Nutrients. 2022; 14(4):789. https://doi.org/10.3390/nu14040789
Chicago/Turabian StyleAdeomi, Adeleye Abiodun, Adesegun Fatusi, and Kerstin Klipstein-Grobusch. 2022. "Food Security, Dietary Diversity, Dietary Patterns and the Double Burden of Malnutrition among School-Aged Children and Adolescents in Two Nigerian States" Nutrients 14, no. 4: 789. https://doi.org/10.3390/nu14040789
APA StyleAdeomi, A. A., Fatusi, A., & Klipstein-Grobusch, K. (2022). Food Security, Dietary Diversity, Dietary Patterns and the Double Burden of Malnutrition among School-Aged Children and Adolescents in Two Nigerian States. Nutrients, 14(4), 789. https://doi.org/10.3390/nu14040789