Lack of Association between Inadequate Micronutrient Intake and Prognosis in Outpatients with Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Assessment of Dietary Intake
2.3. Prevalence of Inadequate Micronutrient Intake
2.4. Clinical Outcome Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rohde, L.E.P.; Montera, M.W.; Bocchi, E.A.; Clausell, N.O.; de Albuquerque, D.C.; Rassi, S. Diretriz brasileira de insuficiência cardíaca crônica e aguda. Arq. Bras. Cardiol. 2018, 111, 436–539. [Google Scholar] [CrossRef]
- Yance, C.; Jessup, M.; Bozkurt, B.; Butler, J.; CaseyJr, D.; Drazner, M. 2013 ACCF/AHA Guideline for the Management of Heart Failure. J. Am. Coll. Cardiol. 2013, 62, 147–239. [Google Scholar] [CrossRef] [Green Version]
- Habaybeh, D.; de Moraes, M.B.; Slee, A.; Avgerinou, C. Nutritional interventions for heart failure patients who are malnourished or at risk of malnutrition or cachexia: A systematic review and meta-analysis. Hear. Fail. Rev. 2021, 26, 1103–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, S.; Billingsley, H.E.; Rodriguez-Miguelez, P.R.; Kirkman, D.L.; Garten, R.; Franco, R.L.; Lee, D.-C.; Lavie, C.J. Lean Mass Abnormalities in Heart Failure: The Role of Sarcopenia, Sarcopenic Obesity, and Cachexia. Curr. Probl. Cardiol. 2020, 45, 100417. [Google Scholar] [CrossRef]
- de Juras, A.R.; Hsu, W.C.; Hu, S.C. Prevalence and Determinants of the Co-Occurrence of Overweight or Obesity and Micronutrient Deficiencies among Adults in the Philippines: Results from a National Representative Survey. Nutrients 2021, 13, 2339. [Google Scholar] [CrossRef]
- Lennie, T.A.; Andreae, C.; Rayens, M.K.; Song, E.K.; Dunbar, S.B.; Pressler, S.J.; Heo, S.; Kim, J.; Moser, D.K. Micronutrient Deficiency Independently Predicts Time to Event in Patients with Heart Failure. J. Am. Hear. Assoc. 2018, 7, e007251. [Google Scholar] [CrossRef]
- Tanai, E.; Frantz, S. Pathophysiology of heart failure. Compr Physiol. 2016, 6, 187–214. [Google Scholar]
- Curcio, F.; Testa, G.; Liguori, I.; Papillo, M.; Flocco, V.; Panicara, V.; Galizia, G.; Della-Morte, D.; Gargiulo, G.; Cacciatore, F.; et al. Sarcopenia and Heart Failure. Nutrients 2020, 12, 211. [Google Scholar] [CrossRef] [Green Version]
- Sanches, K.; Dalira, I.; Perry, S.; Clausell, N.; Souza, G.C. Adequacy of energy and nutrient intake in patients with heart failure. Nutr. Hosp. 2015, 31, 500–507. [Google Scholar]
- Dinicolantonio, J.J.; Liu, J.; Keefe, J.H.O. Thiamine and cardiovascular disease: A literature review James. Prog Cardiovasc Dis. 2018, 61, 27–32. [Google Scholar] [CrossRef]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular in fl ammation in cardiovascular disease (a review). Vascul Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef]
- Pilz, S.; Verheyen, N.; Grübler, M.R.; Tomaschitz, A.; März, W. Vitamin D and cardiovascular disease prevention. Nat. Rev. Cardiol. 2016, 13, 404–417. [Google Scholar] [CrossRef]
- Krim, S.R.; Campbell, P.; Lavie, C.J.; Ventura, H. Micronutrients in Chronic Heart Failure. Curr Hear Fail Rep. 2013, 10, 46–53. [Google Scholar] [CrossRef]
- VestA, R.; Chan, M.; Deswal, A.; Givertz, M.M.; Lekavich, C.; Lennie, T.; Litwin, S.E.; Parsly, L.; Rodgers, J.E.; Rich, M.W.; et al. Nutrition, Obesity, and Cachexia in Patients with Heart Failure: A Consensus Statement from the Heart Failure Society of America Scientific Statements Committee. J. Card. Fail. 2019, 25, 380–400. [Google Scholar] [CrossRef] [PubMed]
- Dragan, S.; Buleu, F.; Christodorescu, R.; Cobzariu, F.; Iurciuc, S.; Velimirovici, D.; Xiao, J.; Luca, C.T. Benefits of multiple micronutrient supplementation in heart failure: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2018, 59, 965–981. [Google Scholar] [CrossRef] [PubMed]
- Lennie, T.A.; Song, E.K.; Wu, J.-R.; Chung, M.L.; Dunbar, S.B.; Pressler, S.J.; Moser, D.K. Three Gram Sodium Intake is Associated With Longer Event-Free Survival Only in Patients With Advanced Heart Failure. J. Card. Fail. 2011, 17, 325–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KDIGO CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 73–90. [Google Scholar]
- Ponikowski, P.; Voors, A.; Anker, S.; Cleland, J.; Coats, A.; Falk, V. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution. Eur. Hear J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Thompson, F.E.; Byers, T. Dietary assessment resource manual. J. Nutr. 1994, 124, s2245–s2317. [Google Scholar] [CrossRef]
- Núcleo de Estudos e Pesquisas em Alimentação NEPA. In Tabela Brasileira de Composição de Alimentos TACO, 4th ed.; Campinas, NEPA-UNICAMP: São Paulo, Brazil, 2011; 161p.
- Tabela Brasileira de Composição de Alimentos (TBCA). Universidade de São Paulo (USP). Food Research Center (FoRC). Versão 7.1. São Paulo, 2020. Available online: http://www.fcf.usp.br/tbca (accessed on 10 April 2021).
- Philippi, S.T. Tabela de Composição de Alimentos: Suporte para Decisão Nutricional, 6th ed.; Editora Manole: São Paulo, Brazil, 2018; 152p. [Google Scholar]
- Departamento de Informática em Saúde; Escola Paulista de Medicina/Unifesp. Tabela de Composição Química dos Alimentos Versão 3.0. Available online: https://tabnut.dis.epm.br/ (accessed on 8 April 2021).
- Haubrock, J.; Nöthlings, U.; Volatier, J.-L.; Dekkers, A.; Ocké, M.; Harttig, U.; Illner, A.-K.; Knüppel, S.; Andersen, L.F.; Boeing, H.; et al. Estimating Usual Food Intake Distributions by Using the Multiple Source Method in the EPIC-Potsdam Calibration Study. J. Nutr. 2011, 141, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Stampfer, M. Implications of Total Energy Intake for Epidemiologic Analyses. Nutr Epidemiol. 2009, 124, 17–27. [Google Scholar]
- Institute of Medicine (US). Panel on Micronutrients—Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006; Volume 55, pp. 631–1344. [Google Scholar]
- NASEM (National Academies of Sciences, Engineering, and Medicine). Dietary Reference Intakes for Sodium and Potassium; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Wu, J.-R.; Lennie, T.A.; Frazier, S.K.; Moser, D.K. Health-Related Quality of Life, Functional Status, and Cardiac Event-Free Survival in Patients with Heart Failure. J. Cardiovasc. Nurs. 2016, 31, 236–244. [Google Scholar] [CrossRef] [Green Version]
- McKeag, N.A.; McKinley, M.C.; Woodside, J.; Harbinson, M.T.; McKeown, P.P. The Role of Micronutrients in Heart Failure. J. Acad. Nutr. Diet. 2012, 112, 870–886. [Google Scholar] [CrossRef] [PubMed]
- Izar, M.C.O.; Lottenberg, A.M.; Giraldez, V.Z.R.; Santos Filho, R.D.S.; Machado, R.M.; Bertolami, A. Posicionamento sobre o Consumo de Gorduras e Saúde Cardiovascular 2021. Arq. Bras. Cardiol. 2021, 116, 160–212. [Google Scholar] [CrossRef]
- Uysal, H.; Alkan, H.Ö.; Enç, N.; Yiğit, Z. Assessment of Dietary Habits in Patients with Chronic Heart Failure. J. Nurs. Res. 2020, 28, e65. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Jones, D.W.; Butler, J. Salt, No Salt or Less Salt for Heart Failure Patients? Am. J. Med. 2019, 133, 32–38. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Pesquisa de orçamentos familiares 2017–2018: Análise da segurança alimentar no Brasil. In Pesquisa de Orçamentos Familiares 2017–2018: Análise da Segurança Alimentar no Brasil; IBGE: Rio de Janeiro, Brazil, 2020; pp. 1–65. [Google Scholar]
- Lee, K.S.; Moser, D.K.; Park, J.-H.; Lennie, T.A. The association of deficiencies of water-soluble vitamin intake with health-related quality of life and prognosis in patients with heart failure. Qual. Life Res. 2021, 30, 1183–1190. [Google Scholar] [CrossRef]
- Smith, R.L.; Soeters, M.R.; Wüst, R.C.I.; Houtkooper, R.H. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr. Rev. 2018, 39, 489–517. [Google Scholar] [CrossRef] [Green Version]
- Borel, P.; Desmarchelier, C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Annu. Rev. Nutr. 2018, 38, 69–96. [Google Scholar] [CrossRef] [Green Version]
- Billingsley, H.; Hummel, S.L.; Carbone, S. The role of diet and nutrition in heart failure: A state-of-the-art narrative review. Prog. Cardiovasc. Dis. 2020, 63, 538–551. [Google Scholar] [CrossRef]
- Estruch, R.; Martín-Sánchez, F.J.; Gil, V.; Jacob, J.; Herrero-Puente, P.; Mateo, S.H.; Aguirre, A.; Andueza, J.A.; Llorens, P. Adherence to Mediterranean Diet and All-Cause Mortality After an Episode of Acute Heart Failure. JACC Hear. Fail. 2018, 6, 52–62. [Google Scholar] [CrossRef]
Variables | Overall (n = 121) | Moderate Deficiency (n = 67) | High Deficiency (n = 54) | p-Value |
---|---|---|---|---|
Sex a | ||||
Male | 81 (66.9) | 36 (44.4) | 45 (55.6) | 0.001 |
Female | 40 (33.1) | 31 (77.5) | 9 (22.5) | |
Age b | 55.8 (14.4) | 55.09 (13.6) | 56.8 (15.3) | 0.51 |
Smoking a | ||||
Non-smoker | 59 (59.4) | 35 (59.3) | 24 (40.7) | 0.55 |
Ex-smoker | 52 (44.4) | 29 (55.8) | 23 (44.2) | |
Smoker | 6 (5.1) | 2 (33.3) | 4 9 (66.7) | |
Drinking a | ||||
Ex-drinker | 64 (55.2) | 31 (48.4) | 33 (51.6) | 0.04 |
Has never drunk/does not drink | 52 (44.8) | 35 (67.3) | 17 (32.7) | |
BMI (kg/m2) b | 26.97 (5.12) | 26.71 (5.1) | 0.79 | |
BMI classification a | ||||
Underweight | 12 (10.5) | 5 (41.7) | 7 (58.3) | 0.52 |
Normal weight | 47 (41.2) | 28 (59.6) | 19 (40.4) | |
Overweight/obese | 55 (48.2) | 32(58.2) | 23 (41.8) | |
Etiology a | ||||
Ischemic | 49 (40.5) | 33 (67.3) | 16 (32.7) | 0.003 |
Nonischemic | 56 (46.3) | 31 (55.4) | 25 (44.6) | |
Diagnosis of LVEF a | ||||
HFrEF | 67 (59.3) | 35 (52.2) | 32 (47.8) | 0.11 |
HFmEF | 21 (18.6) | 16 (76.2) | 5 (23.8) | |
HFpEF | 25 (22.1) | 12 (48.0) | 13 (52.0) | |
NYHA functional class a | ||||
I/II | 101 (88.6) | 56 (55.4) | 45 (44.6) | 0.68 |
III/IV | 13 (11.4) | 8 (61.5) | 5 (38.5) | |
Comorbidities a | ||||
Arterial hypertension | ||||
No | 40 (33.9) | 21 (52.5) | 19 (47.5) | 0.59 |
Yes | 78 (66.1) | 45 (57.7) | 33 (42.3) | |
Diabetes mellitus | ||||
No | 84 (71.2) | 41 (48.8) | 43 (51.2) | 0.01 |
Yes | 34 (28.8) | 25 (73.5) | 9 (26.5) | |
eGFR < 60 mL/min/1.73 m2 | ||||
No | 66 (60.6) | 39 (59.1) | 27 (40.9) | 0.92 |
Yes | 43 (39.4) | 25 (58.1) | 18 (41.9) | |
Medication a | ||||
ARB/ACEI | 104 (89.7) | 58 (55.8) | 46 (44.2) | 0.87 |
Diuretics | 94 (81) | 52 (55.3) | 42 (44.7) | 0.75 |
Beta-blockers | 111 (94.9) | 63 (56.8) | 48 (43.2) | 0.40 |
Hypoglycemics | 26 (23.9) | 20 (76.9) | 6 (23.1) | 0.02 |
Hypolipidemics | 61 (56.0) | 36 (59.0) | 25 (41.0) | 0.61 |
Antiplatelet drugs | 51 (44.0) | 33 (64.7) | 18 (35.3) | 0.10 |
Clinical outcomes a | ||||
No events | 96 (79.3) | 52 (43.0) | 44 (36.4) | 0.69 |
Hospitalization | 8 (6.6) | 4 (3.3) | 4 (3.3) | |
Death | 17 (14.0) | 7 (5.8) | 10 (8.3) |
Micronutrients * | Male | Female | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EAR a | Mean (SD b) | P10 c | P50 | P90 | %IN d | EAR | Mean (SD) | P10 | P50 | P90 | %IN | |
Vitamin A (mcg e) | 625 | 823.1 (624.4) | 336.4 | 665.5 | 1601.6 | 37.5 | 500 | 690.9 (274.0) | 355.3 | 699.2 | 1046.7 | 24.2 |
Vitamin B1 (mg f) | 1 | 0.2 (0.2) | 0.0 | 0.2 | 0.5 | 100 | 0.9 | 0.2 (0.2) | (−0.0) | 0.2 | 0.5 | 100 |
Vitamin B2 (mg) | 1.1 | 0.4 (0.3) | 0.1 | 0.4 | 0.8 | 98.5 | 0.9 | 0.4 (0.3) | 0.0 | 0.4 | 0.7 | 98.42 |
Vitamin B3 (mg) | 12 | 15.0 (6.2) | 7.3 | 14.8 | 355.4 | 31.2 | 11 | 16.0 (4.9) | 10.5 | 15.055 | 22.8 | 17.1 |
Vitamin B6 (mg) | ||||||||||||
19 to 50 years old | 1.1 | 1.7 (0.5) | 1.2 | 1.7 | 2.6 | 11.3 | 1.1 | 1.6 (0.3) | 1.2 | 1.6 | 2.0 | 5.1 |
>51 years old | 1.4 | 1.7 (0.5) | 1.2 | 1.7 | 2.3 | 24.8 | 1.3 | 1.8 (0.5) | 1.3 | 1.8 | 2.3 | 13.79 |
Vitamin B9 (mcg) | 320 | 124.5 (63.6) | 64.3 | 112.0 | 215.6 | 99.9 | 320 | 117.0 (58.5) | 53.1 | 100.905 | 205.2 | 100.0 |
Vitamin B12 (mcg) | 2 | 3.3 (2.2) | 1.5 | 2.7 | 4.8 | 28.4 | 2 | 0.4 (0.3) | 0.0 | 0.4 | 0.7 | 21.5 |
Vitamin C (mg) | 75 | 187.7 (164.6) | 45.1 | 139.9 | 391.0 | 24.8 | 60 | 135.9 (82.1) | 37.6 | 127.2 | 242.5 | 17.6 |
Vitamin D (mcg) | 10 | 1.9 (1.2) | 0.4 | 1.7 | 3.7 | 100 | 10 | 2.1 (1.7) | 0.2 | 1.8 | 4.9 | 100 |
Vitamin E (mg) | 12 | 6.8 (3.7) | 3.4 | 6.3 | 9.972 | 91.9 | 12 | 7.6 (3.5) | 4.8 | 6.7 | 10.6 | 89.1 |
Calcium (mg) | ||||||||||||
19 to 50 years old | 800 | 368.9 (123.7) | 207.9 | 368.2 | 582.9 | 99.7 | 800 | 363.3 (106.7) | 239.1 | 365.9 | 542.3 | 100.0 |
>51 years old | 1000 | 391.6 (166.3) | 204.8 | 353.6 | 593.9 | 100.0 | 1000 | 473.9 (168.2) | 222.4 | 510.6 | 698.7 | 99.9 |
Copper (mg) | 0.7 | 0.2 (0.3) | (−0.0) | 0.2 | 0.6 | 96.3 | 0.7 | 0.2 (0.2) | (−0.0) | 0.2 | 0.5 | 99.2 |
Iron (mg) | ||||||||||||
19 to 50 years old | 6 | 35.9 (169.9) | (−22.8) | 6.8 | 17.7 | 38.6 | 8.1 | 18.5 (18.0) | (−1.3) | 22.5 | 37.4 | 2.7 |
>51 years old | 6 | 23.6 (104.7) | (−9.5) | 10.8 | 28.9 | 5 | 23.1 (31.2) | (−6.4) | 19.1 | 33.4 | 6.3 | |
Phosphorus (mg) | 580 | 814.3 (185.9) | 605.4 | 796.7 | 1058.0 | 10.4 | 580 | 808.4 (144.6) | 633.7 | 790.1 | 1054.5 | 5.7 |
Iodine (mcg) | 95 | 162.6 (95.8) | 49.2 | 146.3 | 307.0 | 23.9 | 95 | 156.9 (59.6) | 86.5 | 145.205 | 229.2 | 44.4 |
Magnesium (mg) | ||||||||||||
19 to 30 years old ** | 330 | 197.4 (50.5) | 146.3 | 244.7 | 198.7 | 99.6 | 265 | 188.9 (42.5) | 136.8 | 180.0 | 242.0 | 96.3 |
>31 years old | 350 | 188.6 (47.6) | 145.3 | 183.2 | 248.5 | 100.0 | ||||||
Selenium (mcg) | 45 | 55.3 (20.6) | 32.2 | 50.5 | 80.2 | 30.9 | 45 | 53.6 (18.4) | 33.5 | 51.4 | 83.1 | 31.9 |
Sodium (mg) *** | 2800 | 1784.9 (658.2) | 924.7 | 1748 | 2501.2 | 3.7 | 2800 | 1758.7 (420.2) | 1089.0 | 1776.2 | 2254.3 | 0.0 |
Zinc (mg) | 9.4 | 7.3 (2.3) | 4.8 | 7.1 | 10.3 | 82.4 | 6.8 | 7.0 (1.7) | 5.3 | 6.8 | 9.6 | 44.0 |
Variables | Overall Survival | Event-Free Survival | ||||
---|---|---|---|---|---|---|
% Survival (95% CI) | HR (95% CI) | p | % Survival (95% CI) | HR (95% CI) | p-Value | |
Vitamin A | ||||||
Adequate | 80.08 (66.74–88.51) | 1.00 | 0.94 | 77.62 (64.39–86.44) | 1.00 | 0.18 |
Inadequate | 81.80 (63.22–91.57) | 1.04 (0.38–2.81) | 67.24 (49.04–80.16) | 1.69 (0.77–3.71) | ||
Vitamin B2 | ||||||
Adequate | 100 (0) | # | # | 100 (0) | # | # |
Inadequate | 80.00 (69.60–87.16) | # | 72.96 (62.45–80.96) | # | ||
Vitamin B3 | ||||||
Adequate | 78.99 (66.97–87.05) | 1.33 (0.38–4.64) | 0.65 | 73.44 (61.40–82.25) | 1.00 | 0.93 |
Inadequate | 87.00 (63.07–95.88) | 1.00 | 74.94 (51.21–88.31) | 1.04 (0.41–2.61) | ||
Vitamin B6 | ||||||
Adequate | 80.48 (69.61–87.80) | 1.00 | 0.75 | 74.49 (63.47–82.63) | 1.00 | 0.34 |
Inadequate | 88.82 (62.07–97.09) | 1.26 (0.28–5.60) | 76.63 (48.60–90.64) | 1.68 (0.57–4.94) | ||
Vitamin B9 | ||||||
Adequate | 100 (0) | # | # | 100 (0) | # | # |
Inadequate | 80.33 (70.06–87.38) | # | 73.43 (63.04–81.32) | # | ||
Vitamin B12 | ||||||
Adequate | 78.18 (66.27–86.31) | 1.78 (0.41–7.81) | 0.43 | 72.33 (60.32–81.26) | 1.00 | 0.94 |
Inadequate | 91.83 (71.08–97.89) | 1.00 | 80.77 (59.81–91.51) | 1.03 (0.38–2.76) | ||
Vitamin C | ||||||
Adequate | 82.09 (71.48–89.05) | 1.00 | 0.36 | 75.20 (64.36–83.17) | 1.00 | 0.42 |
Inadequate | 66.96 (26.05–88.73) | 1.78 (0.51–6.24) | 60.88 (24.29–84.02) | 1.54 (0.53–4.52) | ||
Vitamin E | ||||||
Adequate | 53.33 (6.83–86.31) | 2.94 (0.67–12.92) | 0.13 | 53.33 (6.83–86.31) | 1.92 (0.45–8.18) | 0.37 |
Inadequate | 81.96 (71.65–88.80) | 1.00 | 74.70 (64.20–82.52) | 1.00 | ||
Calcium | ||||||
Adequate | 100 (0) | # | # | 100 (0) | # | # |
Inadequate | 80.31 (70.03–87.37) | # | 73.40 (63.00–81.29) | # | ||
Iron | ||||||
Adequate | 76.32 (63.01–85.38) | 2.51 (0.72–8.76) | 0.13 | 68.88 (55.70–78.86) | 1.00 | 0.12 |
Inadequate | 89.29 (70.08–96.46) | 1.00 | 83.70 (64.96–92.93) | 2.11 (0.79–5.65) | ||
Phosphorus | ||||||
Adequate | 79.87 (69.44–87.07) | # | # | 72.78 (62.24–80.82) | # | # |
Inadequate | 100 (0) | # | 100 (0) | # | ||
Iodine | ||||||
Adequate | 82.21 (71.18–89.32) | 1.00 | 0.41 | 74.70 (63.42–82.96) | 1.00 | 0.62 |
Inadequate | 72.27 (39.55–89.25) | 1.60 (0.52–4.93) | 68.99 (38.28–86.63) | 1.27 (0.47–3.41) | ||
Magnesium | ||||||
Adequate | 50.00 (0.01–0.91) | 3.23 (0.42–24.50) | 0.23 | 50.00 (0.60–91.04) | 2.06 (0.27–15.28) | 0.47 |
Inadequate | 81.30 (71.08–88.21) | 1.00 | 74.25 (63.86–82.06) | 1.00 | ||
Manganese | ||||||
Adequate | 77.43 (53.98–89.93) | 1.06 (0.37–3.01) | 0.91 | 67.51 (45.25–82.31) | 1.25 (0.54–2.90) | 0.60 |
Inadequate | 82.10 (70.29–89.55) | 1.00 | 76.32 (64.39–84.71) | 1.00 | ||
Potassium | ||||||
Adequate | 0 (0) | 8.82 (1.08–72.14) | 0.01 * | 0.00 | 5.00 (0.65–38.38) | 0.09 |
Inadequate | 81.51 (71.39–88.34) | 1.00 | 86.58 (78.30–91.86) | 1.00 | ||
Selenium | ||||||
Adequate | 76.78 (63.76–85.63) | 2.05 (0.59–7.15) | 0.25 | 69.20 (56.19–79.05) | 1.80 (0.68–4.82) | 0.23 |
Inadequate | 89.94 (71.00–96.77) | 1.00 | 84.27 (65.72–93.26) | 1.00 | ||
Sodium | ||||||
Adequate | 80.25 (69.96–87.33) | # | # | 73.30 (62.89–81.22) | # | # |
Inadequate | 100.00 (0) | # | 100 (0) | # | ||
Zinc | ||||||
Adequate | 78.25 (57.60–89.67) | 1.28 (0.47–3.49) | 0.62 | 75.81 (55.57–87.76) | 1.00 | 0.89 |
Inadequate | 81.48 (68.74–89.41) | 1.00 | 72.70 (59.91–82.00) | 1.06 (0.44–2.55) | ||
Micronutrient deficiency groups | ||||||
Moderate | 79.71 (61.93–89.82) | 1.00 | 0.91 | 79.71 (61.93–89.82) | 1.00 | 0.26 |
High | 81.30 (67.50–89.66) | 0.94 (0.36–2.48) | 74.38 (61.22–83.65) | 1.63 (0.68–3.92) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, N.R.S.M.; Freire, F.L.d.A.; Dantas-Komatsu, R.C.S.; Silva, E.P.d.; Queiroz, S.I.M.L.; Lira, N.R.D.d.; Diniz, R.V.Z.; Lima, S.C.V.C.; Pedrosa, L.F.C.; Lopes, M.M.G.D.; et al. Lack of Association between Inadequate Micronutrient Intake and Prognosis in Outpatients with Heart Failure. Nutrients 2022, 14, 788. https://doi.org/10.3390/nu14040788
Torres NRSM, Freire FLdA, Dantas-Komatsu RCS, Silva EPd, Queiroz SIML, Lira NRDd, Diniz RVZ, Lima SCVC, Pedrosa LFC, Lopes MMGD, et al. Lack of Association between Inadequate Micronutrient Intake and Prognosis in Outpatients with Heart Failure. Nutrients. 2022; 14(4):788. https://doi.org/10.3390/nu14040788
Chicago/Turabian StyleTorres, Núbia Rafaella Soares Moreira, Fernanda Lambert de Andrade Freire, Raquel Costa Silva Dantas-Komatsu, Eduardo Paixão da Silva, Salomão Israel Monteiro Lourenço Queiroz, Niethia Regina Dantas de Lira, Rosiane Viana Zuza Diniz, Severina Carla Vieira Cunha Lima, Lucia Fatima Campos Pedrosa, Márcia Marília Gomes Dantas Lopes, and et al. 2022. "Lack of Association between Inadequate Micronutrient Intake and Prognosis in Outpatients with Heart Failure" Nutrients 14, no. 4: 788. https://doi.org/10.3390/nu14040788
APA StyleTorres, N. R. S. M., Freire, F. L. d. A., Dantas-Komatsu, R. C. S., Silva, E. P. d., Queiroz, S. I. M. L., Lira, N. R. D. d., Diniz, R. V. Z., Lima, S. C. V. C., Pedrosa, L. F. C., Lopes, M. M. G. D., & Sena-Evangelista, K. C. M. (2022). Lack of Association between Inadequate Micronutrient Intake and Prognosis in Outpatients with Heart Failure. Nutrients, 14(4), 788. https://doi.org/10.3390/nu14040788