Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies
Abstract
:1. Background
2. Methods
3. Results
3.1. Clinical Studies Using Plants in the Treatment of Pancreatic Cancer
3.1.1. PHY906
3.1.2. Viscum album Extract
3.1.3. Mistletoe
3.2. Effect of Plant Derivatives on PC Stem Cells
3.2.1. Bitter Melon Juice
3.2.2. Crocetinic Acid (Gardenia jasminoides)
3.2.3. Hispidin (Phellinus linteus)
3.2.4. Quercetin and Resveratrol
3.2.5. Pao Pereira
3.3. Nanotechnology to Target PC
3.3.1. Anthothecol-Encapsulated PLGA Nanoparticles (Khaya Anthotheca—Meliaceae)
3.3.2. Eysenhardtia platycarpa
3.3.3. Panax notoginseng Gold Nanoparticles
3.3.4. Parvifloron-D-Loaded Smart Nanoparticles
3.3.5. Silibinin
3.3.6. Zinc Oxide Nanoparticles Using Anacardium occidentale Leaf Extract
3.3.7. Scutellaria barbata Gold Nanoparticles
3.4. Combined Administration of Plants with Chemotherapeutic Agents in Patients with PC
3.4.1. Asparagus
3.4.2. Chokeberry Extracts (Aronia melanocarpa)
3.4.3. Coix Seed Emulsion
3.4.4. C5E
3.4.5. Emodin
3.4.6. Escin
3.4.7. Fisetin
3.4.8. Gloriosa superba L. (Glory Lily, Colchicaceae)
3.4.9. Herbal Mixture Extract
3.4.10. Isodon Eriocalyx and Its Bioactive Component Eriocalyxin-b
3.4.11. Monogalactosyl Diacylglycerol
3.4.12. Moringa oleifera
3.4.13. Nexrutine®
3.4.14. Ocoxin Oral Solution
3.4.15. Oplopanax horridus
3.4.16. Paeonia suffruticosa
3.4.17. Pao Pereira
3.4.18. Piperlongumine
3.4.19. Resveratrol
3.4.20. Rauwolfia vomitoria
3.4.21. Thymoquinone
3.4.22. Triptolide
3.5. Experimental Studies Using Plants as Unique Agents against Pancreatic Cancer Cell Lines and Xenografts
3.5.1. Achyranthes Aspera
3.5.2. Alpinia officinarum
3.5.3. Amoora rohituka
3.5.4. (Ancistrocladaceae) liana
3.5.5. Apigenin
3.5.6. Asteraceae and Lamiaceae
3.5.7. Bitter Melon Juice
3.5.8. BRM270
3.5.9. Boesenbergia pandurata
3.5.10. Boswellia sacra Gum Resins
3.5.11. Bruceine D
3.5.12. Cannabinoids
3.5.13. Citrus Unshiu Peel
3.5.14. Cloves (Syzygium aromaticum)
3.5.15. Cocoa Polyphenol
3.5.16. Cordyceps Militaris
3.5.17. Crocus Sativus
3.5.18. Cryptotanshinone
3.5.19. Cucurbitacin E
3.5.20. Cucurmosin
3.5.21. Dandelion root Extract
3.5.22. Degalactotigonin
3.5.23. Diterpene 25 Signaling
3.5.24. Elemene
3.5.25. Ellagic acid
3.5.26. Emodin
3.5.27. Eryngium billardieri
3.5.28. Eucalyptus
3.5.29. Ferula Hezarlalehzarica
3.5.30. Gallic acid
3.5.31. Garlic
3.5.32. Gedunin (Azadirachta indica)
3.5.33. Ginger Extract
3.5.34. Ginkgolic Acid
3.5.35. Grape Proanthocyanidin
3.5.36. Graviola
3.5.37. Green Tea Extract
3.5.38. Helicteres hirsuta Lour
3.5.39. Inula helenium
3.5.40. Lonicera japonica
3.5.41. Lupeol
3.5.42. Mangifera indica
3.5.43. Mexican Lime (Citrus aurantifolia)
3.5.44. Moringa Oleifera
3.5.45. Matrine
3.5.46. Naringenin and Hesperetin Combined Treatment
3.5.47. Nerium oleander
3.5.48. Nimbolide
3.5.49. Obacunone
3.5.50. Ocimum sanctum
3.5.51. Oleuropein
3.5.52. Olive Biophenols (Oleuropein, Hydroxytyrosol, and Tyrosol)
3.5.53. Oridonin
3.5.54. Paeonia lactiflora
3.5.55. Palm Oil Phenolics and PALM JUICE
3.5.56. Paramignya trimera Root and Phyllanthus amarus
3.5.57. Plumbagin
3.5.58. Pomegranate extract
3.5.59. Pulsatilla koreana
3.5.60. Quercetin
3.5.61. Radix Scutellariae
3.5.62. Rhazya stricta
3.5.63. Salvia chinensis
3.5.64. Sedum sarmentosum Bunge
3.5.65. Sugiol
3.5.66. TEOA (2a,3a,24-thrihydroxyurs-12-en-28-oicacid)
3.5.67. Toosendanin
3.5.68. Tripterygium wilfordii
3.5.69. Valtrate
3.5.70. Xanthohumol
3.5.71. Xao tam phan (Paramignya trimera)
3.5.72. Xylaria psidii
3.5.73. Wikstroemia indica
3.5.74. Ziziphus Nummularia
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Bax | Bcl-2-like protein 4 |
Fas | Death receptor Fas |
mTOR pathway | Mammalian target of rapamycin signaling pathway |
AURKA | Aurora Kinase A |
c-jun | Protooncogene c-jun |
c-fos | Protooncogene c-fos |
RNA | Rivoso Nucleic Acid |
AMP activated protein | Adenosine monophosphate activated protein |
SW 1990 | Human pancreatic cancer cell line |
CTK2 | Cyclin-dependent kinase 2 |
KIS | Natural ditergene quinones |
EGFR | Epidermal Growth factor Receptor |
EGF | Epidermal Growth Factor |
WST-1 | 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate |
AMPK inhibitor | AMP-activated protein kinase |
FoxM1 | Forkhead box protein M1 |
MMPs | Matrix Metallopeptidases |
YES activated Protein | Transcriptional Factor |
HTRA2/Omi | Mitochondrial serine protease protein A2 |
CIAP-2 | Cellular inhibitor of apoptosis.2 |
BxPC-3 | Human pancreatic cancer cell line |
STAT3 | Trancription Factor STAT3 |
P-IkB-a | Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha |
CSC | Cancer Stem Cells |
PANC-1 | Pancreatic adenocarcinoma-1 cells |
TNF-α | Tumor Necrosis Factor-α |
IL-1β | Interleukin-1β |
ACTA2 | Actin alpha2 |
PLGA nanoparticles | Poly(lactic-co-glycolic acid)s |
NPs1 | Nuclear protein of Sacharomycel nanoparticles |
AuNPs | Gold nanoparticles |
KLM1 | Pancreatic cancer cell line KLMs |
NF-kB | Nuclear Factor kappaB |
COX-2 | Cyclooxygenase-2 |
AkT | Protein KinaseB |
JNF | c-jun NH2-terminal kinase |
VEGF | Vascular Endothelial Cell Growth Factor |
ERK | Extracellular signal-regulates kinases |
Bcl-2 | B-cell/lymphoma 2 family proteins |
P65 | Transcription Factor p65 |
References
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Maisonneuve, P. Epidemiology and burden of pancreatic cancer. Presse Med. 2019, 48 Pt 2, e113–e123. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Gao, F.; Li, Q.; Liu, Q.; Lin, X. The distributional characteristic and growing trend of pancreatic cancer in china. Pancreas 2019, 48, 309–314. [Google Scholar] [CrossRef]
- Weisbeck, A.; Jansen, R.J. Nutrients and the pancreas: An epigenetic perspective. Nutrients 2017, 9, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, X.; Sun, X.; Lu, S.; Liu, S. Vitamin intake and pancreatic cancer risk reduction: A meta-analysis of observational studies. Medicine 2018, 97, e0114. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Guinter, M.A.; Merchant, A.T.; Wirth, M.D.; Zhang, J.; Stolzenberg-Solomon, R.Z.; Steck, S.E. Dietary patterns and risk of pancreatic cancer: A systematic review. Nutr. Rev. 2017, 75, 883–908. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.Y.; Shu, L.; Shen, S.S.; Chen, X.J.; Zhang, X.Y. Dietary patterns and pancreatic cancer risk: A meta-analysis. Nutrients 2017, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Idachaba, S.; Dada, O.; Abimbola, O.; Olayinka, O.; Uma, A.; Olunu, E.; Fakoya, A.O.J. A review of pancreatic cancer: Epidemiology, genetics, screening, and management. Open Access Maced. J. Med. Sci. 2019, 7, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Saif, M.W. Is there a Role for Herbal Medicine in the Treatment of Pancreatic Cancer? JOP 2008, 9, 403–407. [Google Scholar]
- Zhang, W.; Saif, M.W.; Dutschman, G.E.; Li, X.; Lam, W.; Bussom, S.; Jiang, Z.; Ye, M.; Chu, E.; Cheng, Y.C. Identification of chemicals and their metabolites from PHY906, a Chinese medicine formulation, in the plasma of a patient treated with irinotecan and PHY906 using liquid chromatography/tandem mass spectrometry (LC/MS/MS). J. Chromatogr. A 2010, 1217, 5785–5793. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L.; Wang, S.; Kuang, Y.; Hu, Z.M.; Qiao, X.; Ye, M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Biol. 2018, 56, 465–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi-Rad, J.; Quispe, C.; Herrera-Bravo, J.; Belén, L.H.; Kaur, R.; Kregiel, D.; Uprety, Y.; Beyatli, A.; Yeskaliyeva, B.; Kırkın, C.; et al. Glycyrrhiza Genus: Enlightening Phytochemical Components for Pharmacological and Health-Promoting Abilities. Oxid. Med. Cell. Longev. 2021, 2021, 7571132. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, J.; Zhang, Z.; Gao, W.; Yan, Y.; Li, X.; Liu, C. Identification of Chemical Constituents in the Extract and Rat Serum from Ziziphus Jujuba Mill by HPLC-PDA-ESI-MSn. Iran. J. Pharm. Res. 2014, 13, 1055–1063. [Google Scholar] [PubMed]
- Nie, R.; Zhang, Y.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Effect of different processing methods on physicochemical properties, chemical compositions and in vitro antioxidant activities of Paeonia lactiflora Pall seed oils. Food Chem. 2020, 332, 127408. [Google Scholar] [CrossRef] [PubMed]
- Saif, M.W.; Li, J.; Lamb, L.; Kaley, K.; Elligers, K.; Jiang, Z.; Bussom, S.; Liu, S.-H.; Cheng, Y.-C. First-in-human phase ii trial of the botanical formulation PHY906 with capecitabine as second-line therapy in patients with advanced pancreatic cancer. Cancer Chemother. Pharmacol. 2014, 73, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Zänker, K.S.; Kaveri, S.V. (Eds.) Mistletoe: From Mythology to Evidence-Based Medicine; Karger Medical and Scientific Publishers: Basel, Switzerland, 2015; Volume 4, pp. 11–23. [Google Scholar] [CrossRef]
- Tröger, W.; Galun, D.; Reif, M.; Schumann, A.; Stanković, N.; Milićević, M. Viscum album [L.] extract therapy in patients with locally advanced or metastatic pancreatic cancer: A randomised clinical trial on overall survival. Eur. J. Cancer 2013, 49, 3788–3797. [Google Scholar] [CrossRef] [Green Version]
- Werthmann, P.G.; Kempenich, R.; Lang-Avérous, G.; Kienle, G.S. Long-term survival of a patient with advanced pancreatic cancer under adjunct treatment with Viscum album extracts: A case report. World J. Gastroenterol. 2019, 25, 1524–1530. [Google Scholar] [CrossRef]
- Ishiwu, C.N.; Obiegbuna, J.E.; Aniagolu, N.M. Evaluation of chemical properties of mistletoe leaves from three different trees (avocado, African oil bean and kola). Niger. Food J. 2013, 31, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Matthes, H.; Friedel, W.E.; Bock, P.R.; Zänker, K.S. Molecular mistletoe therapy: Friend or foe in established anti-tumor protocols? A multicenter, controlled, retrospective pharmaco-epidemiological study in pancreas cancer. Curr. Mol. Med. 2010, 10, 430–439. [Google Scholar] [CrossRef] [Green Version]
- Ritter, P.R.; Tischoff, I.; Uhl, W.; Schmidt, W.E.; Meier, J.J. Sustained partial remission of metastatic pancreatic cancer following systemic chemotherapy with gemcitabine and oxaliplatin plus adjunctive treatment with mistletoe extract. Onkologie 2010, 33, 617–619. [Google Scholar] [CrossRef]
- Ercan, G.; Karlitepe, A.; Ozpolat, B. Pancreatic cancer stem cells and therapeutic approaches. Anticancer Res. 2017, 37, 2761–2775. [Google Scholar] [PubMed] [Green Version]
- Saeed, F.; Afzaal, M.; Niaz, B.; Arshad, M.U.; Tufail, T.; Hussain, M.B.; Javed, A. Bitter Melon (Momordica charantia) a natural healthy vegetable. Int. J. Food Prop. 2018, 21, 1270–1290. [Google Scholar] [CrossRef] [Green Version]
- Dhar, D.; Deep, G.; Kumar, S.; Wempe, M.F.; Raina, K.; Agarwal, C.; Agarwal, R. Bitter melon juice exerts its efficacy against pancreatic cancer via targeting both bulk and cancer stem cells. Mol. Carcinog. 2018, 57, 1166–1180. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Li, S.; Wang, S.; Ho, C.T. Chemistry and bioactivity of Gardenia jasminoides. J. Food Drug Anal. 2017, 25, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Rangarajan, P.; Subramaniam, D.; Paul, S.; Kwatra, D.; Palaniyandi, K.; Islam, S.; Harihar, S.; Ramalingam, S.; Gutheil, W.; Putty, S.; et al. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells. Oncotarget 2015, 6, 27661–27673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.; Hwang, B.S.; Lee, I.K.; Seo, G.S.; Yun, B.S. Chemical constituents of the culture broth of Phellinus linteus and their antioxidant activity. Mycobiology 2015, 43, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandimali, N.; Huynh, D.L.; Jin, W.Y.; Kwon, T. Combination effects of hispidin and gemcitabine via inhibition of stemness in pancreatic cancer stem cells. Anticancer Res. 2018, 38, 3967–3975. [Google Scholar] [CrossRef] [PubMed]
- PubChem [Internet]. PubChem Compound Summary for CID 5280343, Quercetin; National Library of Medicine (US), National Center for Biotechnology Information: Bethesda, MD, USA, 2004. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Quercetin (accessed on 10 December 2021).
- Jin, S.; Pang, Q.; Yang, H.; Diao, X.; Shan, A.; Feng, X. Effects of dietary resveratrol supplementation on the chemical composition, oxidative stability and meat quality of ducks (Anas platyrhynchos). Food Chem. 2021, 363, 130263. [Google Scholar] [CrossRef]
- Hoca, M.; Becer, E.; Kabadayı, H.; Yücecan, S.; Vatansever, H.S. The effect of resveratrol and quercetin on epithelial-mesenchymal transition in pancreatic cancer stem cell. Nutr. Cancer 2019, 72, 1231–1242. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Q. The plant extract of Pao pereira potentiates carboplatin effects against ovarian cancer. Pharm. Biol. 2014, 52, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, R.; Chen, P.; Chen, Q. Extract of the medicinal plant Pao Pereira inhibits pancreatic cancer stem-like cell in vitro and in vivo. Integr. Cancer Ther. 2018, 17, 1204–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadha, A.S.; Khoo, A.; Aliru, M.L.; Arora, H.K.; Gunther, J.R.; Krishnan, S. Recent advances and prospects for multimodality therapy in pancreatic cancer. Semin. Radiat. Oncol. 2016, 26, 320–337. [Google Scholar] [CrossRef] [PubMed]
- Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 2010, 624, 25–37. [Google Scholar] [PubMed]
- Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1615–1626. [Google Scholar] [CrossRef]
- Manzur, A.; Oluwasanmi, A.; Moss, D.; Curtis, A.; Hoskins, C. Nanotechnologies in pancreatic cancer therapy. Pharmaceutics 2017, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.; Reis, C. Emerging therapeutic nanotechnologies in pancreatic cancer: Advances, risks and challenges. Ther. Deliv. 2018, 9, 691–694. [Google Scholar] [CrossRef]
- Verma, R.K.; Yu, W.; Singh, S.P.; Shankar, S.; Srivastava, R.K. Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway. Nanomedicine 2015, 11, 2061–2070. [Google Scholar] [CrossRef]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef]
- Andrade-Carrera, B.; Clares, B.; Noé, V.; Mallandrich, M.; Calpena, A.C.; García, M.L.; Garduño-Ramírez, M.L. Cytotoxic evaluation of (2s)-5,7-dihydroxy-6-prenylflavanone derivatives loaded plga nanoparticles against miapaca-2 cells. Molecules 2017, 22, 1553. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Zou, K.; Fushimi, H.; Cai, S.; Komatsu, K. Comparative study on triterpene saponins of Ginseng drugs. Planta Med. 2004, 70, 666–677. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Li, F. Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1216–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Rebelo, A.; Garcia, C.; Eleutério, C.; Bastos, A.; Castro Coelho, S.; Coelho, M.A.; Molpeceres, J.; SViana, A.; Ascensão, L.; Pinto, J.F.; et al. Development of parvifloron d-loaded smart nanoparticles to target pancreatic cancer. Pharmaceutics 2018, 10, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijak, M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—Chemistry, bioavailability, and metabolism. Molecules 2017, 22, 1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khakinezhad Tehrani, F.; Ranji, N.; Kouhkan, F.; Hosseinzadeh, S. Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs. Iran. J. Basic Med. Sci. 2020, 23, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Peng, Q.; Zhong, J.Z.; Liu, W.; Zhong, Y.J.; Wang, F. Molecular and Functional Properties of Protein Fractions and Isolate from Cashew Nut (Anacardium occidentale L.). Molecules 2018, 23, 393. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhang, X.; Zheng, Y. Biosynthesis of polyphenols functionalized ZnO nanoparticles: Characterization and their effect on human pancreatic cancer cell line. J. Photochem. Photobiol. B 2018, 183, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Rahman, K.; Wang, S.J.; Zhou, S.; Zhang, H. Scutellaria barbata: A review on chemical constituents, pharmacological activities and clinical applications. Curr. Pharm. Des. 2020, 26, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Integrative Medicine, About Herbs, Botanicals & other Products, Search about Herbs, Scutellaria barbata. Available online: https://www.mskcc.org/cancer-care/integrative-medicine/herbs/scutellaria-barbata#msk_professional (accessed on 10 December 2021).
- Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Karunakaran, T.; Li, F. Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif. Cells Nanomed. Biotechnol. 2019, 47, 1617–1627. [Google Scholar] [CrossRef] [Green Version]
- Marasini, B.; Sahu, R.P. Natural anti-cancer agents: Implications in gemcitabine-resistant pancreatic cancer treatment. Mini Rev. Med. Chem. 2017, 17, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.; Nanimoto, Y.; Baron, B.; Kitagawa, T.; Tokuda, K.; Kuramitsu, Y. Enzyme-treated asparagus extract down-regulates heat shock protein 27 of pancreatic cancer cells. In Vivo 2018, 32, 759–763. [Google Scholar] [CrossRef]
- Thani, N.A.; Keshavarz, S.; Lwaleed, B.A.; Cooper, A.J.; Rooprai, H.K. Cytotoxicity of gemcitabine enhanced by polyphenolics from Aronia melanocarpa in pancreatic cancer cell line AsPC-1. J. Clin. Pathol. 2014, 67, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Yang, B.; Xiong, Y.; Gu, M. Coix seed emulsion synergistically enhances the antitumor activity of gemcitabine in pancreatic cancer through abrogation of NF-κB signaling. Oncol. Rep. 2016, 36, 1517–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pak, P.J.; Lee, D.G.; Sung, J.H.; Jung, S.H.; Han, T.Y.; Park, S.H.; Chung, N. Synergistic effect of the herbal mixture C5E on gemcitabine treatment in PANC-1 cells. Mol. Med. Rep. 2021, 23, 315. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.Τ.; Chen, H.; Ni, Z.L.; Liu, H.Β.; Tong, H.F.; Fan, L.; Liu, A.; Qiu, M.Χ.; Liu, D.L.; Guo, H.C.; et al. Antitumor and apoptosis-promoting properties of emodin, an anthraquinone derivative from Rheum officinale Baill, against pancreatic cancer in mice via inhibition of Akt activation. Int. J. Oncol. 2011, 39, 1381–1390. [Google Scholar] [CrossRef] [Green Version]
- Rimmon, A.; Vexler, A.; Berkovich, L.; Earon, G.; Ron, I.; Lev-Ari, S. Escin chemosensitizes human pancreatic cancer cells and inhibits the nuclear factor-kappaB signaling pathway. Biochem. Res. Int. 2013, 2013, 251752. [Google Scholar] [CrossRef]
- Kim, N.; Kang, M.J.; Lee, S.H.; Son, J.H.; Lee, J.E.; Paik, W.H.; Ryu, J.K.; Kim, Y.T. Fisetin enhances the cytotoxicity of gemcitabine by down-regulating erk-myc in miapaca-2 human pancreatic cancer cells. Anticancer Res. 2018, 38, 3527–3533. [Google Scholar] [CrossRef]
- Capistrano, R.; Vangestel, C.; Vanpachtenbeke, H.; Fransen, E.; Staelens, S.; Apers, S.; Pieters, L. Coadministration of a Gloriosa superba extract improves the in vivo antitumoural activity of gemcitabine in a murine pancreatic tumour model. Phytomedicine 2016, 23, 1434–1440. [Google Scholar] [CrossRef]
- Pak, P.J.; Kang, B.H.; Park, S.H.; Sung, J.H.; Joo, Y.H.; Jung, S.H.; Chung, N. Antitumor effects of herbal mixture extract in the pancreatic adenocarcinoma cell line PANC1. Oncol. Rep. 2016, 36, 2875–2883. [Google Scholar] [CrossRef]
- Li, L.; Zhao, S.L.; Yue, G.G.L.; Wong, T.P.; Pu, J.X.; Sun, H.D.; Fung, K.P.; Leung, P.C.; Han, Q.B.; Lau, C.B.S.; et al. Isodon eriocalyx and its bioactive component eriocalyxin b enhance cytotoxic and apoptotic effects of gemcitabine in pancreatic cancer. Phytomedicine 2018, 44, 56–64. [Google Scholar] [CrossRef]
- Akasaka, H.; Sasaki, R.; Yoshida, K.; Takayama, I.; Yamaguchi, T.; Yoshida, H.; Mizushina, Y. Monogalactosyl diacylglycerol, a replicative DNA polymerase inhibitor, from spinach enhances the anti-cell proliferation effect of gemcitabine in human pancreatic cancer cells. Biochim. Biophys. Acta 2013, 1830, 2517–2525. [Google Scholar] [CrossRef] [Green Version]
- Akasaka, H.; Mizushina, Y.; Yoshida, K.; Ejima, Y.; Mukumoto, N.; Wang, T.; Inubushi, S.; Nakayama, M.; Wakahara, Y.; Sasaki, R. MGDG extracted from spinach enhances the cytotoxicity of radiation in pancreatic cancer cells. Radiat. Oncol. 2016, 11, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagoel, L.; Vexler, A.; Kalich-Philosoph, L.; Earon, G.; Ron, I.; Shtabsky, A.; Marmor, S.; Lev-Ari, S. Combined effect of moringa oleifera and ionizing radiation on survival and metastatic activity of pancreatic cancer cells. Integr. Cancer Ther. 2019, 18, 1534735419828829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Muñoz, A.R.; Pingali, S.; Payton-Stewart, F.; Chan, D.E.; Freeman, J.W.; Ghosh, R.; Kumar, A.P. Downregulation of STAT3/NF-κB potentiates gemcitabine activity in pancreatic cancer cells. Mol. Carcinog. 2017, 56, 402–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Unzueta, I.; Benedicto, A.; Romayor, I.; Herrero, A.; Sanz, E.; Arteta, B.; Olaso, E.; Márquez, J. Ocoxin oral solution exerts an antitumoral effect in pancreatic cancer and reduces the stromal-mediated chemoresistance. Pancreas 2019, 48, 555–567. [Google Scholar] [CrossRef]
- Cheung, S.S.; Tai, J.; Hasman, D.; Ou, D.; Warnock, G.L. Inhibition of human pancreatic cancer cell proliferation by devil’s club oplopanax horridus and its polyacetylene bioactive compound. Nutr. Cancer. 2015, 67, 954–964. [Google Scholar] [CrossRef]
- Tai, J.; Cheung, S.S.; Ou, D.; Warnock, G.L.; Hasman, D. Antiproliferation activity of Devil’s club (Oplopanax horridus) and anticancer agents on human pancreatic cancer multicellular spheroids. Phytomedicine 2014, 21, 506–514. [Google Scholar] [CrossRef]
- Liu, Y.H.; Weng, Y.P.; Tsai, H.Y.; Chen, C.J.; Lee, D.Y.; Hsieh, C.L.; Wu, Y.C.; Lin, J.Y. Aqueous extracts of Paeonia suffruticosa modulates mitochondrial proteostasis by reactive oxygen species-induced endoplasmic reticulum stress in pancreatic cancer cells. Phytomedicine 2018, 46, 184–192. [Google Scholar] [CrossRef]
- Yu, J.; Drisko, J.; Chen, Q. Inhibition of pancreatic cancer and potentiation of gemcitabine effects by the extract of Pao Pereira. Oncol. Rep. 2013, 30, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Rawat, L.; Hegde, H.; Hoti, S.L.; Nayak, V. Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells. Biomed. Pharmacother. 2020, 128, 110243. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, X.; Chen, K.; Sun, L.; Gao, L.; Zhou, C.; Lei, M.; Duan, W.; Wang, Z.; Ma, Q.; et al. YAP Inhibition by resveratrol via activation of ampk enhances the sensitivity of pancreatic cancer cells to gemcitabine. Nutrients 2016, 8, 546. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Chen, Q. Antitumor activities of rauwolfia vomitoria extract and potentiation of gemcitabine effects against pancreatic cancer. Integr. Cancer Ther. 2014, 13, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Mu, G.G.; Zhang, L.L.; Li, H.Y.; Liao, Y.; Yu, H.G. Thymoquinone pretreatment overcomes the insensitivity and potentiates the antitumor effect of gemcitabine through abrogation of notch1; pi3k/akt/mtor regulated signaling pathways in pancreatic cancer. Dig. Dis. Sci. 2015, 60, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.W.; Wang, W.; Xie, X.Y.; Zhu, W.P.; Li, F.Q. In vitro synergistic cytotoxic effect of triptolide combined with hydroxycamptothecin on pancreatic cancer cells. Am. J. Chin. Med. 2011, 39, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, N.; Liu, H.; Li, Z.; Lu, L.; Wang, C. The bioactive compounds and biological functions of Asparagus officinalis L.—A review. J. Funct. Foods 2020, 65, 103727. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, J.H.; Dapeng, L.; Dapeng, L.; Orita, H.; Coulter, J.; Tully, E.; Kwon, T.K.; Xu, S.; Gabrielson, E. Coix seed extract, a commonly used treatment for cancer in China, inhibits NfkappaB and protein kinase C signaling. Cancer Biol. Ther. 2007, 6, 2005–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisler, R.; Dargel, C.; Hellweg, T. The Biosurfactant β-Aescin: A Review on the Physico-Chemical Properties and Its Interaction with Lipid Model Membranes and Langmuir Monolayers. Molecules 2020, 25, 117. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Ashokkumar, K. Gloriosa superba (L.): A brief review of its phytochemical properties and pharmacology. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 1190–1193. [Google Scholar]
- Hussain, S.S.; Patel, D.; Ghosh, R.; Kumar, A.P. Extracting the Benefit of Nexrutine® for Cancer Prevention. Curr. Pharmacol. Rep. 2015, 1, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Unzueta, I.; Benedicto, A.; Olaso, E.; Sanz, E.; Viera, C.; Arteta, B.; Márquez, J. Ocoxin oral solution as a complement to irinotecan chemotherapy in the metastatic progression of colorectal cancer to the liver. Oncol. Lett. 2017, 13, 4002–4012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.H.; Zhang, Q.W.; Yuan, C.S.; Wang, C.Z.; Li, S.P.; Zhou, H.H. Chemical constituents of the plants from the genus Oplopanax. Chem. Biodivers. 2014, 11, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, J.K.; Okoli, R.I.; Turay, A.A.; Ogie-Odia, E.A. Phytochemical analysis of medicinal plants used for the management of hypertension by Esan people of Edo State, Nigeria. Ethnobot. Leafl. 2009, 13, 1273–1287. [Google Scholar]
- Ahmad, A.; Mishra, R.K.; Vyawahare, A.; Kumar, A.; Rehman, M.U.; Qamar, W.; Khan, A.Q.; Khan, R. Thymoquinone (2-Isopropyl-5-methyl-1, 4-benzoquinone) as achemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm. J. 2019, 27, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Subbarayan, P.R.; Sarkar, M.; Impellizzeri, S.; Raymo, F.; Lokeshwar, B.L.; Kumar, P.; Agarwal, R.P.; Ardalan, B. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells. J. Ethnopharmacol. 2010, 131, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.Z.; Jeong, J.H.; Lee, Y.I.; Lee, S.Y.; Zhao, H.Y.; Jeon, R.; Lee, H.J.; Ryu, J.H. Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway. Arch. Pharm. Res. 2017, 40, 509–517. [Google Scholar] [CrossRef]
- Rabi, T.; Catapano, C.V. Aphanin, a triterpenoid from Amoora rohituka inhibits K-Ras mutant activity and STAT3 in pancreatic carcinoma cells. Tumour Biol. 2016, 37, 12455–12464. [Google Scholar] [CrossRef]
- Li, J.; Seupel, R.; Bruhn, T.; Feineis, D.; Kaiser, M.; Brun, R.; Mudogo, V.; Awale, S.; Bringmann, G. Jozilebomines A and B, naphthylisoquinoline dimers from the Congolese liana Ancistrocladus ileboensis, with antiausterity activities against the panc-1 human pancreatic cancer cell line. J. Nat. Prod. 2017, 80, 2807–2817. [Google Scholar] [CrossRef]
- Johnson, J.L.; de Mejia, E.G. Flavonoid apigenin modified gene expression associated with inflammation and cancer and induced apoptosis in human pancreatic cancer cells through inhibition of GSK-3β/NF-κB signaling cascade. Mol. Nutr. Food Res. 2013, 57, 2112–2127. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Bakhoda, M.R.; Bahmanpour, Z.; Ilkhani, K.; Zarrabi, A.; Makvandi, P.; Khan, H.; Mazaheri, S.; Darvish, M.; Mirzaei, H. Apigenin as tumor suppressor in cancers: Biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front. Chem. 2020, 8, 829. [Google Scholar] [CrossRef] [PubMed]
- Mouhid, L.; de Cedrón, M.G.; Vargas, T.; García-Carrascosa, E.; Herranz, N.; García-Risco, M.; Reglero, G.; Fornari, T.; de Molina, A.R. Identification of antitumoral agents against human pancreatic cancer cells from Asteraceae and Lamiaceae plant extracts. BMC Complement. Altern. Med. 2018, 18, 254. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Deep, G.; Jain, A.K.; Raina, K.; Agarwal, C.; Wempe, M.F.; Agarwal, R. Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells. Carcinogenesis 2013, 34, 1585–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, D.L.; Koh, H.; Chandimali, N.; Zhang, J.J.; Kim, N.; Kang, T.Y.; Ghosh, M.; Gera, M.; Park, Y.H.; Kwon, T.; et al. BRM270 inhibits the proliferation of cd44 positive pancreatic ductal adenocarcinoma cells via downregulation of sonic hedgehog signaling. Evid.-Based Complement. Altern. Med. 2019, 2019, 8620469. [Google Scholar] [CrossRef] [PubMed]
- Chandimali, N.; Koh, H.; Kim, J.; Lee, J.; Park, Y.H.; Sun, H.N.; Kwon, T. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol. Lett. 2020, 20, 103. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Nguyen, M.T.T.; Nguyen, H.X.; Dang, P.H.; Dibwe, D.F.; Esumi, H.; Awale, S. Constituents of the rhizomes of Boesenbergia pandurata and their antiausterity activities against the panc-1 human pancreatic cancer line. J. Nat. Prod. 2017, 80, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Suhail, M.M.; Yang, Q.; Cao, A.; Fung, K.M.; Postier, R.G.; Woolley, C.; Young, G.; Zhang, J.; Lin, H.K. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model. BMC Complement. Altern. Med. 2012, 12, 253. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lin, Z.X.; Leung, P.S.; Chen, L.H.; Zhao, M.; Liang, J. Involvement of the mitochondrial pathway in bruceine D-induced apoptosis in Capan-2 human pancreatic adenocarcinoma cells. Int. J. Mol. Med. 2012, 30, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Tong, Z.; Shen, L.; Sun, Y.U.; Hoffman, R.M.; Huang, J. Brucea javanica increases survival and enhances gemcitabine efficacy in a patient-derived orthotopic xenograft (pdox) mouse model of pancreatic cancer. Anticancer Res. 2020, 40, 4969–4978. [Google Scholar] [CrossRef]
- Sharafi, G.; He, H.; Nikfarjam, M. Potential use of cannabinoids for the treatment of pancreatic cancer. J. Pancreat. Cancer 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Kim, M.; Kim, J.H. Fermented extraction of citrus unshiu peel inhibits viability and migration of human pancreatic cancers. J. Med. Food. 2018, 21, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, H.; Chen, X.; Chen, J.; Li, X.; Qiao, G.; Tian, Y.; Yuan, R.; Su, S.; Liu, X.; et al. Aqueous extract of clove inhibits tumor growth by inducing autophagy through AMPK/ULK pathway. Phytother. Res. 2019, 33, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- Siddique, H.R.; Liao, D.J.; Mishra, S.K.; Schuster, T.; Wang, L.; Matter, B.; Campbell, P.M.; Villalta, P.; Nanda, S.; Deng, Y.; et al. Epicatechin-rich cocoa polyphenol inhibits Kras-activated pancreatic ductal carcinoma cell growth in vitro and in a mouse model. Int. J. Cancer 2012, 131, 1720–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.Y.; Tao, H.; Jin, C.; Du, Z.Y.; Liao, W.F.; Tang, Q.J.; Ding, K. Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling. Chin. J. Nat. Med. 2020, 18, 345–355. [Google Scholar] [CrossRef]
- Bakshi, H.; Sam, S.; Rozati, R.; Sultan, P.; Islam, T.; Rathore, B.; Lone, Z.; Sharma, M.; Triphati, J.; Saxena, R.C. DNA fragmentation and cell cycle arrest: A hallmark of apoptosis induced by crocin from Kashmiri saffron in a human pancreatic cancer cell line. Asian Pac. J. Cancer Prev. 2010, 11, 675–679. [Google Scholar]
- Lin, T.; Hsieh, C. Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction. Chin. Med. 2010, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Y.; Yang, B.; Chen, Z.; Cheng, R. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway. Mol. Med. Rep. 2015, 12, 7782–7788. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, M.; Shan, X.; Zhou, X.; Yang, J.; Wang, Y.; Li-Ling, J.; Deng, Y. Inhibitory effect of cucurbitacin E on pancreatic cancer cells growth via STAT3 signaling. J. Cancer Res. Clin. Oncol. 2010, 136, 603–610. [Google Scholar] [CrossRef]
- Xie, J.; Wang, C.; Yang, A.; Zhang, B.; Yin, Q.; Huang, H.; Chen, M. Cucurmosin kills human pancreatic cancer SW-1990 cells in vitro and in vivo. Anticancer Agents Med. Chem. 2013, 13, 952–956. [Google Scholar] [CrossRef]
- Ovadje, P.; Chochkeh, M.; Akbari-Asl, P.; Hamm, C.; Pandey, S. Selective induction of apoptosis and autophagy through treatment with dandelion root extract in human pancreatic cancer cells. Pancreas 2012, 41, 1039–1047. [Google Scholar] [CrossRef]
- Tuan Anh, H.L.; Tran, P.T.; Thao, D.T.; Trang, D.T.; Dang, N.H.; Van Cuong, P.; Kiem, P.V.; Minh, C.V.; Lee, J.H. Degalactotigonin, a steroidal glycoside from Solanum nigrum, induces apoptosis and cell cycle arrest via inhibiting the egfr signaling pathways in pancreatic cancer cells. Biomed. Res. Int. 2018, 2018, 3120972. [Google Scholar] [CrossRef] [PubMed]
- Tambe, Y.; Terado, T.; Kim, C.J.; Mukaisho, K.I.; Yoshida, S.; Sugihara, H.; Tanaka, H.; Chida, J.; Kido, H.; Yamaji, K.; et al. Antitumor activity of potent pyruvate dehydrogenase kinase 4 inhibitors from plants in pancreatic cancer. Mol. Carcinog. 2019, 58, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Liu, Z.; Hui, L. Anti-tumor Effect and Mechanistic Study of Elemene on Pancreatic Carcinoma. BMC Complement. Altern. Med. 2019, 19, 133. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Tang, S.N.; Marsh, J.L.; Shankar, S.; Srivastava, R.K. Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Cancer Lett. 2013, 337, 210–217. [Google Scholar] [CrossRef]
- Cheng, H.; Lu, C.; Tang, R.; Pan, Y.; Bao, S.; Qiu, Y.; Xie, M. Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo. Oncotarget 2017, 8, 12301–12310. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Chen, H.; Wei, W.; Ye, S.; Liao, W.; Gong, J.; Jiang, Z.; Wang, L.; Lin, S. Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer. Oncol. Rep. 2011, 26, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Su, Z.; Yuan, W.; Deng, G.; Li, S. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharm. Crops 2012, 3, 99–120. [Google Scholar] [CrossRef]
- Roshanravan, N.; Asgharian, P.; Dariushnejad, H.; Alamdari, N.M.; Mansoori, B.; Mohammadi, A.; Alipour, S.; Barati, M.; Ghavami, A.; Ghorbanzadeh, V.; et al. Eryngium billardieri induces apoptosis via Bax gene expression in pancreatic cancer cells. Adv. Pharm. Bull. 2018, 8, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Vuong, Q.V.; Chalmers, A.C.; Jyoti Bhuyan, D.; Bowyer, M.C.; Scarlett, C.J. Botanical, phytochemical, and anticancer properties of the eucalyptus species. Chem. Biodivers. 2015, 12, 907–924. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Sakoff, J.; Bond, D.R.; Predebon, M.; Vuong, Q.V.; Chalmers, A.C.; van Altena, I.A.; Bowyer, M.C.; Scarlett, C.J. In vitro anticancer properties of selected Eucalyptus species. In Vitro Cell. Dev. Biol. Anim. 2017, 53, 604–615. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Vuong, Q.V.; Bond, D.R.; Chalmers, A.C.; van Altena, I.A.; Bowyer, M.C.; Scarlett, C.J. Exploring the least studied Australian eucalypt genera: Corymbia and angophora for phytochemicals with anticancer activity against pancreatic malignancies. Chem. Biodivers. 2017, 14, e1600291. [Google Scholar] [CrossRef] [PubMed]
- Alilou, M.; Dibwe, D.F.; Schwaiger, S.; Khodami, M.; Troppmair, J.; Awale, S.; Stuppner, H. Antiausterity activity of secondary metabolites from the roots of ferula hezarlalehzarica against the panc-1 human pancreatic cancer cell line. J. Nat. Prod. 2020, 83, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Cedó, L.; Castell-Auví, A.; Pallares, V.; Macia, A.; Blay, M.; Ardévol, A.; Motilva, M.J.; Pinent, M. Gallic acid is an active component for the anticarcinogenic action of grape seed procyanidins in pancreatic cancer cells. Nutr. Cancer 2014, 66, 88–96. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, J.; Zhu, Y. The JNK signaling pathway is a novel molecular target for s-propargyl-L-cysteine, a naturally-occurring garlic derivatives: Link to its anticancer activity in pancreatic cancer in vitro and in vivo. Curr. Cancer Drug Targets 2015, 15, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Sun, H.; Liu, J.; Lin, Y.; Zhu, Z.; Han, X.; Sun, X.; Li, X.; Zhang, H.; Tang, Z. Effects of garlic oil on pancreatic cancer cells. Asian Pac. J. Cancer Prev. 2013, 14, 5905–5910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramani, R.; Gonzalez, E.; Nandy, S.B.; Arumugam, A.; Camacho, F.; Medel, J.; Alabi, D.; Lakshmanaswamy, R. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget 2017, 8, 10891–10904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akimoto, M.; Iizuka, M.; Kanematsu, R.; Yoshida, M.; Takenaga, K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS ONE 2015, 10, e0126605. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Duan, W.; Han, S.; Lei, J.; Xu, Q.; Chen, X.; Jiang, Z.; Nan, L.; Li, J.; Chen, K.; et al. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis. Oncotarget 2015, 6, 20993–21003. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.; Vaid, M.; Katiyar, S.K. Grape proanthocyanidin inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/Akt pathway. PLoS ONE 2012, 7, e43064. [Google Scholar] [CrossRef]
- Torres, M.P.; Rachagani, S.; Purohit, V.; Pandey, P.; Joshi, S.; Moore, E.D.; Johansson, S.L.; Singh, P.K.; Ganti, A.K.; Batra, S.K. Graviola: A novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett. 2012, 323, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Pang, E.; Loo, R.R.O.; Rao, J.; Go, V.L.W.; Loo, J.A.; Lu, Q.Y. Concomitant inhibition of HSP90, its mitochondrial localized homologue TRAP1 and HSP27 by green tea in pancreatic cancer HPAF-II cells. Proteomics 2011, 11, 4638–4647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, H.N.T.; Sakoff, J.A.; Bond, D.R.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. In vitro antibacterial and anticancer properties of Helicteres hirsuta Lour. Leaf and stem extracts and their fractions. Mol. Biol. Rep. 2018, 45, 2125–2133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zeng, J.; Yan, Y.; Yang, B.; Huang, M.; Wang, L.; Zhang, Q.; Lin, N. Ethyl acetate extract from Inula helenium L. inhibits the proliferation of pancreatic cancer cells by regulating the stat3/akt pathway. Mol. Med. Rep. 2018, 17, 5440–5448. [Google Scholar] [CrossRef]
- Lin, L.; Wang, P.; Du, Z.; Wang, W.; Cong, Q.; Zheng, C.; Jin, C.; Ding, K.; Shao, C. Structural elucidation of a pectin from flowers of Lonicera japonica and its antipancreatic cancer activity. Int. J. Biol. Macromol. 2016, 88, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bi, T.; Wang, G.; Dai, W.; Wu, G.; Qian, L.; Gao, Q.; Shen, G. Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways. Naunyn Schmiedebergs Arch. Pharmacol. 2015, 388, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.X.; Do, T.N.V.; Le, T.H.; Nguyen, M.T.T.; Nguyen, N.T.; Esumi, H.; Awale, S. Chemical constituents of Mangifera indica and their antiausterity activity against the panc-1 human pancreatic cancer cell line. J. Nat. Prod. 2016, 79, 2053–2059. [Google Scholar] [CrossRef] [PubMed]
- Patil, J.R.; Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Chetti, M.B.; Patil, B.S. Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. J. Agric. Food Chem. 2009, 57, 10933–10942. [Google Scholar] [CrossRef]
- Berkovich, L.; Earon, G.; Ron, I.; Rimmon, A.; Vexler, A.; Lev-Ari, S. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement. Altern. Med. 2013, 13, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, H.; Yu, P.; Liu, Q.; Liu, K.; Duan, H.; Luan, G.; Yagasaki, K.; Zhang, G. Effects of matrine against the growth of human lung cancer and hepatoma cells as well as lung cancer cell migration. Cytotechnology 2009, 59, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kim, D.H.; Kim, J.H. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. Phytomedicine 2019, 58, 152762. [Google Scholar] [CrossRef]
- Pan, Y.; Rhea, P.; Tan, L.; Cartwright, C.; Lee, H.J.; Ravoori, M.K.; Addington, C.; Gagea, M.; Kundra, V.; Kim, S.J.; et al. PBI-05204, a supercritical CO2 extract of Nerium oleander, inhibits growth of human pancreatic cancer via targeting the PI3K/mTOR pathway. Investig. New Drugs 2015, 33, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramani, R.; Gonzalez, E.; Arumugam, A.; Nandy, S.; Gonzalez, V.; Medel, J.; Camacho, F.; Ortega, A. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Sci. Rep. 2016, 6, 19819. [Google Scholar] [CrossRef] [PubMed]
- Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Patil, B.S. Apoptosis mediated cytotoxicity of citrus obacunone in human pancreatic cancer cells. Toxicol. In Vitro 2011, 25, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Torres, M.P.; Chakraborty, S.; Souchek, J.J.; Rachagani, S.; Kaur, S.; Macha, M.; Ganti, A.K.; Hauke, R.J.; Batra, S.K. Holy Basil leaf extracts decreases tumorigenicity and metastasis of aggressive human pancreatic cancer cells in vitro and in vivo: Potential role in therapy. Cancer Lett. 2013, 336, 270–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldsmith, C.D.; Vuong, Q.V.; Sadeqzadeh, E.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells. Molecules 2015, 20, 12992–13004. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, C.D.; Bond, D.R.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, influence the cell cycle, and induce apoptosis in pancreatic cancer cells. Int. J. Mol. Sci. 2018, 19, 1937. [Google Scholar] [CrossRef] [Green Version]
- Bu, H.Q.; Liu, D.L.; Wei, W.T.; Chen, L.; Huang, H.; Li, Y.; Cui, J.H. Oridonin induces apoptosis in SW1990 pancreatic cancer cells via, p.5.3.-and caspase-dependent induction of p38 MAPK. Oncol. Rep. 2014, 31, 975–982. [Google Scholar] [CrossRef]
- Gui, Z.; Li, S.; Liu, X.; Xu, B.; Xu, J. Oridonin alters the expression profiles of microRNAs in BxPC-3 human pancreatic cancer cells. BMC Complement. Altern. Med. 2015, 15, 117. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gong, L.; Qi, R.; Sun, Q.; Xia, X.; He, H.; Ren, J.; Zhu, O.; Zhuo, D. Paeoniflorin suppresses pancreatic cancer cell growth by upregulating HTRA3 expression. Drug Des. Dev. Ther. 2017, 11, 2481–2491. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Usman, A.; Razalli, N.H.; Sambanthamurthi, R.; Gupta, S.V. Oil palm phenolics (OPP) inhibit pancreatic cancer cell proliferation via suppression of NF-κB pathway. Anticancer Res. 2015, 35, 97–106. [Google Scholar]
- Nguyen, V.T.; Sakoff, J.A.; Scarlett, C.J. Physicochemical, antioxidant, and cytotoxic properties of Xao Tam Phan (Paramignya trimera) root extract and its fractions. Chem. Biodivers. 2017, 14, e1600396. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. J. Ethnopharmacol. 2011, 138, 286–313. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Scarlett, C.J. Cytotoxic activity of extracts and fractions from Paramignya trimera root and Phyllanthus amarus against pancreatic cancer cell lines. J. Cancer Res. Ther. 2019, 15, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.A.; Chang, H.H.; Kao, C.Y.; Tsai, T.H.; Chen, Y.J. Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells. Pancreatology 2009, 9, 797–809. [Google Scholar] [CrossRef]
- Nair, V.; Dai, Z.; Khan, M.; Ciolino, H.P. Pomegranate extract induces cell cycle arrest and alters cellular phenotype of human pancreatic cancer cells. Anticancer Res. 2011, 31, 2699–2704. [Google Scholar]
- Son, M.K.; Jung, K.H.; Lee, H.S.; Lee, H.; Kim, S.J.; Yan, H.H.; Ryu, Y.L.; Hong, S.S. SB365, Pulsatilla saponin D suppresses proliferation and induces apoptosis of pancreatic cancer cells. Oncol. Rep. 2013, 30, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Asgharian, P.; Tazehkand, A.P.; Soofiyani, S.R.; Hosseini, K.; Martorell, M.; Tarhriz, V.; Ahangari, H.; Cruz-Martins, N.; Sharifi-Rad, J.; Almarhoon, Z.M.; et al. Quercetin impact in pancreatic cancer: An overview on its therapeutic effects. Oxid. Med. Cell. Longev. 2021, 2021, 4393266. [Google Scholar] [CrossRef]
- Borska, S.; Drag-Zalesinska, M.; Wysocka, T.; Sopel, M.; Dumanska, M.; Zabel, M.; Dziegiel, P. Antiproliferative and pro-apoptotic effects of quercetin on human pancreatic carcinoma cell lines EPP85-181P and EPP85-181RDB. Folia Histochem. Cytobiol. 2010, 48, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lin, G.; Zuo, Z. Pharmacological effects and pharmacokinetics properties of radix scutellariae and its bioactive flavones. Biopharm. Drug Dispos. 2011, 32, 427–445. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Wang, J.; Chang, Q.; Hu, Z.; Shen, X.; Feng, J.; Zhang, Z.; Wu, X. Total flavonoid aglycones extract in Radix Scutellariae induces cross-regulation between autophagy and apoptosis in pancreatic cancer cells. J. Ethnopharmacol. 2019, 235, 133–140. [Google Scholar] [CrossRef]
- Venkanna, A.; Siva, B.; Poornima, B.; Vadaparthi, P.R.; Prasad, K.R.; Reddy, K.A.; Reddy, G.B.P.; Babu, K.S. Phytochemical investigation of sesquiterpenes from the fruits of Schisandra chinensis and their cytotoxic activity. Fitoterapia 2014, 95, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Huo, X.C.; Sun, F.D.; Dong, R.Q. Polyphenol-rich extract of Salvia chinensis exhibits anticancer activity in different cancer cell lines, and induces cell cycle arrest at the G0/G1-phase, apoptosis and loss of mitochondrial membrane potential in pancreatic cancer cells. Mol. Med. Rep. 2015, 12, 4843–4850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Chen, B.; Hong, W.; Liang, Y.; Zhou, M.; Zhou, L. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway. Oncol. Rep. 2016, 35, 2775–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, C.; Zhang, X.; Zhang, H.; Shang, H.; Bao, J.; Wang, H.; Li, Z. Sugiol (12-hydroxyabieta-8,11,13-trien-7-one) targets human pancreatic carcinoma cells (Mia-PaCa2) by inducing apoptosis, G2/M cell cycle arrest, ROS production and inhibition of cancer cell migration. J. BUON 2018, 23, 205–210. [Google Scholar]
- Yang, C.; Li, Y.; Hu, W.; Wang, X.; Hu, J.; Yuan, C.; Zhou, C.; Wang, H.; Du, J.; Wang, Y.; et al. TEOA promotes autophagic cell death via ros-mediated inhibition of mtor/p70s6k signaling pathway in pancreatic cancer cells. Front. Cell Dev. Biol. 2021, 9, 734818. [Google Scholar] [CrossRef]
- Shi, Y.L.; Li, M.F. Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine. Prog. Neurobiol. 2007, 82, 1–10. [Google Scholar] [CrossRef]
- Pei, Z.; Fu, W.; Wang, G. A natural product toosendanin inhibits epithelial-mesenchymal transition and tumor growth in pancreatic cancer via deactivating Akt/mTOR signaling. Biochem. Biophys. Res. Commun. 2017, 493, 455–460. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Xiao, Y.; Wang, Y.; Chen, S.; Yang, Y.; Lu, A.; Zhang, S. A systems pharmacology approach to investigate the mechanisms of action of Semen Strychni and Tripterygium wilfordii Hook F for treatment of rheumatoid arthritis. J. Ethnopharmacol. 2015, 175, 301–314. [Google Scholar] [CrossRef]
- Chen, L.; Feng, D.; Qian, Y.; Cheng, X.; Song, H.; Qian, Y.; Zhang, X.; Wu, Y.; Lv, H.; Liu, Q.; et al. Valtrate as a novel therapeutic agent exhibits potent anti-pancreatic cancer activity by inhibiting Stat3 signaling. Phytomedicine 2021, 85, 153537. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, S.; Xu, L.; Lu, Y.; Lu, Z.; Chen, C.; Ni, J.; Wan, R.; Yang, L. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed. Pharmacother. 2015, 73, 40–47. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Sakoff, J.A.; Scarlett, C.J. Physicochemical properties, antioxidant and anti-proliferative capacities of dried leaf and its extract from xao tam phan (Paramignya trimera). Chem Biodivers. 2017, 14, e1600498. [Google Scholar] [CrossRef] [PubMed]
- Arora, D.; Sharma, N.; Singamaneni, V.; Sharma, V.; Kushwaha, M.; Abrol, V.; Guru, S.; Sharma, S.; Gupta, A.P.; Bhushan, S.; et al. Isolation and characterization of bioactive metabolites from Xylaria psidii, an endophytic fungus of the medicinal plant Aegle marmelos and their role in mitochondrial dependent apoptosis against pancreatic cancer cells. Phytomedicine 2016, 23, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Wang, Y.; Gao, X.; Song, Z.; Awale, S.; Han, N.; Liu, Z.; Yin, J. Lignans from the root of Wikstroemia indica and their cytotoxic activity against PANC-1 human pancreatic cancer cells. Fitoterapia 2017, 121, 31–37. [Google Scholar] [CrossRef]
- Mesmar, J.; Fardoun, M.M.; Abdallah, R.; Al Dhaheri, Y.; Yassine, H.M.; Iratni, R.; Badran, A.; Eid, A.H.; Baydoun, E. Ziziphus nummularia attenuates the malignant phenotype of human pancreatic cancer cells: Role of ros. Molecules 2021, 26, 4295. [Google Scholar] [CrossRef] [PubMed]
- Praveen, K.S. Achyranthes aspera: A potent immunostimulating plant for traditional medicine. IJPSR 2014, 5, 1601–1611. [Google Scholar]
- Chowdhury, R.; Hasan, C.M.; Rashid, M.A. Guaiane sesquiterpenes from Amoora rohituka. Phytochemistry 2003, 62, 1213–1216. [Google Scholar] [CrossRef]
- Kavatsurwa, S.M.; Lombe, B.K.; Feineis, D.; Dibwe, D.F.; Maharaj, V.; Awale, S.; Bringmann, G. Ancistroyafungines A-D, 5,8′- and 5,1′-coupled naphthylisoquinoline alkaloids from a Congolese Ancistrocladus species, with antiausterity activities against human PANC-1 pancreatic cancer cells. Fitoterapia 2018, 130, 6–16. [Google Scholar] [CrossRef]
- Zgen, U.O.; Mavi, A.; Terzi, Z.; Yildirim, A.; Cos, M.; Houghton, P.J. Antioxidant Properties of Some Medicinal Lamiaceae (Labiatae) Species. Pharm. Biol. 2006, 44, 107–112. [Google Scholar]
- Kima, M.; Yang, K.W.; Kim, S.S.; Park, M.; Park, K.J.; Kim, K.S.; Choi, Y.H.; Cho, K.K.; Hyuna, C.G. Chemical composition and anti-inflammation activity of essential oils from citrus unshiu flower. Nat. Prod. Commun. 2014, 9, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.Q.; Cormier, F.; Farnworth, E.; Tong, V.H.; Van Calsteren, M.R. Antioxidant properties of crocin from Gardenia jasminoides ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J. Agric. Food Chem. 2000, 48, 1455–1461. [Google Scholar] [CrossRef]
- Wirngo, F.E.; Lambert, M.N.; Jeppesen, P.B. The physiological effects of Dandelion (Taraxacum officinale) in Type 2 Diabetes. Rev. Diabet. Stud. 2016, 13, 113–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coria-Téllez, A.V.; Montalvo-Gónzalez, E.; Yahia, E.M.; Obledo-Vázquez, E.N. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab. J. Chem. 2018, 11, 662–691. [Google Scholar] [CrossRef] [Green Version]
- Nguyena, T.T.; Kretschmera, N.; Pferschy-Wenziga, E.M.; Kunertb, O.; Bauera, R. Triterpenoidal and phenolic compounds isolated from the aerial parts of Helicteres hirsuta and their cytotoxicity on several cancer cell lines. Nat. Prod. Commun. 2019, 14, 7–10. [Google Scholar] [CrossRef]
- Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 2011, 138, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical composition of Mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef]
- Al-Aamri, M.S.; Al-Abousi, N.M.; Al-Jabri, S.S.; Alam, T.; Khan, S.A. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. J Taibah Univ. Med. Sci. 2018, 13, 108–112. [Google Scholar] [CrossRef]
- Liu, T.; Song, Y.; Chen, H.; Pan, S.; Sun, X. Matrine inhibits proliferation and induces apoptosis of pancreatic cancer cells in vitro and in vivo. Biol. Pharm. Bull. 2010, 33, 1740–1745. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.N.; Ko, Y.J.; Yang, H.M.; Ham, Y.M.; Roh, S.W.; Jeon, Y.J.; Ahn, G.; Kang, M.C.; Yoon, W.J.; Kim, D.; et al. Anti-inflammatory effect of essential oil and its constituents from fingered citron (Citrus medica L. var. sarcodactylis) through blocking JNK, ERK and NF-κB signaling pathways in LPS-activated RAW 264.7 cells. Food Chem Toxicol. 2013, 57, 126–131. [Google Scholar] [CrossRef]
- Pattanayak, P.; Behera, P.; Das, D.; Panda, S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev. 2010, 4, 95–105. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, E.S.; da Silva Damaceno, D.; Carvalho, L.; Araújo Victor, P.; dos Passos, R.M.; de Almeida Pontes, P.V.; Cunha-Filho, M.; Sampaio, K.A.; Monteiro, S. Thermal and physical properties of crude palm oil with higher oleic content. Appl. Sci. 2021, 11, 7094. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Senthilvelan, M.; Ravindran, R.; Devi, R.S. Plumbago zeylanica action on blood coagulation profile with and without blood volume reduction. Vasc. Pharmacol. 2006, 45, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Ismail, F.A.; Abdelatif, S.H.; Abd El-Mohsen, N.R.; Zaki, S.A. The physico-chemical properties of pomegranate juice (Punica granatum L.) extracted from two Egyptian varieties. World J. Dairy Food Sci. 2014, 9, 29–35. [Google Scholar]
- Li, W.; Yan, X.T.; Sun, Y.N.; Ngan, T.T.; Shim, S.H.; Kim, Y.H. Anti-Inflammatory and PPAR Transactivational Effects of Oleanane-Type Triterpenoid Saponins from the Roots of Pulsatilla koreana. Biomol. Ther. 2014, 22, 334–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaer, N.A. Can crude alkaloids extract of Rhazya stricta induce apoptosis in pancreatic cancer: In vitro study? Pathophysiology 2019, 26, 97–101. [Google Scholar] [CrossRef]
- Lu, H.; Cheng, S.; Wu, C.; Zheng, S.; Hong, W.; Liu, L.; Bai, Y. Sedum sarmentosum bunge extract alleviates inflammation and kidney injury via inhibition of M1-macrophage polarization. Phytomedicine 2019, 62, 152976. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Lu, H.; Hu, L.; Hong, D.; Ding, L.; Chen, B. Effect of Sedum sarmentosum BUNGE extract on aristolochic acid-induced renal tubular epithelial cell injury. J. Pharmacol. Sci. 2014, 124, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.N.; Shi, J.L.; Liu, Y.; Wang, Y.L.; Wang, C.G.; Hou, W.H.; Guo, J.Y. The anxiolytic effects of valtrate in rats involves changes of corticosterone levels. Evid.-Based Complement. Altern. Med. 2014, 2014, 325948. [Google Scholar] [CrossRef]
- Stompor, M.; Żarowska, B. Antimicrobial Activity of Xanthohumol and Its Selected Structural Analogues. Molecules 2016, 21, 608. [Google Scholar] [CrossRef] [PubMed]
- Kasapoğlu, K.N.; Altin, G.; Farooqi, A.A.; Salehi, B.; Özçelik, B.; Setzer, W.N.; Sharifi-Rad, J. Anti-proliferative, genotoxic and cytotoxic effects of phytochemicals isolated from Anatolian medicinal plants. Cell Mol. Biol. 2020, 66, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.L.; Zhu, L.; Piao, J.H.; Jiang, J.G. Chemical compositions extracted from Wikstroemia indica and their multiple activities. Pharm. Biol. 2012, 50, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Lambert, A.; Schwarz, L.; Borbath, I.; Henry, A.; Van Laethem, J.L.; Malka, D.; Ducreux, M.; Conroy, T. An update on treatment options for pancreatic adenocarcinoma. Ther. Adv. Med. Oncol. 2019, 11, 1758835919875568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducreux, M.; Seufferlein, T.; Van Laethem, J.L.; Laurent-Puig, P.; Smolenschi, C.; Malka, D.; Boige, V.; Hollebecque, A.; Conroy, T. Systemic treatment of pancreatic cancer revisited. Semin. Oncol. 2019, 46, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Sunami, Y.; Kleeff, J. Immunotherapy of pancreatic cancer. Prog. Mol. Biol. Transl. Sci. 2019, 164, 189–216. [Google Scholar] [CrossRef]
- Lai, E.; Puzzoni, M.; Ziranu, P.; Pretta, A.; Impera, V.; Mariani, S.; Liscia, N.; Soro, P.; Musio, F.; Persano, M.; et al. New therapeutic targets in pancreatic cancer. Cancer Treat. Rev. 2019, 81, 101926. [Google Scholar] [CrossRef] [PubMed]
- Nevala-Plagemann, C.; Hidalgo, M.; Garrido-Laguna, I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nat. Rev. Clin. Oncol. 2020, 17, 108–123. [Google Scholar] [CrossRef]
- Zeng, S.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in Pancreatic Cancer. Int. J. Mol. Sci. 2019, 20, 4504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posadzki, P.; Watson, L.K.; Alotaibi, A.; Ernst, E. Prevalence of use of complementary and alternative medicine (CAM) by patients/consumers in the UK: Systematic review of surveys. Clin. Med. 2013, 13, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Janakiram, N.B.; Pant, S.; Rao, C.V. Molecular targeted intervention for pancreatic cancer. Cancers 2015, 7, 1499–1542. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, J.; Liu, S.; Zhang, X.; Zhang, B. Network meta-analysis of Chinese herbal injections combined with the chemotherapy for the treatment of pancreatic cancer. Medicine 2017, 96, e7005. [Google Scholar] [CrossRef]
Reference | Herbal | Results | Conclusion |
---|---|---|---|
Shimada et al., 2018 [53] | Asparagus extract | The asparagus extract down-regulated heat shock protein27 in klm1-r cells. | It enhances anticancer effects by combination with gemcitabine in PC. |
Thani et al., 2014 [54] | Chokeberry extract (Aronia melanocarpa) | Gemcitabine in combination with chokeberry extract was more effective than gemcitabine alone in human pancreatic cell line. | Gemcitabine chemothera-py might be augmented with the chokeberry extract. |
Qian et al., 2016 [55] | Coix seed emulsion | Coix seed emulsion synergistically sensitized PC cell lines to gemcitabine, both in vitro and in vivo. | Coix seed emulsion sensitized PC cells to gemcitabine therapy. |
Pak et al., 2021 [56] | C5E | Side population cells and the cell viability of PANC-1 cells were decreased after treatment. mRNA expression levels of sonic hedgehog were significantly down-regulated following the co-treatment. | Combined treatment of gemcitabine and C5E may exhibit synergistic effects in PANC-1 cells. |
Wei et al., 2011 [57] | Emodin | The combination treatment promoted apoptotic cell death and mitochondrial fragmentation, and reduced phosphorylated-Akt level, NF-κB activation, and Bcl-2/Bax ratio. | Emodin that can either enhance the effects or overcome chemoresistance to gemcitabine. |
Rimmon et al., 2013 [58] | Eskin (Aesculus hippocastanum) | Escin with gemcitabine showed an additive effect, whereas combination with cisplatin had a synergistic cytotoxic effect. | Synergistic effect if combined with cisplatin. |
Kim et al., 2018 [59] | Fisetin | Combination treatment with fisetin and gemcitabine inhibited proliferation of PC cells, and induced apoptosis. Fisetin sensitized PC cells to gemcitabine-induced cytotoxicity through inhibition of ERK-MYC signaling. | Combination of fisetin and gemcitabine represent a novel therapeutic strategy for PC. |
Capistrano et al., 2016 [60] | Gloriosa ignal L. (glory lily, Colchicaceae) | Delay in tumour growth for gemcitabine and the combination therapy compared to the control group, and prolongation of the survival. | It has an added value combined with gemcitabine in PC. |
Pak et al., 2016 [61] | Herbal mixture extract | Inhibition of PANC1 cell growth. Suppression of stem cell-like side population cell and migration activity. Suppression of tumor growth in a PANC1-xenograft model. | Possible therapeutic agent for PC and cancer stem cells. |
Li et al., 2018 [62] | Isodon eriocalyx and its bioactive component eriocalyxin b | Gemcitabine and eriocalyxin B had synergistic anti-proliferative effect. The underlying mechanisms involved included increased activation of the caspase cascade and induction of JNK phosphorylation. | Gemcitabine and eriocalyxin B taken together promoted apoptosis acting synergistically. |
Akasaka et al., 2013 [63] | Monogalactosyl diacylglycerol | Gemcitabine and monogalactosyl diacylglycerol suppressed growth in PC cell lines. Synergistic effect on inhibition of DNA replicative polymerase inhibitors compared with gemcitabine or monogalactosyl diacylglycerol alone. Pre-addition of monogalactosyl diacylglycerol enhanced cell proliferation suppression by gemcitabine. | Spinach monogalactosyl diacylglycerol could be an effective clinical anticancer chemotherapy in combination with gemcitabine. |
Akasaka et al., 2016 [64] | Monogalactosyl diacylglycerol plus radiation | A dose- and time-dependent cytotoxicity, and reduced cell colonies upon treatment with both monogalactosyl diacylglycerol and radiation as compared to irradiation alone. Higher proportion of apoptosis and DNA damage in pancreatic cancr cells as compared to either one alone. | Enhances the cytotoxicity of radiation in PC cells in vitro and in vivo. Combination with radiation could be effective in PC. |
Hagoel et al., 2019 [65] | Moringa olifeira | Moringa administration combined with radiation therapy significantly inhibited human PC cell survival, induced apoptosis, and reduced metastatic potential. Inhibition of growth of tumors generated by PC cells in nude mice. | Additional inhibitory effect by overcoming the radioresistance of PC cells. |
Gong et al., 2017 [66] | Nexrutine | Combination treatment of human PC cells with nexrutine and gemcitabine: significant alterations of proteins in the STAT3/NF-κB signaling axis and growth inhibition in a synergistic manner. | The natural extract nexrutine can improve gemcitabine sensitivity. |
Hernandez-Unzueta et al., 2019 [67] | Ocoxin | It enhances the cytotoxic effect of paclitaxel and gemcitabine, and ameliorates the chemo-resistance in PC cells. It promotes the expression of the altered genes, and decreases tumor development in vivo. | A potential complement to chemotherapeutic agents used in PC |
Cheung et al., 2015 [68] | Oplopanax horridus (Devil’s club or devil’s walking stick) | This extract alone, or in combination with cisplatin, gemcitabine, and paclitaxel, induced toxicity on pancreatic endocrine HP62 and PC. It inhibited proliferation of HP62, PANC-1, and BxPC-3 cells. | It can be used as an adjunct therapy for patients with resistance to conventional chemo-therapeutic agents. |
Tai et al., 2014 [69] | Oplopanax horridus (Devil’s club or devil’s walking stick) | PANC-1 3D spheroids were more resistant to killing by Oplopanax horridus extract, gemcitabine, and paclitaxel compared to 2D cells. It enhanced the antiproliferation activity of cisplatin and gemcitabine. The bioactive compound showed strong antiproliferation activity against PANC-1 2D cells and 3D spheroids. | It enhances the activity of chemotherapeutics against PC cells. 3D spheroid model helps in discovering in vivo bioactive compounds. |
Liu et al., 2018 [70] | Paeonia suffruticosa aqueous extracts | Alone or in combination with gemcitabine, delayed tumor growth in a xenograft model by stimulating the endoplasmic-reticulum-related proteostasis stress, and inducing autophagy and cell apoptosis. | Potential therapeutic effect in PC in combination with gemcitabine. |
Yu et al., 2013 [71] | Pao Pereira | Combination with gemcitabine had a synergistic effect in the inhibition of cell growth. In an orthotopic pancreatic xenograft mouse model, gemcitabine did not show inhibition, whereas Pao Pereira suppressed tumor growth. Combined treatment enhanced the tumor inhibitory effect vs. gemcitabine alone. | The extract of Pao Pereira possesses anti-PC abilities, and enhances the effects of gemcitabine both in vitro and in vivo. |
Rawat et al., 2020 [72] | Piperlongumine | Piperlongumine inhibits cell proliferation, and increases the intracellular reactive oxygen species. P53, P21, BAX, and SMAD4 are up-regulated, whereas BCL2 and signaling are down-regulated. | Piperlongumine with paclitaxel has a synergistic effect. |
Jiang et al., 2016 [73] | Resveratrol | Resveratrol suppressed proliferation, and induced apoptosis in PC cells. YES-activated protein silencing by resveratrol enhanced the sensitivity of gemcitabine in PC cells. | YES-activated protein is a promising target for sensitizing cancer cells to chemotherapy. |
Yu et al., 2014 [74] | Rauwolfia vomitoria | Rauwolfia vomitoria induced apoptosis in PC models. Combined administration of Rauwolfia vomitoria and gemcitabine had a synergistic effect in inhibiting cell growth. Rauwolfia vomitoria suppressed tumor growth and metastatic potential in an orthotopic PC mouse model. | The combination reduces tumor burden and metastatic potential in gemcitabine non-responsive tumor. |
Mu et al., 2015 [75] | Thymoquinone | Pretreatment with thymoquinone following gemcitabine increased the cancer cell apoptosis, and inhibited tumor growth. The combination induced down-regulation of antiapoptotic and up-regulation of proapoptotic molecules. | Thymoquinone pretreatment can enhance the anti-cancer activity of gemcitabine. |
Yang et al., 2011 [76] | Triptolide | Combined therapy of triptolide and hydroxycamptothecin on PC cell line was superior to that of triptolide or hydroxycamptothecin alone. Activation of caspase-9/caspase-3, and inhibition of NF-κB signaling pathway, were responsible for the synergistic cytotoxic effect. | Combined triptolide and hydroxycamptothecin therapy in patients with PC should be tested. |
No. | Plant Name | Country of Origin | Mechanism of Action | Reference |
---|---|---|---|---|
1 | Achyranthes aspera | India | Suppression of the transcription of metalloproteases, and angiogenic factors. | [89] |
2 | Alpinia officinarum | Southeast Asia | Suppression of cell proliferation, and induction of cell cycle arrest. | [90] |
3 | Amoora rohituka | Bangladesh | Induction of apoptosis in PC HPAF-II cells, inhibition of K-ras activity, and suppression of cell proliferation. | [91] |
4 | Ancistrocladaceae | Africa/ Asia | Cytotoxicity against human PC cells under nutrition-deprived conditions. Inhibition of colony formation of PC cells. | [92] |
5 | Apigenin | Global distribution | Induction of the death of pancreatic cell, arrest of the cell proliferation, and induction of apoptosis through mitochondrial pathway. | [93,94] |
6 | Asteracea and Lamiaceae | Global distribution | Asteraceae extracts induced cytotoxicity, and inhibited cell transformation. | [95] |
7 | Bitter melon juice | Global distribution | Activation of caspases, decreased signaling and X-linked inhibitor of apoptosis protein levels. Activation of adenosine monophosphate-activated protein kinase. | [96] |
8 | BRM270 | Global distribution | Induction of apoptosis in CD44+ cells, inhibition of metastasis traits in CD44+ PDAC. | [97,98] |
9 | Boesenbergia rotunda | China/South-East Asia | Cytotoxic action against human PC cells under nutrition-deprived conditions. | [99] |
10 | Boswellia sacra gum resins | China | Reduction of the viability, and increased death after treatment with fractions III and IV of human PC cells. Anti-proliferative and pro-apoptotic activities in the heterotopic xenograft mouse model. | [100] |
11 | Brucea javanica | Sri Lanka, India, China, Australia | Accentuation of the expression of caspase 9 and 3 in Capan-2 cells. Induction of apoptosis in Capan-2 cells through mitochondrial pathway. | [101,102] |
12 | Cannabinoids | Global distribution | Antiproliferative and proapoptotic effects in vitro mediated through various pathways. | [103] |
13 | Citrus unshiu Peel | Japan | Inhibition of growth of PC cells through induction of caspase-3 cleavage. It blocked the migration of the cancer cells through activation of intracellular signaling pathways. | [104] |
14 | Cloves (Syzygium aromaticum) | Indonesia | Inhibition of tumor growth in HT-29 xenograft mice model through induction of cell autophagy. | [105] |
15 | Cocoa polyphenol | Global distribution | Decreased the NF-κB transcriptional activity of premalignant and malignant Kras-activated pancreatic ductal epithelial cells. | [106] |
16 | Coix ignaling-jobi seed emulsion | China | Inhibition of NFkB signaling pathway, and inhibition of protein kinase C activity. | [107] |
17 | Crocus sativus | Mediterranean, Asia, Iran | Induction of apoptosis and cell cycle arrest, decreased cell viability. | [108] |
18 | Cryptotanshinone | China | Inhibition of proliferation, and induction of cell apoptosis and cycle arrest in PC cells. Up-regulation of caspase-3 and -9, and poly ADP ribose polymerase, and down-regulation of c-myc, ignaling, and cyclin D1. | [109,110] |
19 | CucurbitacinE | China | Inhibition of STAT3 phosphorylation, and up-regulation of p53 expression. | [111] |
20 | Cucurmosin | America | Induction of apoptosis, inhibition of cell growth, and inhibition of P13K/Akt/mTOR signaling pathway. | [112] |
21 | Dandelion root extract | China and America | Induction of selective apoptosis, as well as collapse of the mitochondrial membrane potential, leading to prodeath autophagy. | [113] |
22 | Degalactoti-gonin Solanum nigrum | Asia, America, Australia, South Africa | Inhibition of EGF-induced proliferation, and migration and down-regulation of cuclin D1. | [114] |
23 | Diterpene quinones | Global distribution | KIS37 (cryptotanshinone): Inhibition of KRAS-activated PC cell lines, suppression of KRAS protein, and phosphorylation of Rb and cyclin D1, and PC cell growth in xenografts. | [115] |
24 | Elemene | Global distribution | Up-regulation of tumor expression of P53, and down-regulation of Bcl-2 expression. | [116] |
25 | Ellagic acid | Global distribution | Inhibition of angiogenesis and metastasis in tumor tissues, NF-κB pathway, and COX-2; up-regulation of E-cadherin; and down-regulation of Vimentin. | [117,118] |
26 | Emodin Rheum palmatum L | China | Down-regulation of NF-κB DNA-binding activity, and up-regulation of cleaved caspase-3. | [119] |
27 | Eryngium billardieri | Global distribution | Overexpression of Bax, and underexpression of cyclin D1 on PANC-1 cancer cell lines | [120,121] |
28 | Eucalyptus | Australia | Induction of caspase 3/7-mediated apoptosis | [122,123,124] |
29 | Ferula Hezarlaleh-zarica | Iran | Anti-proliferative action on PANC-1 cells. | [125] |
30 | Gallic acid | Global distribution | Down-regulation of Bcl-2, depolarization of mitochondrial membrane. Reduction of the formation of reactive oxygen species | [126] |
31 | Garlic | Global distribution | Regulation of the JNK protein levels. Inhibition of all PC cell lines proliferation | [127,128] |
32 | Gedunin | India | Induced of anti-metastatic effect through inhibition of sonic hedgehog signaling | [129] |
33 | Ginger Extract | Asia, Africa, America | Induction of ROS-mediated autosis. | [130] |
34 | Ginkgolic acid | Asia | Down-regulation of the expression of enzymes involved in lipogenesis, and activation of protein kinase signaling. | [131] |
35 | Grape proan-thocyanidin | Global distribution | Reduction of antiapoptotic proteins, and increased expression of Bax. | [132] |
36 | Graviola | Tropical countries | Inhibition of multiple signaling pathways regulating metabolism, survival, and metastatic potential of PC cells. | [133] |
37 | Green tea extract | Global distribution | Inhibition of molecular chaperones heat-shock protein 90, and heat-shock protein 27, and inhibition of p53 and Akt. | [134] |
38 | Helicteres hirsuta Lour | Vietnam Cambodia, Indonesia, Thailand | In vitro activity against various PC cell lines. | [135] |
39 | Inula helenium | Eurasia | Inhibition of the phosphorylation of the signal transducer, and activator of transcription (stat)3/akt pathway. | [136] |
40 | Lonicera japonica | China, Japan | Inhibition of BxPC-3 and PANC-1 cell growth. | [137] |
41 | Lupeol | America, Japan, China, Africa | Induction of apoptosis and cell cycle arrest. | [138] |
42 | Mangifera indica | India, Brazil, Africa | Potent cytotoxicity against human PC cells under nutrition-deprived condition. | [139] |
43 | Mexican lime | Mexico | Increased expression of Bax, Bcl-2, casapase-3, and p53, and inhibition of proliferation. | [140] |
44 | Moringa Oleifera | India | Inhibition of NF-κB signaling pathway, and increase of the efficacy of chemotherapy with cisplatin in human PCcells. | [141] |
45 | Matrine | China | Inhibition of cell viability by down-regulation of the expression of PCNA, induction of apoptosis, and increase of activation of caspases-8, -3, -9. | [142] |
46 | Naringenin and Hesperetin | Japan, Spain, China, Korea, S. Africa, America | Inhibition of the phosphorylation of focal adhesion kinase and p38 signaling pathway. | [143] |
47 | Nerium oleander | China, Russia | Potent antitumor activity, through down-regulation of PI3k/Akt and mTOR pathways. | [144] |
48 | Nimbolide | India | Inhibition of proliferation and metastasis via mitochondrial-mediated apoptotic cell death. | [145] |
49 | Obacunone | Global distribution | Induction of apoptosis (activation of caspase-9 and -3, up-regulation of p53, and down-regulation of Bcl2 and NFκB and Cox-2). | [146] |
50 | Ocimum sanctum | India | Up-regulation of genes inhibiting metastasis and inducing apoptosis, and down-regulation of genes promoting survival | [147] |
51 | Oleuropein | Mediterra-nean, China, Asia | Decrease of the viability of the PC cells. | [148] |
52 | Olive Biophenols | Global distribution | Induction of apoptosis of MIA PaCa-2 cells. | [149] |
53 | Oridonin | China | Induction of apoptosis, and inhibition of BxPC-3 cells through regulation of the expression of miRNAs. | [150,151] |
54 | Paeonia lactiflora | Asia, China, Siberia | Inhibition of PC growth by up-regulation of HTRA3. | [152] |
55 | Palm oil phenolics | Tropics | Induction of apoptosis associated with decrease in survivin and Bcl-XL expression. | [153] |
56 | Paramignya trimera and Phyllanthus amarus | India | Strong cytotoxic capacity. | [154,155,156] |
57 | Plumbagin | Organic compound | Induction of apoptosis in PC cells through the mitochondria-related pathway | [157] |
58 | Pomegranate extract | India, America | Inhibitory effect through yet unidentified phytochemicals. | [158] |
59 | Pulsatilla koreana | Korea | Increased caspase-3, and decreased of Bcl-2 expression. Decreased expression of major factors of angiogenesis. | [159] |
60 | Quercetin | Global distribution | Sensitized resistant cells to daunorubicin. | [160,161] |
61 | Radix Scutellariae | Asian countries | Induction of apoptosis and autophagy in PC cell lines through PI3K/Akt/mTOR signaling pathway. | [162,163] |
62 | Rhazya stricta | South Asia, Middle East | Reduction in cell viability with dose-dependent manner, and decrease in mRNA expression in PANC-1 and AsPC-1 PC cells. | [164] |
63 | Salvia chinensis | China | Potent cytotoxicity in the MiapaCa-2 human PC cells. | [165] |
64 | Sedum sarmentosum Bunge | China | Increased cellular apoptosis. Induction of p53 expression, and inhibition of epithelial-mesenchymal transition. Down-regulation of the proliferation-related hedgehog signaling pathway. | [166] |
65 | Sugiol | Taiwan | Induction of apoptosis, and up-regulation of the expression of Bax, with down-regulation of Bcl-2 expression. | [167] |
66 | TEOA | China | Inhibition of the proliferation and migration of PC cells, and induction of autophagic cell death in PC cells. | [168] |
67 | Toosendanin | China | It inhibits PC cell growth by blocking Akt/mTOR signaling pathway. | [169,170] |
68 | Tripterigium wilfordii | China | Triptolide-plasminogen activator urokinase could represent a novel target for patients with PC. | [171] |
69 | Valtrate | China | Increased expression of Bax; suppression of Bcl-2, c-Myc, and Cyclin B1; and inhibition of the transcriptional activity of Stat3. | [172] |
70 | Xanthohumol | Europe, Asia, South America | Inhibition of phosphorylation of signal transducer, activation of the transcription 3, and expression of its downstream targeted genes. | [173] |
71 | Xao tam phan | Vietnam | Antioxidant and anti-proliferative activities. | [174] |
72 | Xylaria psidii | It grows on dead wood | Cell cycle arrest and loss of mitochondrial membrane potential. | [175] |
73 | Wikstroemia indica | China, Viet-nam, India, Philippines | Cytotoxicity in the nutrient-deprived medium. | [176] |
74 | Ziziphus nummularia | Saudi Arabia | Inhibition of angiogenesis, reduction of VEGF and nitric oxide levels. Down-regulation of ERK1/2 and NF-κB signaling pathways. | [177] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafillidis, J.K.; Triantafyllidi, E.; Sideris, M.; Pittaras, T.; Papalois, A.E. Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients 2022, 14, 619. https://doi.org/10.3390/nu14030619
Triantafillidis JK, Triantafyllidi E, Sideris M, Pittaras T, Papalois AE. Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients. 2022; 14(3):619. https://doi.org/10.3390/nu14030619
Chicago/Turabian StyleTriantafillidis, John K., Eleni Triantafyllidi, Michail Sideris, Theodoros Pittaras, and Apostolos E. Papalois. 2022. "Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies" Nutrients 14, no. 3: 619. https://doi.org/10.3390/nu14030619
APA StyleTriantafillidis, J. K., Triantafyllidi, E., Sideris, M., Pittaras, T., & Papalois, A. E. (2022). Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients, 14(3), 619. https://doi.org/10.3390/nu14030619