Effect of Continuous Ingestion of 2 g of Medium-Chain Triglycerides on Substrate Metabolism during Low-Intensity Physical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Conduct System and Ethical Considerations
2.2. Subjects
2.2.1. Selection Criteria
2.2.2. Exclusion criteria
2.3. Number of Target Subjects
2.4. Test Foods and Dietary Surveys
2.5. Study Design
2.5.1. Compliance Issues during the Study Period
2.5.2. Compliance Matters before Metabolic Test
2.5.3. Compliance Matters on the Day of the Metabolic Test
2.6. Metabolism Measurements
- Fat oxidation rate: 1.689 × oxygen uptake rate–1.689 × carbon dioxide production rate.
- Carbohydrate oxidation rate: 4.113 × carbon dioxide production rate–2.907 × oxygen uptake rate.
- Respiratory exchange ratio: carbon dioxide production rate ÷ oxygen uptake rate.
- Energy expenditure rate: 3.941 × oxygen uptake rate + 1.106 x carbon dioxide production rate.
2.7. Diagnosis
2.8. Primary and Secondary Outcomes
2.9. Statistical Analysis
3. Results
3.1. Analysis of Subjects
3.2. Adverse Events
3.3. Nutrient Intake
3.4. Test Results of Measurement Outcomes
3.4.1. Primary Measurement Outcomes:
3.4.2. Secondary Measurement Outcomes:
3.5. Results of the Test for the Carryover Effect of Repetition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey in Japan; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2019.
- Ezaki, O. Prevention of Lifestyle-related Disease by Regular Exercise and Fish Oil Feeding. J. Jpn. Soc. Nutr. Food Sci. 2006, 59, 323–329. [Google Scholar] [CrossRef]
- Harada, U.; Chikama, A.; Saito, S.; Takase, H.; Nagao, T.; Hase, T.; Tokimitsu, I. Effects of the Long-Term Ingestion of Tea Catechins on Energy Expenditure and Dietary Fat Oxidation in Healthy Subjects. J. Health Sci. 2005, 51, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Inoue, N.; Matsunaga, Y.; Satoh, H.; Takahashi, M. Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Biosci. Biotechnol. Biochem. 2007, 71, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Ota, N.; Soga, S.; Shimotoyodome, A.; Haramizu, S.; Inaba, M.; Murase, T.; Tokimitsu, I. Effects of Combination of Regular Exercise and Tea Catechins Intake on Energy Expenditure in Humans. J. Health Sci. 2005, 51, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.O.; Moritani, T. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men. J. Nutr. Sci. Vitaminol. 2007, 53, 124–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagao, T.; Hase, T.; Tokimitsu, I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Snitker, S.; Fujishima, Y.; Shen, H.; Ott, S.; Pi-Sunyer, X.; Furuhata, Y.; Sato, H.; Takahashi, M. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: Possible pharmacogenetic implications. Am. J. Clin. Nutr. 2009, 89, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Babayan, V.K. Medium chain triglycerides and structured lipids. Lipids 1987, 22, 417–420. [Google Scholar] [CrossRef]
- Nosaka, N.; Suzuki, Y.; Suemitsu, H.; Kasai, M.; Kato, K.; Taguchi, M. Medium-chain Triglycerides with Maltodextrin Increase Fat Oxidation during Moderate-intensity Exercise and Extend the Duration of Subsequent High-intensity Exercise. J. Oleo Sci. 2018, 67, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Nosaka, N.; Tsujino, S.; Honda, K.; Suemitsu, H.; Kato, K. Enhancement of Fat Oxidation during Submaximal Exercise in Sedentary Persons: Variations by Medium-Chain Fatty Acid Composition and Age Group. Lipids 2020, 55, 173–183. [Google Scholar] [CrossRef]
- Nosaka, N.; Tsujino, S.; Honda, K.; Suemitsu, H.; Kato, K.; Kondo, K. Effect of ingestion of medium-chain triglycerides on substrate oxidation during aerobic exercise could depend on sex difference in middle-aged sedentary persons. Nutrients 2021, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Kasai, M.; Takeuchi, H.; Nakamura, M.; Okazaki, M.; Kondo, K. Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J. Nutr. 2001, 131, 2853–2859. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, N.; Maki, H.; Suzuki, Y.; Haruna, H.; Ohara, A.; Kasai, M.; Tsuji, H.; Aoyama, T.; Okazaki, M.; Igarashi, O. Effects of margarine containing medium-chain triacylglycerols on body fat reduction in humans. J. Atheroscler. Thromb. 2003, 10, 290–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Japan Society for the Study of Obesity. Guidelines for the Management of Obesity Disease; Japan Society for the Study of Obesity: Osaka, Japan, 2016; pp. 4–8. [Google Scholar]
- Ministry of Health, Labour and Welfare, Japan. Ethical Guidelines for Medical and Biological Research Involving Human Subjects; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2013. (In Japanese)
- Ministry of Justice, Japan. Act on the Protection of Personal Information; Ministry of Justice: Tokyo, Japan, 2003.
- Ministry of Education, Culture, Sports, Science and Technology, Japan. Standard Tables of Food Composition in Japan, 7th ed.; Ministry of Education, Culture, Sports, Science and Technology: Tokyo, Japan, 2015.
- Brown, D.; Cole, T.J.; Dauncey, M.J.; Marrs, R.W.; Murgatroyd, P.R. Analysis of gaseous exchange in open-circuit indirect calorimetry. Med. Biol. Eng. Comput. 1984, 22, 333–338. [Google Scholar] [CrossRef]
- Henning, B.; Löfgren, R.; Sjöström, L. Chamber for indirect calorimetry with improved transient response. Med. Biol. Eng. Comput. 1996, 34, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Simonson, A.; Sakaguchi, C.A.; Sha, W.; Blevins, T.; Hattabaugh, J.; Kohlmeier, M. Acute Ingestion of a Mixed Flavonoid and Caffeine Supplement Increases Energy Expenditure and Fat Oxidation in Adult Women: A Randomized, Crossover Clinical Trial. Nutrients 2019, 11, 2665. [Google Scholar] [CrossRef] [Green Version]
- Ishizawa, R.; Masuda, K.; Sakata, S.; Nakatani, A. Effects of different fatty acid chain lengths on fatty acid oxidation-related protein expression levels in rat skeletal muscles. J. Oleo Sci. 2015, 64, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Fushiki, T.; Matsumoto, K.; Inoue, K.; Kawada, T.; Sugimoto, E. Swimming endurance capacity of mice is increased by chronic consumption of medium-chain triglycerides. J. Nutr. 1995, 125, 531–539. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Han, Y.; Xu, J.; Huang, W.; Li, Z. Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism. PLoS ONE. 2018, 13, e0191182. [Google Scholar] [CrossRef] [Green Version]
- Iossa, S.; Mollica, M.P.; Lionetti, L.; Crescenzo, R.; Botta, M.; Liverini, G. Skeletal muscle oxidative capacity in rats fed high-fat diet. Int. J. Obes. Relat. Metab. Disord. Int. J. Obes. 2002, 26, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Fushiki, T. Nutrition During Exercise and Training. Jpn. J. Nutr. Diet. 2000, 58, 1–4. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Lee, C.-H.; Tiep, S.; Yu, R.T.; Ham, J.; Kang, H.; Evans, R.M. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003, 113, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Roves, P.; Huss, J.M.; Han, D.H.; Hancock, C.R.; Iglesias-Gutierrez, E.; Chen, M.; Holloszy, J.O. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc. Natl. Acad. Sci. USA 2007, 104, 10709–10713. [Google Scholar] [CrossRef] [Green Version]
- Hancock, C.R.; Han, D.H.; Chen, M.; Terada, S.; Yasuda, T.; Wright, D.C.; Holloszy, J.O. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc. Natl. Acad. Sci. USA 2008, 105, 7815–7820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TERADA, S. Lipid Nutrition: New insights into Sports Nutrition. Oleoscience 2018, 18, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Traul, K.A.; Driedger, A.; Ingle, D.L.; Nakhasi, D. Review of the toxicologic properties of medium-chain triglycerides. Food Chem. Toxicol. 2000, 38, 79–98. [Google Scholar] [CrossRef]
- Ivy, J.L.; Costill, D.L.; Fink, W.J.; Maglischo, E. Contribution of Medium and Long Chain Triglyceride Intake to Energy Metabolism During Prolonged Exercise. Int. J. Sports Med. 1980, 1, 15–20. [Google Scholar] [CrossRef]
- Aoyama, T. Nutritional Studies on Medium-Chain Fatty Acid—From the Recent Research. Oleoscience 2003, 3, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Labour and Welfare, Japan. Physical Activity Reference for Health Promotion 2013; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2013.
- Ministry of Health, Labour and Welfare, Japan. Health Japan 21, the Second Term; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2013.
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Kasai, M.; Nosaka, N.; Maki, H.; Negishi, S.; Aoyama, T.; Nakamura, M.; Suzuki, Y.; Tsuji, H.; Uto, H.; Okazaki, M.; et al. Effect of dietary medium- and long-chain triacylglycerols (MLCT) on accumulation of body fat in healthy humans. Asia Pac. J. Clin. Nutr. 2003, 12, 151–160. [Google Scholar]
- Ogawa, A.; Nosaka, N.; Kasai, M.; Aoyama, T.; Okazaki, M.; Igarashi, O.; Kondo, K. Dietary medium- and long-chain triacylglycerols accelerate diet-induced thermogenesis in humans. J. Oleo Sci. 2007, 56, 283–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, T.; Hirasaka, K.; Kohno, S.; Tomida, C.; Haruna, M.; Uchida, T.; Ohno, A.; Oarada, M.; Teshima-Kondo, S.; Okumura, Y.; et al. Capric acid up-regulates UCP3 expression without PDK4 induction in mouse C2C12 Myotubes. J. Nutr. Sci. Vitaminol. 2016, 62, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, H.; Ogawa, A.; Kasai, M.; Aoyama, T. Effect of randomly interesterified triacylglycerols containing medium- and long-chain fatty acids on energy expenditure and hepatic fatty acid metabolism in rats. Biosci. Biotechnol. Biochem. 2005, 69, 1811–1818. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, H.; Wu, J.; Kasai, M.; Aoyama, T. Randomly interesterified triacylglycerol containing medium- and long-chain fatty acids stimulates fatty acid metabolism in white adipose tissue of rats. Biosci. Biotechnol. Biochem. 2006, 70, 2919–2926. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.P.; Wai, J.P.M.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.D.; Lee, M.C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Alkandari, J.R.; Andersen, L.B.; Bauman, A.E.; Brownson, R.C.; et al. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Bergman, B.C.; Butterfield, G.E.; Wolfel, E.E.; Casazza, G.A.; Lopaschuk, G.D.; Brooks, G.A. Evaluation of exercise and training on muscle lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 1999, 276, E106–E117. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Acosta, F.M.; Migueles, J.H.; Ponce González, J.G.; Ruiz, J.R. Association of sedentary and physical activity time with maximal fat oxidation during exercise in sedentary adults. Scand. J. Med. Sci. Sports 2020, 30, 1605–1614. [Google Scholar] [CrossRef]
- Ooyama, K.; Wu, J.; Nosaka, N.; Aoyama, T.; Kasai, M. Combined intervention of medium-chain triacylglycerol diet and exercise reduces body fat mass and enhances energy expenditure in rats. J. Nutr. Sci. Vitaminol. 2008, 54, 136–141. [Google Scholar] [CrossRef] [Green Version]
Fatty Acid 1 | LCTs | MCTs |
---|---|---|
8:0 | ND 2 | 74.4 |
10:0 | ND | 25.6 |
16:0 | 4.2 | ND |
18:0 | 2.0 | ND |
18:1 | 59.6 | ND |
18:2 | 20.4 | ND |
18:3 | 10.2 | ND |
Others | 3.6 | ND |
Characteristics | n = 29 | |
---|---|---|
Age | years | 50.3 ± 9.1 |
Sex | M/F | 17/12 |
Height | cm | 165.4 ± 8.9 |
Body weight | kg | 73.9 ± 9.5 |
BMI | kg/m2 | 26.8 ± 1.3 |
n = 29 | |||
---|---|---|---|
Control Diet | Test Diet | ||
Energy | kcal | 1798.2 ± 316.1 | 1974.8 ± 359.4 |
Protein | g | 67.2 ± 14.2 | 71.3 ± 16.5 |
Fat | g | 64.8 ± 15.6 | 73.7 ± 22.6 |
Saturated fatty acid | g | 18.1 ± 5.6 | 22.4 ± 7.3 * |
Octanoic acid | mg | 95.9 ± 90.0 | 1969.4 ± 125.5 * |
Decanoic acid | mg | 188.2 ± 169.8 | 865.1 ± 200.5 * |
Carbohydrate | g | 226.5 ± 61.8 | 246.2 ± 57.3 |
n = 29 | Control Diet | Test Diet | Intervention Effect Value (Test Diet–Control Diet) | p Value | |
---|---|---|---|---|---|
Energy expenditure rate | kcal/min | 2.40 ± 0.24 | 2.41 ± 0.22 | 0.01 ± 0.14 | 0.82 |
Fat oxidation rate | mg/min | 174.7 ± 46.2 | 183.4 ± 41.5 | 8.8 ± 28.6 * | 0.01 |
Carbohydrate oxidation rate | mg/min | 175.3 ± 76.5 | 156.6 ± 61.5 | −18.7 ± 52.9 * | 0.03 |
Respiratory exchange ratio | 0.79 ± 0.04 | 0.79 ± 0.03 | −0.01 ± 0.03 * | 0.03 | |
Maximum fat oxidation rate | mg/min | 321.4 ± 66.0 | 332.6 ± 62.1 | 11.1 ± 62.0 † | 0.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsujino, S.; Nosaka, N.; Sadamitsu, S.; Kato, K. Effect of Continuous Ingestion of 2 g of Medium-Chain Triglycerides on Substrate Metabolism during Low-Intensity Physical Activity. Nutrients 2022, 14, 536. https://doi.org/10.3390/nu14030536
Tsujino S, Nosaka N, Sadamitsu S, Kato K. Effect of Continuous Ingestion of 2 g of Medium-Chain Triglycerides on Substrate Metabolism during Low-Intensity Physical Activity. Nutrients. 2022; 14(3):536. https://doi.org/10.3390/nu14030536
Chicago/Turabian StyleTsujino, Shougo, Naohisa Nosaka, Shohei Sadamitsu, and Kazuhiko Kato. 2022. "Effect of Continuous Ingestion of 2 g of Medium-Chain Triglycerides on Substrate Metabolism during Low-Intensity Physical Activity" Nutrients 14, no. 3: 536. https://doi.org/10.3390/nu14030536
APA StyleTsujino, S., Nosaka, N., Sadamitsu, S., & Kato, K. (2022). Effect of Continuous Ingestion of 2 g of Medium-Chain Triglycerides on Substrate Metabolism during Low-Intensity Physical Activity. Nutrients, 14(3), 536. https://doi.org/10.3390/nu14030536