Effects of an Optimized Aged Garlic Extract on Cardiovascular Disease Risk Factors in Moderate Hypercholesterolemic Subjects: A Randomized, Crossover, Double-Blind, Sustainedand Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Experimental Design
2.3. Outcomes
2.4. Sample Size
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Compliance, Adverse Events, and Product Tolerance
3.3. Cardiovascular Disease Risk Factors
3.3.1. Blood and Pulse Pressure
3.3.2. Lipid Profile, Apos, and NEFAs
3.3.3. Homeostatic Glucose Profile Biomarkers and Systematic Inflammatory, Oxidative, and Vasodilatory Biomarkers
3.3.4. Anthropometric Measures
3.3.5. Dietary Adherence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Committee on Herbal Medicinal Products (HMPC). Assessment Report on Allium sativum L., bulbus; EMA/HMPC/7686/2013; Committee on Herbal Medicinal Products (HMPC): Amsterdam, The Netherlands, 2020; Volume 44, p. 90. [Google Scholar]
- World Health Organization. Bulbus Allii Cepae i WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 1999.
- Yuan, H.; Sun, L.; Chen, M.; Wang, J. The Comparison of the Contents of Sugar, Amadori, and Heyns Compounds in Fresh and Black Garlic. J. Food Sci. 2016, 81, C1662–C1668. [Google Scholar] [CrossRef]
- Liang, T.; Wei, F.; Lu, Y.; Kodani, Y.; Nakada, M.; Miyakawa, T.; Tanokura, M. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. J. Agric. Food Chem. 2015, 63, 683–691. [Google Scholar] [CrossRef]
- Kang, O.J. Evaluation of melanoidins formed from black garlic after different thermal processing steps. Prev. Nutr. Food Sci. 2016, 21, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.S.; Cha, H.S.; Lee, Y.S. Physicochemical and antioxidant properties of black garlic. Molecules 2014, 19, 16811–16823. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.G.; Hughes, J.; Tregova, A.; Milne, J.; Tomsett, A.B.; Collin, H.A. Biosynthesis of the flavour precursors of onion and garlic. J. Exp. Bot. 2004, 55, 1903–1918. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lei, M.; Liu, R.; Gao, Y.; Xu, M.; Zhang, M. Evaluation of Alliin, Saccharide Contents and Antioxidant Activities of Black Garlic during Thermal Processing. J. Food Biochem. 2015, 39, 39–47. [Google Scholar] [CrossRef]
- Cañizares, P.; Gracia, I.; Gómez, L.A.; García, A.; De Argila, C.M.; Boixeda, D.; De Rafael, L. Thermal Degradation of Allicin in Garlic Extracts and Its Implication on the Inhibition of the in-Vitro Growth of Helicobacter pylori. Biotechnol. Prog. 2004, 20, 32–37. [Google Scholar] [CrossRef]
- Bae, S.E.; Cho, S.Y.; Won, Y.D.; Lee, S.H.; Park, H.J. Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT-Food Sci. Technol. 2014, 55, 397–402. [Google Scholar] [CrossRef]
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Chang, W.C.W.; Chen, Y.T.; Chen, H.J.; Hsieh, C.W.; Liao, P.C. Comparative UHPLC-Q-Orbitrap HRMS-Based Metabolomics Unveils Biochemical Changes of Black Garlic during Aging Process. J. Agric. Food Chem. 2020, 68, 14049–14058. [Google Scholar] [CrossRef]
- Kimura, S.; Tung, Y.C.; Pan, M.H.; Su, N.W.; Lai, Y.J.; Cheng, K.C. Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal. 2017, 25, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodera, Y.; Kurita, M.; Nakamoto, M.; Matsutomo, T. Chemistry of aged garlic: Diversity of constituents in aged garlic extract and their production mechanisms via the combination of chemical and enzymatic reactions (Review). Exp. Ther. Med. 2019, 19, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Hori, Y.; Myoda, T. Volatile compounds of fresh and processed garlic (Review). Exp. Ther. Med. 2019, 19, 1585–1593. [Google Scholar] [CrossRef] [Green Version]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H. Bin Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Kang, D. Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: A review. Molecules 2017, 22, 919. [Google Scholar] [CrossRef] [Green Version]
- Vlachojannis, C.; Schoenenberger, A.W.; Erne, P.; Chrubasik-Hausmann, S. Preliminary evidence of the clinical effectiveness of odourless garlic. Phyther. Res. 2019, 33, 2179–2191. [Google Scholar] [CrossRef]
- Ivanovic, B.; Tadic, M. Hypercholesterolemia and Hypertension: Two Sides of the Same Coin. Am. J. Cardiovasc. Drugs 2015, 15, 403–414. [Google Scholar] [CrossRef]
- Jarama, I.; González-Hedström, D.; Almodóvar, P.; Salamanca, A.; Espinel, A.E. Comparación de la actividad antioxidante de diferentes extractos estandarizados de plantas: Extractos de estigmas de azafrán (Crocus sativus L.) y de ajo (Allium sativum L.) envejecido. In Libro de Resúmenes; 10o Congreso de Fitoterapia de SEFIT: Santiago de Compostela, Spain, 2019; ISBN 978-84-09-15771-6. [Google Scholar]
- García-Villalón, A.L.; Amor, S.; Monge, L.; Fernández, N.; Prodanov, M.; Muñoz, M.; Inarejos-García, A.M.; Granado, M. In vitro studies of an aged black garlic extract enriched in S-allylcysteine and polyphenols with cardioprotective effects. J. Funct. Foods 2016, 27, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Amor, S.; González-Hedström, D.; Martín-Carro, B.; Inarejos-García, A.M.; Almodóvar, P.; Prodanov, M.; García-Villalón, A.L.; García, M.G. Beneficial effects of an aged black garlic extract in the metabolic and vascular alterations induced by a high fat/sucrose diet in male rats. Nutrients 2019, 11, 153. [Google Scholar] [CrossRef] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Siu, A.L.; Bibbins-Domingo, K.; Grossman, D.; Baumann, L.C.; Davidson, K.W.; Ebell, M.; García, F.A.R.; Gillman, M.; Herzstein, J.; Kemper, A.R.; et al. Screening for high blood pressure in adults: U.S. preventive services task force recommendation statement. Ann. Intern. Med. 2015, 163, 778–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Mirzaalian, Y.; Nourian, M.; Gholamalizadeh, M.; Doaei, S.; Hatami, M.; Hassanzadeh, A.; Askari, G.; Farahi, R. The association of quantitative insulin sensitivity indices (HOMA-IR and QUICKI) with anthropometric and cardiometabolic indicators in adolescents. Arch. Med. Sci.-Atheroscler. Dis. 2019, 4, 32–37. [Google Scholar] [CrossRef]
- Motamed, N.; Perumal, D.; Zamani, F.; Ashrafi, H.; Haghjoo, M.; Saeedian, F.S.; Maadi, M.; Akhavan-Niaki, H.; Rabiee, B.; Asouri, M. Conicity index and waist-to-hip ratio are superior obesity indices in predicting 10-year cardiovascular risk among men and women. Clin. Cardiol. 2015, 38, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.S.; Park, S.H.; Choi, E.K.; Ryu, B.H.; Park, B.H.; Kim, D.S.; Kim, Y.G.; Chae, S.W. Reduction of blood lipid parameters by a 12-wk supplementation of aged black garlic: A randomized controlled trial. Nutrition 2014, 30, 1034–1039. [Google Scholar] [CrossRef]
- Mauger, J.F.; Lichtenstein, A.H.; Ausman, L.M.; Jalbert, S.M.; Jauhiainen, M.; Ehnholm, C.; Lamarche, B. Effect of different forms of dietary hydrogenated fats on LDL particle size. Am. J. Clin. Nutr. 2003, 78, 370–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global disparities of hypertension prevalence and control. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Saneei, P.; Salehi-Abargouei, A.; Esmaillzadeh, A.; Azadbakht, L. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: A systematic review and meta-analysis on randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Sadeghirad, B.; Ball, G.D.C.; Da Costa, B.R.; Hitchcock, C.L.; Svendrovski, A.; Kiflen, R.; Quadri, K.; Kwon, H.Y.; Karamouzian, M.; et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: Systematic review and network meta-analysis of randomised trials. BMJ 2020, 369, m696. [Google Scholar] [CrossRef] [Green Version]
- Sukhato, K.; Akksilp, K.; Dellow, A.; Vathesatogkit, P.; Anothaisintawee, T. Efficacy of different dietary patterns on lowering of blood pressure level: An umbrella review. Am. J. Clin. Nutr. 2020, 112, 1584–1598. [Google Scholar] [CrossRef] [PubMed]
- Lewington, S.; Clarke, R.; Qizilbash, N.; Peto, R.; Collins, R. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Ried, K. Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis. Exp. Ther. Med. 2019, 19, 1472–1478. [Google Scholar] [CrossRef]
- Lawson, L.D.; Hunsaker, S.M. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients 2018, 10, 812. [Google Scholar] [CrossRef] [Green Version]
- Ried, K.; Frank, O.R.; Stocks, N.P. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: A randomised controlled trial. Maturitas 2010, 67, 144–150. [Google Scholar] [CrossRef]
- Ried, K.; Travica, N.; Sali, A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: The AGE at Heart trial. Integr. Blood Press. Control 2016, 9, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Ried, K.; Travica, N.; Sali, A. The Effect of Kyolic Aged Garlic Extract on Gut Microbiota, Inflammation, and Cardiovascular Markers in Hypertensives: The GarGIC Trial. Front. Nutr. 2018, 5, 122. [Google Scholar] [CrossRef]
- Ried, K.; Frank, O.R.; Stocks, N.P. Aged garlic extract reduces blood pressure in hypertensives: A dose-response trial. Eur. J. Clin. Nutr. 2013, 67, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Arbeláez, D.; Lahera, V.; Oubiña, P.; Valero-Muñoz, M.; De Las Heras, N.; Rodríguez, Y.; García, R.G.; Camacho, P.A.; López-Jaramillo, P. Aged garlic extract improves adiponectin levels in subjects with metabolic syndrome: A double-blind, placebo-controlled, randomized, crossover study. Mediat. Inflamm. 2013, 2013, 285795. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shouk, R.; Abdou, A.; Shetty, K.; Sarkar, D.; Eid, A.H. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr. Res. 2014, 34, 106–115. [Google Scholar] [CrossRef]
- Ried, K.; Fakler, P. Potential of garlic (Allium sativum) in lowering high blood pressure: Mechanisms of action and clinical relevance. Integr. Blood Press. Control 2014, 7, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International society of hypertension global hypertension practice guidelines. J. Hypertens. 2020, 38, 982–1004. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertensionThe Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
Description | Aged Black Garlic Extract Weight (mg Per Tablet) | Placebo Weight (mg Per Tablet) |
---|---|---|
Pharmactive’s aged black garlic Extract | 250 (1.25 mg SAC) | - |
Maltodextrin | - | 250 |
Microcrystalline cellulose | 90 | 90 |
Dicalcic phosphate | 157 | 157 |
Sodium croscarmellose | 10 | 10 |
Magnesium stearate | 7 | 7 |
Sodium alginate | 3.06 | 3.06 |
Stearic acid | 0.03 | 0.03 |
Oleic acid | 1.54 | 1.54 |
Medium-chain triglycerides (MCTs) | 2.80 | 2.80 |
Ethylcellulose | 13.17 | 13.17 |
Hydroxypropyl methylcellulose (HPMC) | 4.86 | 4.86 |
Hydroxypropyl cellulose (HPC) | 4.86 | 4.86 |
Talc | 2.88 | 2.88 |
Titanium dioxide | 1.80 | 1.80 |
Natural Vanilla flavor | 1.00 | 1 |
Total | 550 | 550 |
Sequence 1 (n = 33) | Sequence 2 (n = 34) | p-Value | |
---|---|---|---|
Age, y | 53.7 ± 8.12 | 52.7 ± 8.59 | 0.609 |
Female, % | 54.5 | 50.0 | 0.449 |
Systolic blood pressure, mm Hg | 124 ± 17.7 | 125 ± 15.0 | 0.784 |
Diastolic blood pressure, mm Hg | 76 ± 11.4 | 76 ± 9.77 | 0.854 |
Pulse pressure, mm Hg | 48 ± 8.47 | 50 ± 10.1 | 0.489 |
Weight, kg | 72 ± 14.0 | 72 ± 11.4 | 0.991 |
Body mass index, kg/m2 | 25.7 ± 3.06 | 25.8 ± 3.23 | 0.993 |
Waist circumference, cm | 91 ± 8.74 | 90 ± 9.55 | 0.644 |
Waist/height | 0.55 ± 0.05 | 0.54 ± 0.06 | 0.561 |
Conicity index | 1.28 ± 0.08 | 1.26 ± 0.08 | 0.341 |
Fat mass, % | 28.1 ± 8.56 | 27.3 ± 8.98 | 0.727 |
Fat mass, kg | 20.9 ± 6.62 | 20.2 ± 6.66 | 0.675 |
Lean mass, kg | 51.1 ± 11.0 | 51.4 ± 9.83 | 0.901 |
Muscle mass, kg | 48.5 ± 10.4 | 48.8 ± 9.37 | 0.900 |
Bone mass, kg | 2.58 ± 0.53 | 2.60 ± 0.47 | 0.881 |
Total water, % | 49.1 ± 4.46 | 50.2 ± 5.83 | 0.411 |
Total water, kg | 35.4 ± 7.65 | 36.0 ± 7.33 | 0.740 |
Intervention | Change Intertreatments | |||||
---|---|---|---|---|---|---|
Variable | ABG | Placebo | ABG vs. Placebo | |||
Baseline | Change at 6 Weeks | Baseline | Change at 6 Weeks | Mean | p-Value | |
(95% CI) | ||||||
SBP, mm Hg | 124 ± 17.9 | 1.32 (−4.1; 6.7) | 121 ± 18.4 | 2.84 (−2.4; 8.1) | −1.51 (−9.1; 6.1) | 0.694 |
DBP, mm Hg | 75 ± 10.3 | −1.85 * (−3.7; 0.001) | 74 ± 9.80 | 1.77 (−0.10; 3.6) | −3.623 (−6.2; −0.99) | 0.007 |
PP, mm Hg | 48 ± 14.9 | 1.74 (−3.1; 6.6) | 47 ± 14.7 | −0.363 (−5.1; 4.4) | −2.00 (−8.9; 4.7) | 0.544 |
CF, beats/min | 66 ± 17.8 | −1.32 (−2.4; 5.0) | 66 ± 13.7 | −0.422 (−6.9; 3.5) | −1.75 (−8.9; 4.7) | 0.507 |
Intervention | Change Intertreatments | |||||
---|---|---|---|---|---|---|
Variable | ABG | Placebo | ABG vs. Placebo | |||
Baseline | Change | Baseline | Change | Mean (95% CI) | p-Value | |
Gender | ||||||
Male | 80 ± 9.4 | −3.17 (−6.4; 0.03) | 76 ± 9.9 | 2.71 (−0.59; 6.0) | −5.85 (−10.5; −1.3) | 0.013 |
Women | 71 ± 9.9 | −0.579 (−2.5; 1.4) | 72 ± 9.4 | 0.936 (−0.98; 2.8) | −0.151 (−4.2; 1.2) | 0.271 |
Categories in DBP at V0 | ||||||
DBP ≤ 75 mm Hg | 69 ± 6.7 | 0.061 (−2.1; 2.2) | 69 ± 6.3 | 2.86 (0.70; 5.0) | −2.80 (−5.8; 0.23) | 0.070 |
DBP > 75 mm Hg | 83 ± 8.8 | −4.42 (−6.2; −0.99) | 80 ± 9.6 | 0.400 (−3.0; 3.8) | −4.82 (−9.7; −0.02) | 0.049 |
Intervention | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | ABG | Placebo | Change Intertreatments | |||||
Baseline | Change | P for Trend | Baseline | Change | P for Trend | Mean (95% CI) | p-Value | |
Total cholesterol, mg/dL | ||||||||
Global | 243 ± 32 | 0.865 (−4.1; −5.9) | 0.047 † | 240 ± 30 | 2.15 (−3.1; 7.4) | 0.421 * | −1.29 (−8.6; 6.0) | 0.727 |
≤242 mg/dL | 219 ± 19 | 5.52 (−1.3; 12) | 0.028 † | 218 ± 22 | 6.90 (−1.9; 18) | 0.120 * | 0.914 (−8.7; 10) | 0.849 |
>242 mg/dL | 267 ± 24 | −3.94 (−11; 3.4) | 0.283 * | 263 ± 21 | −0.329 (−8.6; 8.0) | 0.872 † | −3.49 (−7.7; 15) | 0.535 |
LDLd, mg/dL | ||||||||
Global | 165 ± 24 | −0.390 (−4.1; 3.3) | 0.011 † | 165 ± 22 | 0.560 (−4.8; 3.7) | 0.279 † | 0.156 (−5.8; 5.5) | 0.956 |
≤166 mg/dL | 151 ± 14 | 3.33 (−1.1; 7.6) | 0.143 * | 147 ± 19 | 0.718 (−4.7; 6.1) | 0.131 † | 2.69 (−9.6; 4.2) | 0.438 |
>166 mg/dL | 188 ± 17 | −8.20 ‡ (−15; −1.6) | 0.017 * 0.014 † | 182 ± 18 | −2.55 (−9.8; 4.7) | 0.475 † | −6.28 (−16; 3.1) | 0.184 |
LDL (Friedewald), mg/dL | ||||||||
Global | 162 ± 26 | 1.47 (−2.7; 5.6) | 0.049 † | 161 ± 25 | 1.91 (−3.3; 7.2) | 0.308 † | −0.258 (−6.6; 7.1) | 0.941 |
≤162 mg/dL | 148± 17 | 4.50 (−0.41; 9.41) | 0.071 * | 148 ± 19 | 4.11 (−2.6; 11) | 0.221 * | 0.729 (−7.9; 9.3) | 0.866 |
>162 mg/dL | 186 ± 18 | −3.79 (−11; 3.7) | 0.063 † | 184 ± 17 | −1.99 (−11; 6.9) | 0.607 † | −1.85 (−13; 9.5) | 0.744 |
HDL, mg/dL | ||||||||
Global | 56.9 ± 11.4 | 0.005 (−0.99; 1.0) | 0.354 † | 55.0 ± 10.9 | 1.02 (−0.41; 2.5) | 0.159 * | −0.695 (−2.5; 1.1) | 0.492 |
≤55.5 mg/dL | 49.3 ± 7.86 | −0.045 (−1.4; 1.3) | 0.136 † | 48.2 ± 7.23 | 1.01 (−0.90; 2.9) | 0.124 † | −1.49 (−3.7; 0.70) | 0.178 |
>55.5 mg/dL | 65.3 ± 8.32 | 0.061 (−1.4; 1.6) | 0.816 † | 62.8 ± 9.19 | 1.04 (−1.2; 3.3) | 0.360 * | 0.105 (−2.9; 3.1) | 0.945 |
Total Cholesterol/ HDL | ||||||||
Global | 4.41 ± 0.92 | 0.006 (−0.09; 0.10) | 0.008 † | 4.48 ± 0.82 | −0.023 (−0.16; 0.12) | 0.239 † | 0.033 (−0.13; 0.20) | 0.694 |
≤4.44 | 3.73 ± 0.45 | 0.062 (−0.03; 0.16) | 0.200 * | 3.86 ± 0.51 | −0.022 (−0.22; 0.18) | 0.358 † | 0.074 (−0.15; 0.29) | 0.506 |
>4.44 | 5.10 ± 0.74 | −0.052 (−0.22; 0.12) | 0.004 † | 5.06 ± 0.60 | −0.024 (−0.23; 0.18) | 0.443 † | −0.023 (−0.30; 0.25) | 0.864 |
LDLd/HDL | ||||||||
Global | 3.02 ± 0.72 | −0.013 (−0.08; 0.05) | 0.001 † | 3.09 ± 0.64 | −0.049 (−0.15; 0.05) | 0.168 † | 0.156 (−5.8; 5.5) | 0.956 |
≤3.07 | 2.47 ± 0.33 | 0.065 (−0.01; 0.14) | 0.105 * | 2.60 ± 0.41 | −0.120 (−0.25; 0.07) | 0.062 * | 0.077 (−0.09; 0.24) | 0.362 |
>3.07 | 3.58 ± 0.58 | −0.114 (−0.24; 0.01) | 0.071 * 0.002 † | 3.55 ± 0.46 | 0.019 (−0.14; 0.18) | 0.356 † | −0.05 (−0.21; 0.16) | 0.782 |
LDL(Fried)/HDL | ||||||||
Global | 2.95 ± 0.72 | 0.038 (−0.04; 0.12) | 0.002 † | 3.00 ± 0.63 | 0.001 (−0.11; 0.11) | 0.089 † | 0.041 (−0.09; 0.18) | 0.551 |
≤2.94 | 2.43 ± 0.40 | 0.072 (−0.01; 0.15) | 0.084 † | 2.52 ± 0.41 | −0.036 (−0.19; 0.12) | 0.154 † | 0.089 (−0.09; 0.27) | 0.319 |
>2.94 | 3.49 ± 0.56 | −0.021 (−0.15; 0.11) | 0.002 † | 3.45 ± 0.45 | 0.035 (−0.14; 0.21) | 0.280 † | −0.021 (−0.22; 0.18) | 0.840 |
TG (log), mg/dL | ||||||||
Global | 2.04 ± 0.18 | −0.031 ‡ (−0.06; − 0.001) | 0.042 * | 2.05 ± 0.19 | −0.016 (−0.05; 0.02) | 0.419 * | −0.016 (−0.03; 0.06) | 0.531 |
≤2.00 | 1.90 ± 0.09 | −0.011 (−0.05; 0.03) | 0.568 * | 1.91 ± 0.09 | 0.024 (−0.04; 0.09) | 0.438 * | −0.021 (−0.10; 0.06) | 0.603 |
>2.00 | 2.16 ± 0.15 | −0.049 (−0.09; −0.002) | 0.040 * | 2.15 ± 0.13 | −0.037 (−0.08; 0.07) | 0.095 * | −0.019 (−0.05; 0.09) | 0.578 |
Log (TG/HDL) | ||||||||
Global | 0.30 ± 0.23 | −0.033 ‡ (−0.06; −0.001) | 0.046 * | 0.31 ± 0.23 | −0.023 (−0.07; 0.02) | 0.309 * | −0.020 (−0.07; 0.04) | 0.640 |
≤0.24 | 0.12 ± 0.11 | −0.010 (−0.05; 0.03) | 0.613 * | 0.14 ± 0.12 | 0.009 (−0.06; 0.08) | 0.789 * | −0.020 (−0.10; 0.06) | 0.610 |
≤0.24 | 0.47 ± 0.17 | −0.055 ‡ (−0.11; −0.003) | 0.038 * | 0.49 ± 0.17 | −0.055 (−0.12; 0.006) | 0.073 * | −0.004 (−0.08; 0.07) | 0.909 |
Intervention | Change Intertreatments | |||||
---|---|---|---|---|---|---|
Variable | ABG | Placebo | ABG vs. Placebo | |||
Baseline | Change | Baseline | Change | Mean (95% CI) | p-Value | |
ApoA1, mg/dL | 144 ± 20.2 | −2.25 (−4.6; 0.14) | 141 ± 0.3 | 0.038 (−2.3; 2.4) | −2.29 (−5.6; 1.1) | 0.178 |
ApoB100, mg/dL | 104 ± 15.4 | −0.117 (−3.0; 2.7) | 104 ± 14.2 | −0.516 (−3.4; 2.3) | 0.338 (−4.4; 3.4) | 0.868 |
ApoB100/ApoA1 | 0.74 ± 0.16 | 0.012 (−0.01; 0.03) | 0.75 ± 0.14 | 0.000 (−0.02; 0.02) | 0.012 (−0.02; 0.04) | 0.459 |
TG/ApoB100 | 1.13 ± 0.50 | −0.082 (−0.20; 0.03) | 1.16 ± 0.52 | −0.058 (−0.17; 0.05) | −0.024 (−0.18; 0.13) | 0.766 |
NEFA, nmol/L | 0.39 ± 0.14 | −0.005 (−0.05; 0.04) | 0.40 ± 0.14 | −0.020 (−0.06; 0.02) | 0.015 (−0.05; 0.08) | 0.637 |
Intervention | Change Intertreatments | |||||
---|---|---|---|---|---|---|
Variable | ABG | Placebo | ABG vs. Placebo | |||
Baseline | Change | Baseline | Change | Mean (95% CI) | p-Value | |
Weight, kg | 71.5 ± 12.5 | 0.130 (−0.44; 0.70) | 71.4 ± 12.4 | −0.219 (−0.78; 0.34) | 0.348 (−1.1; 0.46) | 0.393 |
BMI, kg/m2 | 25.7 ± 3.13 | 1.01 (−0.27; 2.3) | 25.9 ± 3.29 | −0.138 (−1.4; 1.1) | 1.14 (−2.9; 0.66) | 0.213 |
Waist circumference, cm | 91 ± 8.93 | −0.149 (−1.2; 0.89) | 90 ± 9.72 | 0.283 (−0.76; 1.03) | 0.432 (−1.0; 1.9) | 0.563 |
Waist/Height | 0.55 ± 0.05 | −0.002 (−0.009; 0.005) | 0.54 ± 0.05 | 0.002 (−0.005; 0.009) | 0.004 (−0.006; 0.01) | 0.403 |
Conicity index | 1.27 ± 0.06 | −0.003 (−0.02; 0.01) | 1.26 ± 0.08 | 0.006 (−0.01; 0.02) | −0.009 (−0.01; 0.03) | 0.410 |
Fat mass, % | 28.7 ± 7.32 | 0.200 (−1.12; 1.52) | 28.9 ± 8.09 | −0.596 (−1.92; 0.73) | 0.796 (−1.01; 2.67) | 0.402 |
Fat mass, kg | 20.3 ± 6.67 | 1.06 (−0.42; 2.5) | 21.2 ± 7.68 | −0.474 (−1.98; 1.0) | 1.53 (−3.6; 0.58) | 0.153 |
Lean mass, kg | 51.4 ± 10.9 | −1.052 (−2.7; 0.64) | 51.2 ± 10.3 | −1.020 (−2.7; 0.66) | −0.032 (−2.4; 2.3) | 0.979 |
Muscle mass, kg | 48.8 ±10.4 | −0.362 (−1.5; 0.80) | 48.3 ± 10.3 | −0.058 (−1.2; 1.1) | −0.304 (−1.9; 1.3) | 0.713 |
Bone mass, kg | 2.59 ± 0.52 | −0.013 (−0.07; 0.05) | 2.58 ± 0.50 | −0.015 (−0.07; 0.04) | 0.002 (−0.08; 0.08) | 0.964 |
Total water, % | 49.6 ± 5.38 | −0.142 (−2.1; 1.8) | 49.3 ± 5.50 | 0.979 (−0.90; 2.9) | −1.121 (−1.6; 3.8) | 0.412 |
Total water, kg | 35.6 ± 7.74 | 0.325 (−0.66; 1.3) | 35.3 ± 7.39 | 0.221 (−0.75; 1.2) | −0.105 (−1.5; 1.3) | 0.881 |
Intervention | Change Intertreatments | |||||
---|---|---|---|---|---|---|
Variable | ABG | Placebo | ABG vs. Placebo | |||
Baseline | Change | Baseline | Change | Mean (95% CI) | p-Value | |
Waist circumference, cm | ||||||
Total | 100 ± 8.93 | −0.149 (−1.2; 0.89) | 90 ± 9.72 | 0.283 (−0.76; 1.03) | 0.432 (−1.0; 1.9) | 0.563 |
Men (n = 32) | 0.513 (−1.4; 2.4) | 1.26 (−0.62; 3.1) | 0.753 (−1.9; 3.4) | 0.574 | ||
Women (n = 35) | −0.755 (−1.8; 0.28) | −0.615 (−1.6; 0.42) | 0.139 (−1.3; 1.6) | 0.849 | ||
Waist/Height | ||||||
Total | 0.55 ± 0.05 | −0.002 (−0.009; 0.005) | 0.54 ± 0.05 | 0.002 (−0.005; 0.009) | 0.004 (−0.006; 0.01) | 0.403 |
Men | 0.55 ± 0.05 | 0.003 (−0.008; 0.01) | 0.54 ± 0.05 | 0.008 (−0.003; 0.02) | 0.005 (−0.01; 0.02) | 0.557 |
Women | 0.54 ± 0.05 | −0.007 (−0.01; 0.000) | 0.54 ± 0.06 | −0.004 (−0.01; 0.003) | 0.003 (−0.007; 0.01) | 0.533 |
Conicity index | ||||||
Total | 1.27 ± 0.06 | −0.003 (−0.02; 0.01) | 1.26 ± 0.08 | 0.006 (−0.01; 0.02) | −0.009 (−0.01; 0.03) | 0.410 |
Men | 1.28 ± 0.06 | 0.008 (−0.02; 0.04) | 1.26 ± 0.10 | 0.016 (−0.01; 0.04) | −0.008 (−0.03; 0.05) | 0.678 |
Women | 1.27 ± 0.06 | −0.014 * (−0.03; 0.004) | 1.26 ± 0.07 | −0.003 (−0.02; 0.01) | −0.011 (−0.01; 0.04) | 0.405 |
Lean mass, kg | (p = 0.045) | |||||
Total | 51.4 ± 10.9 | −1.052 (−2.74; 0.64) | 51.2 ± 10.3 | −1.020 (−2.70; 0.66) | −0.032 (−2.41; 2.35) | 0.979 |
Men | 60.7 ± 7.76 | 0.149 (−2.02; 2.31) | 59.8 ± 7.15 | −0.856 (−2.99; 1.27) | 1.006 (−2.03; 4.04) | 0.510 |
Women | 43.2 ± 5.34 | −2.124 (−4.67; 0.42) | 43.2 ± 5.07 | −1.161 (−3.70; 1.38) | −0.962 (−2.63; 4.56) | 0.595 |
ABG | p-Value | Placebo | p-Value | P for Difference * | |
---|---|---|---|---|---|
Energy, kcal/day Baseline 6 weeks | 2031 ± 579 | 2004 ± 665 0.734 | 1950 ± 543 2015 ± 560 | 0.321 | 0.381 |
CHO, % energy Baseline 6 weeks | 37.1 ± 8.7 36.7 ± 8.8 | 0.628 | 36.9 ± 6.8 36.0 ± 6.4 | 0.251 | 0.687 |
CHO, grams Baseline 6 weeks | 186 ± 62 188 ± 83 | 0.822 | 179 ± 54 179 ± 53 | 0.995 | 0.854 |
Protein, % energy Baseline 6 weeks | 16.7 ± 3.2 16.9 ± 4.7 | 0.759 | 17.0 ± 4.3 17.0 ± 2.9 | 0.930 | 0.864 |
Protein, grams Baseline 6 weeks | 81.9 ± 23.9 82.3 ± 27.3 | 0.895 | 79.0 ± 24.2 | 84.2 ± 22.8 0.080 | 0.225 |
Total fat, % energy Baseline 6 weeks | 41.8 ± 6.8 41.5 ± 7.0 | 0.769 | 41.8 ± 6.5 43.9 ± 7.3 | 0.030 | 0.102 |
Total fat, grams Baseline 6 weeks | 96.9 ± 34.6 95.7 ± 39.3 | 0.818 | 96.3 ± 40.3 97.8 ± 34.3 | 0.446 | 0.776 |
SFA, % energy Baseline 6 weeks | 11.9 ± 3.8 11.8 ± 3.4 | 0.793 | 12.0 ± 3.5 12.1 ± 3.2 | 0.831 | 0.716 |
SFA, grams Baseline 6 weeks | 27.5 ± 11.8 27.7 ± 14.1 | 0.945 | 26.9 ± 13.0 28.1 ± 12.7 | 0.451 | 0.697 |
MUFA, % energy Baseline 6 weeks | 23.4 ± 6.8 19.0 ± 5.0 | <0.001 | 23.8 ± 5.7 20.2 ± 3.6 | <0.001 | 0.463 |
MUFA, grams Baseline 6 weeks | 55.1 ± 24.5 44.0 ± 19.2 | 0.003 | 52.1 ± 20.8 45.6 ± 15.2 | 0.010 | 0.324 |
PUFA, % energy Baseline 6 weeks | 7.6 ± 2.1 7.1 ± 1.9 | 0.142 | 7.7 ± 2.3 7.0 ± 2.2 | 0.029 | 0.699 |
PUFA, grams Baseline 6 weeks | 17.8 ± 8.0 16.0 ± 7.0 | 0.114 | 16.9 ± 7.3 16.4 ± 8.7 | 0.680 | 0.443 |
Fiber, g/day | |||||
Baseline 6 weeks | 20.2 ± 9.2 20.3 ± 9.6 | 0.958 | 20.4 ± 11.3 19.6 ± 8.0 | 0.259 | 0.606 |
Alcohol, g/day Baseline 6 weeks | 5.8 (2.2–13.3) 5.3 (1.2–14.0) | 0.866 | 8.2 (1.1–17.5) 7.9 (0.00–17.8) | 0.507 | 0.947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valls, R.M.; Companys, J.; Calderón-Pérez, L.; Salamanca, P.; Pla-Pagà, L.; Sandoval-Ramírez, B.A.; Bueno, A.; Puzo, J.; Crescenti, A.; Bas, J.M.d.; et al. Effects of an Optimized Aged Garlic Extract on Cardiovascular Disease Risk Factors in Moderate Hypercholesterolemic Subjects: A Randomized, Crossover, Double-Blind, Sustainedand Controlled Study. Nutrients 2022, 14, 405. https://doi.org/10.3390/nu14030405
Valls RM, Companys J, Calderón-Pérez L, Salamanca P, Pla-Pagà L, Sandoval-Ramírez BA, Bueno A, Puzo J, Crescenti A, Bas JMd, et al. Effects of an Optimized Aged Garlic Extract on Cardiovascular Disease Risk Factors in Moderate Hypercholesterolemic Subjects: A Randomized, Crossover, Double-Blind, Sustainedand Controlled Study. Nutrients. 2022; 14(3):405. https://doi.org/10.3390/nu14030405
Chicago/Turabian StyleValls, Rosa M., Judit Companys, Lorena Calderón-Pérez, Patricia Salamanca, Laura Pla-Pagà, Berner Andrée Sandoval-Ramírez, Antonio Bueno, Jose Puzo, Anna Crescenti, Josep M. del Bas, and et al. 2022. "Effects of an Optimized Aged Garlic Extract on Cardiovascular Disease Risk Factors in Moderate Hypercholesterolemic Subjects: A Randomized, Crossover, Double-Blind, Sustainedand Controlled Study" Nutrients 14, no. 3: 405. https://doi.org/10.3390/nu14030405
APA StyleValls, R. M., Companys, J., Calderón-Pérez, L., Salamanca, P., Pla-Pagà, L., Sandoval-Ramírez, B. A., Bueno, A., Puzo, J., Crescenti, A., Bas, J. M. d., Caimari, A., Salamanca, A., Espinel, A. E., Pedret, A., Arola, L., & Solà, R. (2022). Effects of an Optimized Aged Garlic Extract on Cardiovascular Disease Risk Factors in Moderate Hypercholesterolemic Subjects: A Randomized, Crossover, Double-Blind, Sustainedand Controlled Study. Nutrients, 14(3), 405. https://doi.org/10.3390/nu14030405