The Difference in the Prevalence of Metabolic Syndrome According to Meeting Guidelines for Aerobic Physical Activity and Muscle-Strengthening Exercise: A Cross-Sectional Study Performed Using the Korea National Health and Nutrition Examination Survey, 2014–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Definition of Metabolic Syndrome and Metabolic Syndrome Components
2.3. Assessment of Physical Activity and Exercise Guidelines
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Metabolic Syndrome Prevalence (Table 3)
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
NEG (Ref) | APA | MSE | CEG | NEG (Ref) | APA | MSE | CEG | |
Waist Circumference meeting for Mets | 36.5 (1.2)% | 33.5 (1.2)% | 35.4 (1.7)% | 29.7 (1.7)% *** | 34.0 (0.8)% | 22.5 (0.9)% *** | 27.2 (1.7)% *** | 16.5 (1.7)% *** |
Triglyceride meeting for Mets | 45.1 (1.2)% | 39.0 (1.2)% | 45.8 (1.8)% ** | 37.5 (1.8)% *** | 27.0 (0.7)% | 20.3 (0.7)% *** | 20.6 (1.7)% *** | 17.1 (1.7)% *** |
HDL-C meeting for Mets | 30.3 (0.9)% | 26.6 (1.0)% *** | 24.7 (1.6)% * | 21.0 (1.6)% *** | 43.6 (0.7)% | 36.8 (0.9)% *** | 36.9 (2.0)% ** | 28.5 (2.0)% *** |
Blood Pressure meeting for Mets | 41.0 (1.0)% | 39.2 (1.0)% | 40.8 (1.1)% | 40.1 (1.2)% | 33.1 (0.7)% | 29.3 (0.7)% *** | 25.5 (0.8)% *** | 23.4 (0.8)% *** |
FPG meeting for Mets | 48.2 (1.8)% | 45.2 (1.9)% * | 44.6 (1.5)% | 44.4 (1.4)% * | 35.1 (1.8)% | 29.6 (2.0)% *** | 29.2 (1.6)% ** | 23.6 (1.6)% *** |
Metabolic Syndrome | 35.8 (0.9)% | 30.4 (1.0)% * | 33.0 (1.7)% ** | 27.3 (1.7)% *** | 29.2 (0.7)% | 18.4 (0.8)% *** | 21.5 (1.5)% *** | 14.6 (1.5)% *** |
3.3. ORs on the Prevalence of Metabolic Syndrome
3.4. Generalized Linear Model on Metabolic Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberti, K.G.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death: A systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-h.; Lee, S.-h.; Shin, K.-S.; Son, D.-Y.; Kim, S.-H.; Joe, H.; Yoo, B.-W.; Hong, S.-H.; Cho, C.-Y.; Shin, H.-S. The change of metabolic syndrome prevalence and its risk factors in Korean adults for decade: Korea National Health and Nutrition Examination Survey for 2008–2017. Korean J. Fam. Pract. 2020, 10, 44–52. [Google Scholar] [CrossRef]
- Yamaoka, K.; Tango, T. Effects of lifestyle modification on metabolic syndrome: A systematic review and meta-analysis. BMC Med. 2012, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- LaMonte, M.J.; Blair, S.N.; Church, T.S. Physical activity and diabetes prevention. J. Appl. Physiol. 2005, 99, 1205–1213. [Google Scholar] [CrossRef] [Green Version]
- Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010.
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Tanaka, S. Status of physical activity in Japanese adults and children. Ann. Hum. Biol. 2019, 46, 305–310. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, C.; Wang, M.; Cai, R.; Zhang, Y.; He, Z.; Wang, H.; Wu, D.; Wang, F.; Liu, X. BMI, leisure-time physical activity, and physical fitness in adults in China: Results from a series of national surveys, 2000–2014. Lancet Diabetes Endocrinol. 2016, 4, 487–497. [Google Scholar] [CrossRef]
- Seo, Y.B.; Oh, Y.H.; Yang, Y.J. Current Status of Physical Activity in South Korea. Korean J. Fam. Med. 2022, 43, 209. [Google Scholar] [CrossRef] [PubMed]
- Ostman, C.; Smart, N.; Morcos, D.; Duller, A.; Ridley, W.; Jewiss, D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2017, 16, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strasser, B.; Siebert, U.; Schobersberger, W. Resistance training in the treatment of the metabolic syndrome. A Systematic Review and Meta-Analysis of the Effect of Resistance Training on Metabolic Clustering in Patients with Abnormal Glucose Metabolism. Sport. Med. 2010, 40, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Earnest, C.P.; Johannsen, N.M.; Swift, D.L.; Gillison, F.B.; Mikus, C.R.; Lucia, A.; Kramer, K.; Lavie, C.J.; Church, T.S.J.M. Aerobic and strength training in concomitant metabolic syndrome and type 2 diabetes. Med. Sci. Sport Exerc. 2014, 46, 1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateman, L.A.; Slentz, C.A.; Willis, L.H.; Shields, A.T.; Piner, L.W.; Bales, C.W.; Houmard, J.A.; Kraus, W.E. Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise-STRRIDE-AT/RT). Am. J. Cardiol. 2011, 108, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health and Welfare. Integrated Health Promotion Program [Internet]; Korea Health Promotion Institute: Seoul, Korea, 2021; Available online: https://www.khealth.or.kr/board?menuId=MENU00829&siteId=null- (accessed on 27 March 2022).
- Lee, S.-H.; Tao, S.; Kim, H.-S. The prevalence of metabolic syndrome and its related risk complications among Koreans. Nutrients 2019, 11, 1755. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Am. Heart Assoc. 2005, 112, 2735–2752. [Google Scholar]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef]
- Yi, D.; Khang, A.R.; Lee, H.W.; Son, S.M.; Kang, Y.H. Relative handgrip strength as a marker of metabolic syndrome: The Korea National Health and Nutrition Examination Survey (KNHANES) VI (2014–2015). Diabetes Metab. Syndr. Obes. 2018, 11, 227. [Google Scholar] [CrossRef] [Green Version]
- Metzger, J.S.; Catellier, D.J.; Evenson, K.R.; Treuth, M.S.; Rosamond, W.D.; Siega-Riz, A.M. Associations between patterns of objectively measured physical activity and risk factors for the metabolic syndrome. Am. J. Health Promot. 2010, 24, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, Y.; Jeon, J.Y. Association between physical activity and the prevalence of metabolic syndrome: From the Korean National Health and Nutrition Examination Survey, 1999–2012. SpringerPlus 2016, 5, 1870. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Santamaria, M.; Fernandez-Montero, A.; Martinez-Gonzalez, M.A.; Moreno-Galarraga, L.; Sanchez-Villegas, A.; Barrio-Lopez, M.T.; Bes-Rastrollo, M. Exercise intensity and incidence of metabolic syndrome: The SUN Project. Am. J. Prev. Med. 2017, 52, e95–e101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wewege, M.A.; Thom, J.M.; Rye, K.-A.; Parmenter, B.J. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome. Atherosclerosis 2018, 274, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Lemes, Í.R.; Turi-Lynch, B.C.; Cavero-Redondo, I.; Linares, S.N.; Monteiro, H.L. Aerobic training reduces blood pressure and waist circumference and increases HDL-c in metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. J. Am. Soc. Hypertens. 2018, 12, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Willis, L.H.; Slentz, C.A.; Bateman, L.A.; Shields, A.T.; Piner, L.W.; Bales, C.W.; Houmard, J.A.; Kraus, W.E. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J. Appl. Physiol. 2012, 113, 1831–1837. [Google Scholar] [CrossRef]
- Strasser, B.; Schobersberger, W. Evidence for resistance training as a treatment therapy in obesity. J. Obes. 2011, 2011, 482564. [Google Scholar] [CrossRef] [Green Version]
- Lemes, Í.R.; Ferreira, P.H.; Linares, S.N.; Machado, A.F.; Pastre, C.M.; Netto, J. Resistance training reduces systolic blood pressure in metabolic syndrome: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sport. Med. 2016, 50, 1438–1442. [Google Scholar] [CrossRef] [Green Version]
- Sigal, R.J.; Kenny, G.P.; Boulé, N.G.; Wells, G.A.; Prud’homme, D.; Fortier, M.; Reid, R.D.; Tulloch, H.; Coyle, D.; Phillips, P.; et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: A randomized trial. Ann. Intern. Med. 2007, 147, 357–369. [Google Scholar] [CrossRef]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sport. Med. 2014, 44, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Doewes, R.I.; Gharibian, G.; Zaman, B.A.; Akhavan-Sigari, R. An updated systematic review on the effects of aerobic exercise on human blood lipid profile. Curr. Probl. Cardiol. 2022; 101108, in press. [Google Scholar] [CrossRef] [PubMed]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Drenowatz, C.; Grieve, G.L.; DeMello, M.M. Change in energy expenditure and physical activity in response to aerobic and resistance exercise programs. SpringerPlus 2015, 4, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-Ruiz, M.E.; Guarner-Lans, V.; Pérez-Torres, I.; Soto, M.E. Mechanisms underlying metabolic syndrome-related sarcopenia and possible therapeutic measures. Int. J. Mol. Sci. 2019, 20, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braith, R.W.; Stewart, K.J. Resistance exercise training: Its role in the prevention of cardiovascular disease. Circulation 2006, 113, 2642–2650. [Google Scholar] [CrossRef]
- Lakka, T.A.; Laaksonen, D.E. Physical activity in prevention and treatment of the metabolic syndrome. Appl. Physiol. Nutr. Metab. 2007, 32, 76–88. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Saltin, B. Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sport. 2015, 25, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J. An overview of current physical activity recommendations in primary care. Korean J. Fam. Med. 2019, 40, 135. [Google Scholar] [CrossRef]
Men (Unweighted n = 9670) | Women (Unweighted n = 12,797) | p-Value | |
---|---|---|---|
Age | 55.3 (10.5) | 56.6 (11.2) | <0.001 |
Body mass index | 24.5 (3.1) | 23.8 (3.4) | <0.001 |
Waist Circumference | 86.9 (8.4) | 80.4 (9.3) | <0.001 |
Total Cholesterol | 195.0 (37.0) | 198.5 (37.1) | <0.001 |
Triglyceride | 173.5 (146.6) | 121.5 (82.4) | <0.001 |
HDL-C | 47.1 (11.3) | 54.0 (12.7) | <0.001 |
LDL-C | 116.9 (33.9) | 119.9 (33.4) | 0.002 |
FPG | 106.4 (26.3) | 100.3 (21.9) | <0.001 |
Hemoglobin A1c | 5.9 (0.9) | 5.8 (0.8) | <0.001 |
Hypertension | 38.9 (0.6)% | 32.9 (0.6)% | <0.001 |
Diabetes Mellitus | 16.5 (0.4)% | 12.0 (0.4)% | <0.001 |
Hypercholesterolemia | 21.6 (0.5)% | 28.3 (0.5)% | <0.001 |
Metabolic syndrome | 33.0 (0.6)% | 24.8 (0.5)% | <0.001 |
Exercise groups | <0.001 | ||
NEG | 42.4 (0.6)% | 52.6 (0.6)% | |
APA | 29.7 (0.6)% | 33.5 (0.5)% | |
MSE | 10.6 (0.4)% | 5.7 (0.3)% | |
CEG | 17.3 (0.5)% | 8.2 (0.3)% |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
NEG (Unweighted n = 3885, Ref) | APA (Unweighted n = 2518) | MSE (Unweighted n = 971) | CEG (Unweighted n = 1486) | NEG (Unweighted n = 6624, Ref) | APA (Unweighted n = 3879) | MSE (Unweighted n = 694) | CEG (Unweighted n = 943) | |
Age (year) | 55.7 (10.9) | 57.6 (10.4) *** | 54.1 (10.3) ** | 55.0 (9.9) *** | 58.1 (11.8) | 56.6 (10.3) *** | 54.9 (10.4) ** | 53.1 (9.2) *** |
BMI (kg/m2) | 24.4 (3.2) | 24.3 (2.7) | 24.6 (3.1) | 24.5 (2.7) | 24.0 (3.5) | 23.3 (3.0) ** | 23.7 (3.3) *** | 22.9 (3.0) *** |
WC (cm) | 87.2 (9.0) | 86.7 (7.7) | 86.9 (8.3) | 86.0 (7.7) *** | 81.4 (9.6) | 79.0 (8.4) *** | 80.0 (9.0) *** | 77.3 (8.0) *** |
Triglyceride (mg/dL) | 179.7 (154.6) | 165.8 (134.7) | 178.1 (148.6) * | 155.0 (127.3) *** | 128.3 (88.0) | 113.4 (73.7) *** | 115.5 (73.4) *** | 108.1 (81.4) *** |
HDL-C (mg/dL) | 46.2 (11.3) | 47.0 (11.1) *** | 47.6 (11.2) | 48.6 (11.1) *** | 52.8 (12.4) | 55.4 (13.9) *** | 54.6 (12.5) *** | 57.9 (13.3) *** |
FPG (mmol/L) | 107.3 (26.8) | 105.1 (24.3) | 106.0 (26.1) | 105.7 (26.4) | 101.9 (23.7) | 98.3 (20.8) *** | 99.2 (20.0) *** | 96.5 (16.6) *** |
SBP (mmHg) | 122.1 (15.2) | 122.6 (14.9) * | 121.1 (14.9) | 122.1 (15.4) | 120.7 (17.9) | 117.2 (16.8) *** | 118.6 (17.3) *** | 115.5 (16.5) *** |
DBP (mmHg) | 79.2 (10.2) | 78.5 (10.2) * | 79.4 (10.2) | 79.3 (9.8) | 74.8 (9.9) | 74.0 (9.0) * | 75.3 (9.4) | 74.5 (9.3) |
Hypertension (%) | 40.20 (0.9)% | 43.50 (1.1)% * | 36.90 (1.9)% | 36.30 (1.9)% * | 37.80 (0.7)% | 26.00 (0.9)% *** | 28.90 (1.9)% *** | 22.00 (1.9)% *** |
Hypercholesterolemia (%) | 22.00 (0.8)% | 22.00 (1.0)% | 24.00 (1.6)% | 18.20 (1.1)% ** | 29.50 (0.7)% | 26.60 (0.8)% ** | 29.20 (2.0)% | 25.90 (1.76)% * |
Diabetes Mellitus (%) | 18.30 (0.7)% | 15.60 (0.8)% ** | 15.10 (1.3)% | 15.30 (1.3)% * | 14.20 (0.5)% | 8.60 (0.6)% *** | 10.30 (1.5)% *** | 6.80 (1.5)% *** |
Model 1 | ||||||
WC | SBP | DBP | TG | HDL-C | FPG | |
Men | ||||||
APA | −0.29 [−0.78, 0.20] | −0.41 [−1.27, 0.46] | −0.27 [−0.84, 0.29] | −4.75 [−14.83, 5.32] | 1.46 *** [0.82, 2.09] | −1.06 [−2.50, 0.39] |
MSE | −0.55 [−1.15, 0.06] | −0.09 [−1.25, 1.07] | −0.1 [−0.88, 0.67] | −10.19 [−22.57, 2.20] | 0.87 [−0.02, 1.76] | −2.52 * [−4.77, −0.27] |
CEG | −1.24 *** [−1.77, −0.71] | 0.26 [−0.84, 1.35] | −0.06 [−0.74, 0.62] | −26.15 *** [−36.57, −5.73] | 2.38 *** [1.61, 3.15] | −1.45 [−3.33, 0.43] |
Women | ||||||
APA | −0.67 ** [−1.10, −0.24] | 0.01 [−0.70, 0.71] | 0.33 [−0.11, 0.76] | −10.42 *** [−14.01, −6.83] | 1.21 *** [0.65, 1.76] | −1.62 *** [−2.57, −0.67] |
MSE | −2.05 *** [−2.78, −1.33] | −2.48 *** [−3.83, −1.13] | −0.88 * [−1.68, −0.07] | −13.81 *** [−20.32, −7.30] | 2.29 *** [1.06, 3.52] | −3.10 *** [−4.94, −1.26] |
CEG | −2.93 *** [−3.54, −2.32] | −1.76 ** [−2.99, −0.53] | −0.52 [−1.30, 0.27] | −16.40 *** [−22.91, −9.89] | 4.11 *** [3.09, 5.12] | −3.68 *** [−5.05, −2.31] |
Model 2 | ||||||
WC | SBP | DBP | TG | HDL-C | FPG | |
Men | ||||||
APA | −0.54 *** [−0.79, −0.28] | −0.55 [−1.40, 0.31] | −0.5 [−1.06, 0.06] | −3.85 [−14.02, 6.32] | 1.33 *** [0.71, 1.95] | −0.97 [−2.42, 0.49] |
MSE | −0.52 ** [−0.85, −0.20] | −0.17 [−1.33, 1.00] | −0.31 [−1.10, 0.47] | −7.13 [−19.63, 5.36] | 0.52 [−0.36, 1.41] | −2.02 [−4.32, 0.27] |
CEG | −1.47 *** [−1.76, −1.18] | 0.01 [−1.10, 1.12] | −0.44 [−1.12, 0.25] | −23.61 *** [−34.43, −2.79] | 1.87 *** [1.14, 2.60] | −1.24 [−3.15, 0.67] |
Women | ||||||
APA | −0.31 ** [−0.53, −0.09] | 0.14 [−0.56, 0.84] | 0.42 [−0.02, 0.85] | −8.82 *** [−12.32, −5.32] | 0.96 *** [0.42, 1.50] | −1.38 ** [−2.32, −0.43] |
MSE | −0.47 * [−0.84, −0.11] | −1.85 ** [−3.17, −0.54] | −0.5 [−1.28, 0.28] | −9.66 ** [−16.06, −3.27] | 1.64 ** [0.44, 2.85] | −2.10 * [−3.90, −0.30] |
CEG | −0.82 *** [−1.13, −0.51] | −1.06 [−2.27, 0.15] | −0.06 [−0.83, 0.71] | −10.74 *** [−17.04, −4.44] | 3.11 *** [2.13, 4.09] | −2.65 *** [−3.84, −1.46] |
Model 3 | ||||||
WC | SBP | DBP | TG | HDL-C | FPG | |
Men | ||||||
APA | −0.60 *** [−0.85, −0.34] | −0.42 [−1.28, 0.44] | −0.55 [−1.10, 0.01] | −3.24 [−13.61, 7.13] | 1.38 *** [0.76, 2.00] | −0.74 [−2.20, 0.73] |
MSE | −0.58 *** [−0.91, −0.25] | 0.07 [−1.11, 1.24] | −0.39 [−1.18, 0.40] | −5.23 [−17.65, 7.19] | 0.46 [−0.43, 1.34] | −1.61 [−3.93, 0.71] |
CEG | −1.61 *** [−1.90, −1.32] | 0.44 [−0.68, 1.56] | −0.57 [−1.26, 0.12] | −20.55 *** [−31.24, −9.86] | 1.90 *** [1.16, 2.65] | −0.49 [−2.45, 1.47] |
Women | ||||||
APA | −0.29 ** [−0.50, −0.07] | 0.2 [−0.50, 0.90] | 0.37 [−0.06, 0.80] | −8.32 *** [−11.80, −4.84] | 0.86 ** [0.32, 1.40] | −1.29 ** [−2.23, −0.34] |
MSE | −0.44 * [−0.80, −0.07] | −1.59 * [−2.90, −0.28] | −0.48 [−1.26, 0.30] | −8.78 ** [−15.23, −2.33] | 1.48 * [0.27, 2.69] | −1.82 [−3.67, 0.03] |
CEG | −0.73 *** [−1.04, −0.42] | −0.82 [−2.03, 0.40] | −0.09 [−0.86, 0.69] | −9.87 ** [−16.28, −3.46] | 2.84 *** [1.85, 3.83] | −2.26 *** [−3.45, −1.07] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, D.H.; Cho, Y.G.; Park, H.A.; Koo, H.S. The Difference in the Prevalence of Metabolic Syndrome According to Meeting Guidelines for Aerobic Physical Activity and Muscle-Strengthening Exercise: A Cross-Sectional Study Performed Using the Korea National Health and Nutrition Examination Survey, 2014–2019. Nutrients 2022, 14, 5391. https://doi.org/10.3390/nu14245391
Kwon DH, Cho YG, Park HA, Koo HS. The Difference in the Prevalence of Metabolic Syndrome According to Meeting Guidelines for Aerobic Physical Activity and Muscle-Strengthening Exercise: A Cross-Sectional Study Performed Using the Korea National Health and Nutrition Examination Survey, 2014–2019. Nutrients. 2022; 14(24):5391. https://doi.org/10.3390/nu14245391
Chicago/Turabian StyleKwon, Du Ho, Young Gyu Cho, Hyun Ah Park, and Ho Seok Koo. 2022. "The Difference in the Prevalence of Metabolic Syndrome According to Meeting Guidelines for Aerobic Physical Activity and Muscle-Strengthening Exercise: A Cross-Sectional Study Performed Using the Korea National Health and Nutrition Examination Survey, 2014–2019" Nutrients 14, no. 24: 5391. https://doi.org/10.3390/nu14245391
APA StyleKwon, D. H., Cho, Y. G., Park, H. A., & Koo, H. S. (2022). The Difference in the Prevalence of Metabolic Syndrome According to Meeting Guidelines for Aerobic Physical Activity and Muscle-Strengthening Exercise: A Cross-Sectional Study Performed Using the Korea National Health and Nutrition Examination Survey, 2014–2019. Nutrients, 14(24), 5391. https://doi.org/10.3390/nu14245391