Serum Low Density Lipoprotein Cholesterol Concentration Is Not Dependent on Cholesterol Synthesis and Absorption in Healthy Humans
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Sanchez, R.; Chauhan, A.; Fazio, S.; Wong, N. Lipid treatment status and goal attainment among patients with atherosclerotic cardiovascular disease in the United States: A 2019 update. Am. J. Prev. Cardiol. 2022, 10, 100336. [Google Scholar] [CrossRef] [PubMed]
- Lütjohann, D.; Stellaard, F.; Mulder, M.T.; Sijbrands, E.J.G.; Weingartner, O. The emerging concept of “individualized cholesterol-lowering therapy”: A change in paradigm. Pharmacol. Ther. 2019, 199, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Grigore, L.; Norata, G.D.; Catapano, A.L. Combination therapy in cholesterol reduction: Focus on ezetimibe and statins. Vasc. Health Risk Manag. 2008, 4, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Westerink, J.; Deanfield, J.E.; Imholz, B.P.; Spiering, W.; Basart, D.C.; Coll, B.; Kastelein, J.J.; Visseren, F.L. High-dose statin monotherapy versus low-dose statin/ezetimibe combination on fasting and postprandial lipids and endothelial function in obese patients with the metabolic syndrome: The PANACEA study. Atherosclerosis 2013, 227, 118–124. [Google Scholar] [CrossRef]
- Tummala, R.; Gupta, M.; Devanabanda, A.R.; Bandyopadhyay, D.; Aronow, W.S.; Ray, K.K.; Mamas, M.; Ghosh, R.K. Bempedoic acid and its role in contemporary management of hyperlipidemia in atherosclerosis. Ann. Med. 2022, 54, 1287–1296. [Google Scholar] [CrossRef]
- Jasani, R.; Ahmad, Z.; Schneider, R.; Tujardon, C.; Basit, M.; Khera, A. Applying an LDL-C threshold-based approach to identify individuals with familial hypercholesterolemia. J. Clin. Lipidol. 2022, 16, 508–515. [Google Scholar] [CrossRef]
- Hobbs, H.H.; Brown, M.S.; Goldstein, J.L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1992, 1, 445–466. [Google Scholar] [CrossRef]
- Hobbs, H.H.; Russell, D.W.; Brown, M.S.; Goldstein, J.L. The LDL receptor locus in familial hypercholesterolemia: Mutational analysis of a membrane protein. Annu. Rev. Genet. 1990, 24, 133–170. [Google Scholar] [CrossRef]
- Stoekenbroek, R.M.; Lambert, G.; Cariou, B.; Hovingh, G.K. Inhibiting PCSK9—Biology beyond LDL control. Nat. Rev. Endocrinol. 2018, 15, 52–62. [Google Scholar] [CrossRef]
- Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Molecular biology of PCSK9: Its role in LDL metabolism. Trends Biochem. Sci. 2007, 32, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordestgaard, B.G.; Nicholls, S.J.; Langsted, A.; Ray, K.K.; Tybjaerg-Hansen, A. Advances in lipid-lowering therapy through gene-silencing technologies. Nat. Rev. Cardiol. 2018, 15, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L.; Pirillo, A.; Norata, G.D. New Pharmacological Approaches to Target PCSK9. Curr. Atheroscler. Rep. 2020, 22, 24. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Norata, G.D.; Catapano, A.L. LDL-Cholesterol-Lowering Therapy. Handb. Exp. Pharmacol. 2022, 270, 73–101. [Google Scholar] [CrossRef]
- Matthan, N.R.; Pencina, M.; LaRocque, J.M.; Jacques, P.F.; D’Agostino, R.B.; Schaefer, E.J.; Lichtenstein, A.H. Alterations in cholesterol absorption/synthesis markers characterize Framingham offspring study participants with CHD. J. Lipid Res. 2009, 50, 1927–1935. [Google Scholar] [CrossRef] [Green Version]
- Jakulj, L.; Mohammed, H.; van Dijk, T.H.; Boer, T.; Turner, S.; Groen, A.K.; Vissers, M.N.; Stroes, E.S. Plasma plant sterols serve as poor markers of cholesterol absorption in man. J. Lipid Res. 2013, 54, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Czubayko, F.; Beumers, B.; Lammsfuss, S.; Lütjohann, D.; von Bergmann, K. A simplified micro-method for quantification of fecal excretion of neutral and acidic sterols for outpatient studies in humans. J. Lipid Res. 1991, 32, 1861–1867. [Google Scholar] [CrossRef]
- Sudhop, T.; Lütjohann, D.; Kodal, A.; Igel, M.; Tribble, D.L.; Shah, S.; Perevozskaya, I.; von Bergmann, K. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 2002, 106, 1943–1948. [Google Scholar] [CrossRef] [Green Version]
- Sudhop, T.; Lütjohann, D.; von Bergmann, K. Sterol transporters: Targets of natural sterols and new lipid lowering drugs. Pharmacol. Ther. 2005, 105, 333–341. [Google Scholar] [CrossRef]
- Lütjohann, D.; Meyer, S.; von Bergmann, K.; Stellaard, F. Cholesterol Absorption and Synthesis in Vegetarians and Omnivores. Mol. Nutr. Food Res. 2018, 62, e1700689. [Google Scholar] [CrossRef]
- Sudhop, T.; Reber, M.; Tribble, D.; Sapre, A.; Taggart, W.; Gibbons, P.; Musliner, T.; von Bergmann, K.; Lütjohann, D. Changes in cholesterol absorption and cholesterol synthesis caused by ezetimibe and/or simvastatin in men. J. Lipid Res. 2009, 50, 2117–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lütjohann, D.; Meese, C.O.; Crouse, J.R., 3rd; von Bergmann, K. Evaluation of deuterated cholesterol and deuterated sitostanol for measurement of cholesterol absorption in humans. J. Lipid Res. 1993, 34, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Stellaard, F.; Lütjohann, D. The Interpretation of Cholesterol Balance Derived Synthesis Data and Surrogate Noncholesterol Plasma Markers for Cholesterol Synthesis under Lipid Lowering Therapies. Cholesterol 2017, 2017, 5046294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, D.S.; Jones, P.J.; Myrie, S.B.; Plat, J.; Lütjohann, D. Methodological considerations for the harmonization of non-cholesterol sterol bio-analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 957, 116–122. [Google Scholar] [CrossRef]
- Gylling, H.; Miettinen, T.A. The effect of cholesterol absorption inhibition on low density lipoprotein cholesterol level. Atherosclerosis 1995, 117, 305–308. [Google Scholar] [CrossRef]
- Miettinen, T.A.; Kesaniemi, Y.A. Cholesterol absorption: Regulation of cholesterol synthesis and elimination and within-population variations of serum cholesterol levels. Am. J. Clin. Nutr. 1989, 49, 629–635. [Google Scholar] [CrossRef]
- Miettinen, T.A.; Tilvis, R.S.; Kesaniemi, Y.A. Serum cholestanol and plant sterol levels in relation to cholesterol metabolism in middle-aged men. Metabolism 1989, 38, 136–140. [Google Scholar] [CrossRef]
- Silbernagel, G.; Chapman, M.J.; Genser, B.; Kleber, M.E.; Fauler, G.; Scharnagl, H.; Grammer, T.B.; Boehm, B.O.; Makela, K.M.; Kahonen, M.; et al. High intestinal cholesterol absorption is associated with cardiovascular disease and risk alleles in ABCG8 and ABO: Evidence from the LURIC and YFS cohorts and from a meta-analysis. J. Am. Coll. Cardiol. 2013, 62, 291–299. [Google Scholar] [CrossRef]
- Kesaniemi, Y.A.; Miettinen, T.A. Cholesterol absorption efficiency regulates plasma cholesterol level in the Finnish population. Eur. J. Clin. Investig. 1987, 17, 391–395. [Google Scholar] [CrossRef]
- Vuoristo, M.; Miettinen, T.A. Absorption, metabolism, and serum concentrations of cholesterol in vegetarians: Effects of cholesterol feeding. Am. J. Clin. Nutr. 1994, 59, 1325–1331. [Google Scholar] [CrossRef]
- Quintao, E.C.R. Plasma Non-cholesterol Sterols as Markers of Cholesterol Synthesis and Intestinal Absorption: A Critical Review. Curr. Pharm. Des. 2020, 26, 5152–5162. [Google Scholar] [CrossRef] [PubMed]
- Stellaard, F. From Dietary Cholesterol to Blood Cholesterol, Physiological Lipid Fluxes, and Cholesterol Homeostasis. Nutrients 2022, 14, 1643. [Google Scholar] [CrossRef] [PubMed]
- Kern, F., Jr. Normal plasma cholesterol in an 88-year-old man who eats 25 eggs a day: Mechanisms of adaptation. N. Engl. J. Med. 1991, 324, 896–899. [Google Scholar] [CrossRef]
- Stellaard, F.; von Bergmann, K.; Sudhop, T.; Lütjohann, D. The value of surrogate markers to monitor cholesterol absorption, synthesis and bioconversion to bile acids under lipid lowering therapies. J. Steroid. Biochem. Mol. Biol. 2017, 169, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Vrablik, M.; Corsini, A.; Tumova, E. Beta-blockers for Atherosclerosis Prevention: A Missed Opportunity? Curr. Atheroscler. Rep. 2022, 24, 161–169. [Google Scholar] [CrossRef]
- Descamps, O.S.; De Sutter, J.; Guillaume, M.; Missault, L. Where does the interplay between cholesterol absorption and synthesis in the context of statin and/or ezetimibe treatment stand today? Atherosclerosis 2011, 217, 308–321. [Google Scholar] [CrossRef]
Study 1 | Study 2 | Study 3 | |
---|---|---|---|
N | 73 | 37 | 175 |
Sex | 37 F, 36 M | M | 50 F, 125 M |
Age (years) | 25 ± 3 | 41 ± 8 | 64 ± 8 |
Weight (kg) | 67 ± 13 | 84 ± 10 | 82 ± 16 |
BMI (kg/m2) | 22 ± 3 | 25 ± 2 | 28 ± 5 |
TC (mg/dL) | 179 ± 28 | 233 ± 28 | 204 ± 34 |
LDL-C (mg/dL) | 105 ± 22 | 157 ± 22 | 129 ± 31 |
HDL-C (g/dL) | 57 ± 14 | 53 ± 13 | 48 ± 15 |
TG (mg/dL) | 89 ± 28 | 118 ± 43 | 141 ± 101 |
Lathosterol | Campesterol | R_Lathosterol | R_Campesterol | Synthesis | FAR | |
---|---|---|---|---|---|---|
Study 1 Omnivores (n = 19) | 0.32 (+) | 0.13 | 0.04 | 0.03 | 0.06 | 0.01 |
Study 1 Lacto-ovo vegetarians (n = 18) | 0.27 (+) | 0.20 | 0.01 | 0.04 | 0.02 | 0.01 |
Study 1 Lacto vegetarians (n = 17) | 0.03 | 0.03 | 0.12 | 0.09 | 0.02 | 0.22 |
Study 1 Pure vegans (19) | 0.09 | 0.03 | 0.03 | 0.04 | 0.18 | 0.04 |
Study 1 Females (37) | 0.03 | 0.12 (+) | 0.01 | 0.01 | 0.06 | 0.05 |
Study 1 Males (36) | 0.03 | 0.00 | 0.03 | 0.01 | 0.04 | 0.03 |
Study 2 All subjects (n = 37) | 0.00 | 0.20 (+) | 0.04 | 0.06 | 0.02 | 0.10 |
Study 3 All subjects (n = 171) | 0.05 (+) | 0.13 (+) | 0.00 | 0.00 | ||
Study 3 Females (n = 49) | 0.00 | 0.01 | 0.07 | 0.05 | ||
Study 3 Males (n = 171) | 0.10 (+) | 0.19 (+) | 0.00 | 0.00 | ||
Study 3 Age 30 to 59 years (n = 48) | 0.20 (+) | 0.16 (+) | 0.00 | 0.02 | ||
Study 3 Age 70 to 82 years (n = 53) | 0.06 | 0.26 (+) | 0.00 | 0.03 | ||
Study 3 BMI 20 to 25 (n = 48) | 0.01 | 0.06 | 0.01 | 0.04 | ||
Study 3 BMI 30 to 47 (n = 54) | 0.04 | 0.10 (+) | 0.03 | 0.00 |
Study 1 | Study 1 Males | Study 2 | p | |
---|---|---|---|---|
N | 73 | 36 | 37 | |
Sex | 37 F, 36 M | 36M | 37M | |
Age (years) | 25 (23 to 27) | 25 (24 to 26) | 41 (37 to 47) | <0.01 |
Weight (kg) | 64 (58 to 74) | 73 (65 to 81) | 84 (75 to 91) | <0.01 |
BMI (kg/m2) | 21 (20 to 23) | 22 (20 to 24) | 25 (24 to2 7) | <0.01 |
TC (mg/dL) | 180 (159 to 200) | 171 (149 to 191) | 231 (213 to 252) | <0.01 |
LDL-C (mg/dL) | 100 (89 to 124) | 101 (84 to 121) | 155 (139 to 174) | <0.01 |
HDL-C (g/dL) | 54 (47 to 67) | 50 (43 to 56) | 50 (46 to 54) | 0.98 |
TG (mg/dL) | 91 (67 to 107) | 93 (64 to 114) | 109 (88 to 144) | <0.01 |
Lath (mg/dL) | 0.26 (0.18 to 0.35) | 0.28 (0.19 to 0.36) | 0.37 (0.29 to 0.44) | <0.01 |
Camp (mg/dL) | 0.34 (0.24 to 0.42) | 0.34 (0.24 to 0.43) | 0.58 (0.33 to 0.70) | <0.01 |
R_Lath (mg/g) | 1.5 (1.1 to 1.9) | 1.6 (1.3 to 2.2) | 1.7 (1.1 to 2.1) | 0.56 |
R_Camp (mg/g) | 1.9 (1.5 to 2.6) | 2.2 (1.6 to 2.7) | 2.5 (1.4 to 2.9) | 0.79 |
FAR (%) | 46 (40 to 57) | 47 (41 to 58) | 52 (43 to 58) | 0.59 |
Synthesis (mg/d) | 917 (752 to 1126) | 1049 (832 to 1360) | 854 (686 to 1328) | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stellaard, F.; Baumgartner, S.; Mensink, R.; Winkens, B.; Plat, J.; Lütjohann, D. Serum Low Density Lipoprotein Cholesterol Concentration Is Not Dependent on Cholesterol Synthesis and Absorption in Healthy Humans. Nutrients 2022, 14, 5370. https://doi.org/10.3390/nu14245370
Stellaard F, Baumgartner S, Mensink R, Winkens B, Plat J, Lütjohann D. Serum Low Density Lipoprotein Cholesterol Concentration Is Not Dependent on Cholesterol Synthesis and Absorption in Healthy Humans. Nutrients. 2022; 14(24):5370. https://doi.org/10.3390/nu14245370
Chicago/Turabian StyleStellaard, Frans, Sabine Baumgartner, Ronald Mensink, Bjorn Winkens, Jogchum Plat, and Dieter Lütjohann. 2022. "Serum Low Density Lipoprotein Cholesterol Concentration Is Not Dependent on Cholesterol Synthesis and Absorption in Healthy Humans" Nutrients 14, no. 24: 5370. https://doi.org/10.3390/nu14245370
APA StyleStellaard, F., Baumgartner, S., Mensink, R., Winkens, B., Plat, J., & Lütjohann, D. (2022). Serum Low Density Lipoprotein Cholesterol Concentration Is Not Dependent on Cholesterol Synthesis and Absorption in Healthy Humans. Nutrients, 14(24), 5370. https://doi.org/10.3390/nu14245370