Association between Dietary Diversity Score and Metabolic Syndrome in Korean Adults: A Community-Based Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. DDS
2.3. Measurements
2.4. Definition of MetS
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Associations between DDS and Food Consumption
3.3. Associations between DDS and Nutrient Intake
3.4. Longitudinal Association of DDS with the Risk of MetS and Its Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.; Lim, M.; Kim, J. Fruit and vegetable consumption and the metabolic syndrome: A systematic review and dose–response meta-analysis. Br. J. Nutr. 2019, 122, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Kim, J. Association between fruit and vegetable consumption and risk of metabolic syndrome determined using the Korean Genome and Epidemiology Study (KoGES). Eur. J. Nutr. 2020, 59, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, J.H.; Kang, D.R.; Kim, J.Y.; Koh, K.K. Metabolic syndrome fact sheet 2021: Executive report. CardioMetabolic Syndr. J. 2021, 1, 125–134. [Google Scholar] [CrossRef]
- Al-Qawasmeh, R.H.; Tayyem, R.F. Dietary and lifestyle risk factors and metabolic syndrome: Literature review. Curr. Res. Nutr. Food Sci. J. 2018, 6, 594–608. [Google Scholar] [CrossRef] [Green Version]
- Qorbani, M.; Mahdavi-Gorabi, A.; Khatibi, N.; Ejtahed, H.-S.; Khazdouz, M.; Djalalinia, S.; Sahebkar, A.; Esmaeili-Abdar, M.; Hasani, M. Dietary diversity score and cardio-metabolic risk factors: An updated systematic review and meta-analysis. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2021, 27, 85–100. [Google Scholar] [CrossRef]
- Patterson, R.E.; Haines, P.S.; Popkin, B.M. Diet quality index: Capturing a multidimensional behavior. J. Am. Diet. Assoc. 1994, 94, 57–64. [Google Scholar] [CrossRef]
- Steyn, N.P.; Nel, J.H.; Nantel, G.; Kennedy, G.; Labadarios, D. Food variety and dietary diversity scores in children: Are they good indicators of dietary adequacy? Public Health Nutr. 2006, 9, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Hatløy, A.; Torheim, L.E.; Oshaug, A. Food variety—A good indicator of nutritional adequacy of the diet? A case study from an urban area in Mali, West Africa. Eur. J. Clin. Nutr. 1998, 52, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Azadbakht, L.; Mirmiran, P.; Azizi, F. Dietary diversity score is favorably associated with the metabolic syndrome in Tehranian adults. Int. J. Obes. 2005, 29, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L.; Crabtree, B.F.; Evans, D.K. Exploratory study of the relationship between hypertension and diet diversity among Saba Islanders. Public Health Rep. 1992, 107, 426. [Google Scholar]
- Arganini, C.; Saba, A.; Comitato, R.; Virgili, F.; Turrini, A. Gender differences in food choice and dietary intake in modern western societies. Public Health Soc. Behav. Health 2012, 4, 83–102. [Google Scholar]
- Rolls, B.J.; Fedoroff, I.C.; Guthrie, J.F. Gender differences in eating behavior and body weight regulation. Health Psychol. 1991, 10, 133. [Google Scholar] [CrossRef]
- Provencher, V.; Drapeau, V.; Tremblay, A.; Després, J.P.; Lemieux, S. Eating behaviors and indexes of body composition in men and women from the Quebec family study. Obes. Res. 2003, 11, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Baik, I.; Lee, M.; Jun, N.-R.; Lee, J.-Y.; Shin, C. A healthy dietary pattern consisting of a variety of food choices is inversely associated with the development of metabolic syndrome. Nutr. Res. Pract. 2013, 7, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Vadiveloo, M.; Parkeh, N.; Mattei, J. Greater healthful food variety as measured by the US Healthy Food Diversity index is associated with lower odds of metabolic syndrome and its components in US adults. J. Nutr. 2015, 145, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Han, B.-G.; Group, K. Cohort profile: The Korean genome and epidemiology study (KoGES) consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.; Park, M.; Joo, Y.; Kimm, K.; Park, C.; Kim, D. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Conklin, A.I.; Monsivais, P.; Khaw, K.-T.; Wareham, N.J.; Forouhi, N.G. Dietary diversity, diet cost, and incidence of type 2 diabetes in the United Kingdom: A prospective cohort study. PLoS Med. 2016, 13, e1002085. [Google Scholar] [CrossRef] [Green Version]
- Health, M.O.; Welfare, T.K.N.S. Dietary Reference Intakes for Koreans 2015; Ministry of Health and Welfare Sejong: Sejong, Republic of Korea, 2015. [Google Scholar]
- Global Diet Quality Project. Available online: https://www.globaldietquality.org/about (accessed on 15 November 2022).
- Ma, S.; Herforth, A.W.; Vogliano, C.; Zou, Z. Most Commonly-Consumed Food Items by Food Group, and by Province, in China: Implications for Diet Quality Monitoring. Nutrients 2022, 14, 1754. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Tian, X.; Xu, X.; Zhang, K.; Wang, H. Gender difference of metabolic syndrome and its association with dietary diversity at different ages. Oncotarget 2017, 8, 73568. [Google Scholar] [CrossRef] [Green Version]
- Rochlani, Y.; Pothineni, N.V.; Mehta, J.L. Metabolic syndrome: Does it differ between women and men? Cardiovasc. Drugs Ther. 2015, 29, 329–338. [Google Scholar] [CrossRef]
- Tortosa, A.; Bes-Rastrollo, M.; Sanchez-Villegas, A.; Basterra-Gortari, F.J.; Nuñez-Cordoba, J.M.; Martinez-Gonzalez, M.A. Mediterranean diet inversely associated with the incidence of metabolic syndrome: The SUN prospective cohort. Diabetes Care 2007, 30, 2957–2959. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, F.; Moludi, J.; Yagin, N.L.; Alizadeh, M.; Nachvak, S.M.; Abdollahzad, H.; Mirzaei, K.; Mostafazadeh, M. The relation of Dietary diversity score and food insecurity to metabolic syndrome features and glucose level among pre-diabetes subjects. Prim. Care Diabetes 2018, 12, 338–344. [Google Scholar] [CrossRef]
- Azadbakht, L.; Esmaillzadeh, A. Dietary diversity score is related to obesity and abdominal adiposity among Iranian female youth. Public Health Nutr. 2011, 14, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Farhangi, M.A.; Jahangiry, L. Dietary diversity score is associated with cardiovascular risk factors and serum adiponectin concentrations in patients with metabolic syndrome. BMC Cardiovasc. Disord. 2018, 18, 68. [Google Scholar] [CrossRef] [Green Version]
- Karimbeiki, R.; Pourmasoumi, M.; Feizi, A.; Abbasi, B.; Hadi, A.; Rafie, N.; Safavi, S. Higher dietary diversity score is associated with obesity: A case–control study. Public Health 2018, 157, 127–134. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Rigi, S.; Shayanfar, M.; Mohammad-Shirazi, M.; Sharifi, G.; Esmaillzadeh, A. Refined grains consumption is associated with a greater odds of glioma. Nutr. Neurosci. 2020, 25, 432–440. [Google Scholar] [CrossRef]
- Ludwig, D.S. Dietary glycemic index and obesity. J. Nutr. 2000, 130, 280S–283S. [Google Scholar] [CrossRef] [Green Version]
- Brand-Miller, J.C.; Holt, S.H.; Pawlak, D.B.; McMillan, J. Glycemic index and obesity. Am. J. Clin. Nutr. 2002, 76, 281S–285S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salari-Moghaddam, A.; Keshteli, A.H.; Haghighatdoost, F.; Esmaillzadeh, A.; Adibi, P. Dietary glycemic index and glycemic load in relation to general obesity and central adiposity among adults. Clin. Nutr. 2019, 38, 2936–2942. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Lee, J.E.; Song, W.O.; Paik, H.-Y.; Song, Y. Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J. Acad. Nutr. Diet. 2014, 114, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Radhika, G.; van Dam, R.M.; Sudha, V.; Ganesan, A.; Mohan, V. Refined grain consumption and the metabolic syndrome in urban Asian Indians (Chennai Urban Rural Epidemiology Study 57). Metabolism 2009, 58, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Park, S.; Ham, J.-O.; Lee, B.-K. Effects of total vitamin A, vitamin C, and fruit intake on risk for metabolic syndrome in Korean women and men. Nutrition 2015, 31, 111–118. [Google Scholar] [CrossRef]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018, 9, 17181. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, H.; Batra, M.; Abuaysheh, S.; Green, K.; Makdissi, A.; Kuhadiya, N.D.; Chaudhuri, A.; Dandona, P. Antiinflammatory and ROS suppressive effects of the addition of fiber to a high-fat high-calorie meal. J. Clin. Endocrinol. Metab. 2017, 102, 858–869. [Google Scholar] [CrossRef] [Green Version]
- C Fernandez-Garcia, J.; Cardona, F.; Tinahones, F.J. Inflammation, oxidative stress and metabolic syndrome: Dietary modulation. Curr. Vasc. Pharmacol. 2013, 11, 906–919. [Google Scholar] [CrossRef]
- Wei, B.; Liu, Y.; Lin, X.; Fang, Y.; Cui, J.; Wan, J. Dietary fiber intake and risk of metabolic syndrome: A meta-analysis of observational studies. Clin. Nutr. 2018, 37, 1935–1942. [Google Scholar] [CrossRef]
- Kim, H.J.; Lim, S.Y.; Lee, J.S.; Park, S.; Shin, A.; Choi, B.Y.; Shimazu, T.; Inoue, M.; Tsugane, S.; Kim, J. Fresh and pickled vegetable consumption and gastric cancer in Japanese and Korean populations: A meta-analysis of observational studies. Cancer Sci. 2010, 101, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.; Shin, Y.; Kim, Y. Dietary Pattern Accompanied with a High Food Variety Score Is Negatively Associated with Frailty in Older Adults. Nutrients 2021, 13, 3164. [Google Scholar] [CrossRef] [PubMed]
- Ha, K.; Song, Y.; Kim, H.-K. Regional disparities in the associations of cardiometabolic risk factors and healthy dietary factors in Korean adults. Nutr. Res. Pract. 2020, 14, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Tørris, C.; Molin, M.; Cvancarova Småstuen, M. Fish consumption and its possible preventive role on the development and prevalence of metabolic syndrome-a systematic review. Diabetol. Metab. Syndr. 2014, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noel, S.E.; Newby, P.; Ordovas, J.M.; Tucker, K.L. Adherence to an (n-3) fatty acid/fish intake pattern is inversely associated with metabolic syndrome among Puerto Rican adults in the Greater Boston area. J. Nutr. 2010, 140, 1846–1854. [Google Scholar] [CrossRef] [Green Version]
- Balvers, M.G.; Verhoeckx, K.C.; Plastina, P.; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F. Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties. Biochim. Et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2010, 1801, 1107–1114. [Google Scholar] [CrossRef]
- Hall, W. The future for long chain n-3 PUFA in the prevention of coronary heart disease: Do we need to target non-fish-eaters? Proc. Nutr. Soc. 2017, 76, 408–418. [Google Scholar] [CrossRef] [Green Version]
- McGrane, M.M.; Essery, E.; Obbagy, J.; Lyon, J.; MacNeil, P.; Spahn, J.; van Horn, L. Dairy consumption, blood pressure, and risk of hypertension: An evidence-based review of recent literature. Curr. Cardiovasc. Risk Rep. 2011, 5, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Samara, A.; Herbeth, B.; Ndiaye, N.C.; Fumeron, F.; Billod, S.; Siest, G.; Visvikis-Siest, S. Dairy product consumption, calcium intakes, and metabolic syndrome–related factors over 5 years in the STANISLAS study. Nutrition 2013, 29, 519–524. [Google Scholar] [CrossRef]
- Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, F. Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am. J. Clin. Nutr. 2005, 82, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Yun, K.E.; Lee, G.E.; Cho, H.J.; Park, H.S. A cross-sectional study of socioeconomic status and the metabolic syndrome in Korean adults. Ann. Epidemiol. 2007, 17, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Loucks, E.B.; Rehkopf, D.H.; Thurston, R.C.; Kawachi, I. Socioeconomic disparities in metabolic syndrome differ by gender: Evidence from NHANES III. Ann. Epidemiol. 2007, 17, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.G.; Tompkins, C.; Blumenthal, R.S.; Mora, S. The metabolic syndrome in women. Cardiol. Rev. 2006, 14, 286–291. [Google Scholar] [CrossRef] [PubMed]
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
≤3 (n = 524) | 4 (n = 1156) | 5 (n = 1144) | p-Value | ≤3 (n = 297) | 4 (n = 925) | 5 (n = 1422) | p-Value | |
Age (years) | 52.4 ± 0.39 | 51.4 ± 0.26 | 49.8 ± 0.24 | <0.001 | 51.7 ± 0.54 | 50.2 ± 0.28 | 48.7 ± 0.21 | <0.001 |
Regular exercise (%) | 325 (62.0) | 694 (60.0) | 687 (60.1) | 0.001 | 179 (60.3) | 489 (52.9) | 779 (54.8) | <0.001 |
Current alcohol consumption (%) | 378 (72.1) | 843 (72.9) | 815 (71.2) | 0.763 | 73 (24.6) | 287 (31.0) | 442 (31.1) | 0.104 |
Current smoking status (%) | 289 (55.2) | 620 (53.6) | 562 (49.1) | <0.001 | 12 (4.04) | 43 (4.65) | 42 (2.96) | 0.139 |
Education level (≥high school, %) | 258 (49.3) | 641 (55.5) | 738 (64.5) | <0.001 | 82 (27.6) | 324 (35.0) | 699 (49.1) | <0.001 |
Household income (>2 million KRW, %) | 180 (34.4) | 456 (39.4) | 548 (47.9) | <0.001 | 58 (19.5) | 312 (33.7) | 645 (45.4) | <0.001 |
Postmenopausal status (%) | - | - | - | - | 165 (55.6) | 473 (51.1) | 664 (46.7) | 0.007 |
Family history of diabetes, hypertension, and dyslipidemia (%) | 109 (20.8) | 258 (22.3) | 245 (21.4) | 0.755 | 75 (25.2) | 244 (26.3) | 387 (27.2) | 0.756 |
BMI (kg/m2) | 23.3 ± 0.12 | 23.3 ± 0.08 | 23.5 ± 0.08 | 0.037 | 24.0 ± 0.18 | 23.7 ± 0.10 | 23.8 ± 0.08 | 0.474 |
SBP (mmHg) | 119.5 ± 0.65 | 117.9 ± 0.44 | 117.0 ± 0.44 | 0.008 | 113.9 ± 0.89 | 113.0 ± 0.50 | 111.8 ± 0.41 | 0.043 |
DBP (mmHg) | 80.3 ± 0.44 | 79.4 ± 0.30 | 78.9 ± 0.30 | 0.026 | 76.0 ± 0.58 | 74.5 ± 0.33 | 73.9 ± 0.27 | 0.003 |
Total cholesterol (mg/dL) | 187.2 ± 1.55 | 188.4 ± 1.04 | 191.4 ± 1.05 | 0.072 | 184.4 ± 1.96 | 184.9 ± 1.11 | 186.3 ± 0.90 | 0.308 |
HDL-C (mg/dL) | 45.8 ± 0.44 | 45.6 ± 0.29 | 45.7 ± 0.30 | 0.869 | 48.4 ± 0.58 | 48.8 ± 0.33 | 48.9 ± 0.27 | 0.705 |
LDL-C (mg/dL) | 109.9 ± 1.49 | 112.6 ± 1.00 | 116.6 ± 1.01 | 0.001 | 113.3 ± 1.74 | 113.2 ± 0.99 | 114.9 ± 0.80 | 0.209 |
Triglyceride (mg/dL) | 157.6 ± 4.18 | 150.9 ± 2.82 | 145.8 ± 2.83 | 0.033 | 114.0 ± 2.90 | 114.4 ± 1.64 | 112.7 ± 1.32 | 0.777 |
Fasting glucose (mg/dL) | 84.7 ± 0.58 | 84.9 ± 0.39 | 85.7 ± 0.39 | 0.389 | 82.3 ± 0.60 | 80.6 ± 0.34 | 80.8 ± 0.28 | 0.068 |
HbA1c (%) | 5.57 ± 0.02 | 5.57 ± 0.01 | 5.56 ± 0.01 | 0.989 | 5.54 ± 0.02 | 5.49 ± 0.01 | 5.50 ± 0.01 | 0.351 |
hs-CRP (mg/dL) | 0.30 ± 0.03 | 0.23 ± 0.02 | 0.23 ± 0.02 | 0.071 | 0.21 ± 0.02 | 0.18 ± 0.01 | 0.18 ± 0.01 | 0.755 |
Triglyceride/HDL-C | 3.71 ± 0.12 | 3.59 ± 0.08 | 3.47 ± 0.08 | 0.153 | 2.51 ± 0.09 | 2.50 ± 0.05 | 2.47 ± 0.04 | 0.842 |
Atherogenic index | 3.23 ± 0.05 | 3.29 ± 0.03 | 3.35 ± 0.03 | 0.280 | 2.91 ± 0.05 | 2.90 ± 0.03 | 2.92 ± 0.02 | 0.776 |
Food Consumption (g/1000 kcal) | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
≤3 (n = 524) | 4 (n = 1156) | 5 (n = 1144) | p-Trend | ≤3 (n = 297) | 4 (n = 925) | 5 (n = 1422) | p-Trend | |
Grains | 476.4 ± 2.96 | 426.3 ± 1.98 | 384.8 ± 2.00 | <0.0001 | 493.8 ± 4.21 | 427.6 ± 2.36 | 378.7 ± 1.92 | <0.0001 |
Whole grains | 130.6 ± 6.45 | 115.2 ± 4.31 | 108.1 ± 4.37 | 0.0165 | 168. 9 ± 9.48 | 188.1 ± 5.31 | 166.1 ± 4.32 | 0.0051 |
Refined grains | 328.2 ± 7.43 | 289.6 ± 4.97 | 251.4 ± 5.03 | <0.0001 | 300.7 ± 10.2 | 211.9 ± 5.75 | 181.3 ± 4.67 | <0.0001 |
Meat, fish, eggs, and beans | 67.4 ± 1.65 | 79.5 ± 1.10 | 85.9 ± 1.12 | <0.0001 | 58.3 ± 2.17 | 72.2 ± 1.21 | 79.0 ± 0.98 | <0.0001 |
Meat | 28.0 ± 0.95 | 32.0 ± 0.63 | 33.5 ± 0.64 | <0.0001 | 20.2 ± 1.15 | 24.0 ± 0.64 | 26.5 ± 0.52 | <0.0001 |
Fish | 17.5 ± 0.69 | 20.2 ± 0.46 | 22.8 ± 0.47 | <0.0001 | 14.9 ± 0.94 | 20.6 ± 0.52 | 23.5 ± 0.43 | <0.0001 |
Vegetables | 175.2 ± 4.38 | 171.5 ± 2.93 | 176.7 ± 2.97 | 0.4517 | 170.8 ± 5.52 | 174.3 ± 3.09 | 175.4 ± 2.51 | 0.7561 |
Non-salted vegetables | 52.8 ± 2.49 | 58.2 ± 1.67 | 71.0 ± 1.69 | <0.0001 | 53.4 ± 3.14 | 69.3 ± 1.76 | 81.2 ± 1.43 | <0.0001 |
Salted vegetables | 122.4 ± 3.36 | 113.2 ± 2.25 | 105.7 ± 2.28 | 0.0002 | 117.4 ± 4.20 | 104.9 ± 2.35 | 94.2 ± 1.91 | <0.0001 |
Fruits | 37.4 ± 3.96 | 89.3 ± 2.65 | 143.6 ± 2.69 | <0.0001 | 50.1 ± 7.64 | 119.2 ± 4.28 | 185.2 ± 3.48 | <0.0001 |
Milk | 5.01 ± 2.19 | 38.4 ± 1.46 | 68.6 ± 1.48 | <0.0001 | 6.50 ± 3.79 | 49.0 ± 2.12 | 82.2 ± 1.72 | <0.0001 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
≤3 (n = 524) | 4 (n = 1156) | 5 (n = 1144) | p-Trend | ≤3 (n = 297) | 4 (n = 925) | 5 (n = 1422) | p-Trend | |
Energy (kcal) | 1685.8 ± 19.6 | 1900.6 ± 15.8 | 2227.0 ± 15.9 | <0.0001 | 1485.5 ± 33.4 | 1748.7 ± 18.9 | 2049.1 ± 15.3 | <0.0001 |
Carbohydrate (g) | 181.6 ± 0.71 | 175.4 ± 0.48 | 170.8 ± 0.48 | <0.0001 | 189.3 ± 0.93 | 180.0 ± 0.53 | 174.3 ± 0.43 | <0.0001 |
Protein (g) | 31.5 ± 0.24 | 33.6 ± 0.16 | 35.0 ± 0.16 | <0.0001 | 30.1 ± 0.32 | 33.3 ± 0.18 | 35.0 ± 0.15 | <0.0001 |
Fat (g) | 14.3 ± 0.24 | 16.7 ± 0.16 | 18.7 ± 0.16 | <0.0001 | 11.4 ± 0.32 | 15.0 ± 0.18 | 17.5 ± 0.15 | <0.0001 |
Calcium (g) | 174.4 ± 3.51 | 221.7 ± 2.37 | 268.4 ± 2.38 | <0.0001 | 169.9 ± 5.49 | 238.2 ± 3.11 | 285.9 ± 2.51 | <0.0001 |
Phosphorus (mg) | 469.1 ± 3.38 | 504.9 ± 2.27 | 534.2 ± 2.20 | <0.0001 | 466.1 ± 4.89 | 529.9 ± 2.77 | 557.1 ± 2.24 | <0.0001 |
Iron (mg) | 4.84 ± 0.06 | 5.22 ± 0.04 | 5.62 ± 0.04 | <0.0001 | 4.84 ± 0.08 | 5.56 ± 0.05 | 5.96 ± 0.04 | <0.0001 |
Potassium (mg) | 1089.1 ± 13.90 | 1210.8 ± 9.36 | 1337.7 ± 9.41 | <0.0001 | 1082.3 ± 21.06 | 1286.7 ± 11.93 | 1422.8 ± 9.62 | <0.0001 |
Vitamin A (µg RE) | 227.4 ± 6.81 | 260.1 ± 4.59 | 301.4 ± 4.61 | <0.0001 | 205.0 ± 9.41 | 258.0 ± 5.33 | 293.1 ± 4.30 | <0.0001 |
Sodium (mg) | 1750.8 ± 31.7 | 1705.7 ± 21.3 | 1673.6 ± 21.4 | 0.4080 | 1670.1 ± 41.1 | 1642.6 ± 23.3 | 1585.0 ± 18.8 | 0.3174 |
Vitamin B1 (mg) | 0.60 ± 0.006 | 0.63 ± 0.004 | 0.67 ± 0.004 | <0.0001 | 0.55 ± 0.007 | 0.62 ± 0.004 | 0.65 ± 0.003 | <0.0001 |
Vitamin B2 (mg) | 0.42 ± 0.005 | 0.49 ± 0.003 | 0.56 ± 0.003 | <0.0001 | 0.39 ± 0.008 | 0.49 ± 0.004 | 0.57 ± 0.004 | <0.0001 |
Niacin (mg) | 7.75 ± 0.07 | 8.02 ± 0.05 | 8.24 ± 0.05 | <0.0001 | 7.29 ± 0.09 | 7.88 ± 0.05 | 8.22 ± 0.04 | <0.0001 |
Vitamin C (mg) | 43.5 ± 1.24 | 54.1 ± 0.84 | 68.8 ± 0.84 | <0.0001 | 46.8 ± 2.16 | 62.4 ±1.23 | 76.4 ± 0.99 | <0.0001 |
Zinc (µg) | 4.21 ± 0.05 | 4.44 ± 0.03 | 4.69 ± 0.03 | <0.0001 | 3.98 ± 0.06 | 4.33 ± 0.04 | 4.58 ± 0.03 | <0.0001 |
Vitamin B6 (mg) | 0.84 ± 0.008 | 0.89 ± 0.005 | 0.94 ± 0.005 | <0.0001 | 0.84 ± 0.011 | 0.92 ± 0.006 | 0.97 ± 0.005 | <0.0001 |
Folate (µg) | 108.4 ±1.85 | 117.2 ±1.24 | 128.5 ± 1.25 | <0.0001 | 110.0 ± 2.59 | 127.0 ± 1.47 | 136.5 ± 1.18 | <0.0001 |
Retinol (µg) | 17.9 ± 0.94 | 31.3 ±0.63 | 42.3 ±0.64 | <0.0001 | 16.2 ± 1.42 | 31.6 ± 0.80 | 44.1 ± 0.65 | <0.0001 |
β-Carotene (µg) | 1224.9 ± 42.7 | 1336.2 ± 28.8 | 1530.0 ± 28.9 | <0.0001 | 1099.9 ± 58.1 | 1324.8 ± 32.9 | 1462.4 ± 26.6 | <0.0001 |
Fiber (g) | 2.32 ± 0.05 | 3.36 ± 0.03 | 3.50 ± 0.03 | <0.0001 | 3.40 ± 0.07 | 3.67 ± 0.04 | 3.78 ± 0.03 | <0.0001 |
Vitamin E (mg) | 4.02 ± 0.06 | 4.47 ± 0.04 | 4.96 ± 0.04 | <0.0001 | 3.94 ± 0.09 | 4.58 ± 0.05 | 5.18 ± 0.04 | <0.0001 |
Cholesterol (mg) | 64.4 ± 2.08 | 86.4 ± 1.40 | 100.7 ± 1.41 | <0.0001 | 58.3 ± 2.95 | 84.9 ± 1.67 | 101.3 ± 1.35 | <0.0001 |
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
≤3 (n = 524) | 4 (n = 1156) | 5 (n = 1144) | p-Trend | ≤3 (n = 297) | 4 (n = 925) | 5 (n = 1422) | p-Trend | |
Metabolic syndrome, % (n) | 197 (37.6) | 367 (31.8) | 361 (31.6) | 0.025 | 113 (38.1) | 336 (36.3) | 501 (35.2) | 0.677 |
Model 1 a | Ref. | 0.82 (0.69–0.98) | 0.70 (0.58–0.85) | 0.001 | Ref. | 0.93 (0.75–1.16) | 0.81 (0.65–1.00) | 0.018 |
Model 2 b | Ref. | 0.83 (0.70–0.99) | 0.74 (0.61–0.89) | 0.002 | Ref. | 1.08 (0.87–1.35) | 1.03 (0.83–1.29) | 0.969 |
Model 3 c | Ref. | 0.83 (0.70–0.99) | 0.76 (0.63–0.92) | 0.006 | Ref. | 1.08 (0.87–1.34) | 1.04 (0.84–1.29) | 0.942 |
Abdominal obesity, % (n) | 175 (33.4) | 322 (27.9) | 322 (28.2) | 0.065 | 189 (63.6) | 510 (55.1) | 794 (55.8) | 0.083 |
Model 1 | Ref. | 0.81 (0.67–0.97) | 0.69 (0.56–0.84) | 0.001 | Ref. | 0.76 (0.64–0.90) | 0.63 (0.53–0.74) | <0.001 |
Model 2 | Ref. | 0.84 (0.70–1.02) | 0.75 (0.61–0.92) | 0.006 | Ref. | 0.88 (0.74–1.04) | 0.80 (0.67–0.95) | 0.010 |
Model 3 | Ref. | 0.84 (0.70–1.01) | 0.76 (0.62–0.93) | 0.009 | Ref. | 0.87 (0.73–1.03) | 0.79 (0.67–0.94) | 0.007 |
Elevated blood pressure, % (n) | 300 (57.3) | 604 (52.3) | 587 (51.3) | 0.039 | 133 (44.8) | 367 (39.7) | 545 (38.3) | 0.058 |
Model 1 | Ref. | 0.88 (0.76–1.01) | 0.80 (0.69–0.94) | 0.005 | Ref. | 0.88 (0.72–1.08) | 0.80 (0.66–0.98) | 0.025 |
Model 2 | Ref. | 0.90 (0.78–1.03) | 0.87 (0.74–1.01) | 0.081 | Ref. | 1.01 (0.83–1.24) | 1.03 (0.84–1.26) | 0.804 |
Model 3 | Ref. | 0.88 (0.77–1.02) | 0.85 (0.73–0.99) | 0.052 | Ref. | 0.98 (0.80–1.20) | 0.99 (0.81–1.22) | 0.979 |
Hypertriglyceridemia, % (n) | 279 (53.2) | 444 (38.4) | 451 (39.4) | 0.035 | 108 (36.4) | 210 (22.7) | 316 (22.2) | 0.339 |
Model 1 | Ref. | 0.86 (0.75–1.00) | 0.79 (0.68–0.93) | 0.004 | Ref. | 0.96 (0.77–1.00) | 0.88 (0.71–1.10) | 0.170 |
Model 2 | Ref. | 0.86 (0.74–1.00) | 0.79 (0.68–0.92) | 0.004 | Ref. | 1.00 (0.80–1.25) | 0.94 (0.75–1.18) | 0.441 |
Model 3 | Ref. | 0.88 (0.76–1.02) | 0.83 (0.71–0.97) | 0.023 | Ref. | 1.00 (0.80–1.25) | 0.94 (0.75–1.18) | 0.430 |
Elevated fasting glucose, % (n) | 222 (42.4) | 444 (38.4) | 451 (39.4) | 0.396 | 80 (26.9) | 210 (22.7) | 316 (22.2) | 0.140 |
Model 1 | Ref. | 0.92 (0.78–1.08) | 0.88 (0.74–1.04) | 0.139 | Ref. | 0.86 (0.66–1.11) | 0.79 (0.61–1.02) | 0.068 |
Model 2 | Ref. | 0.93 (0.79–1.09) | 0.91 (0.76–1.08) | 0.283 | Ref. | 0.92 (0.70–1.19) | 0.87 (0.67–1.14) | 0.322 |
Model 3 | Ref. | 0.94 (0.79–1.10) | 0.94 (0.79–1.12) | 0.549 | Ref. | 0.89 (0.69–1.16) | 0.86 (0.66–1.12) | 0.286 |
Reduced HDL cholesterol, % (n) | 271 (51.7) | 584 (50.5) | 557 (48.7) | 0.220 | 207 (69.7) | 631 (68.2) | 977 (68.7) | 0.890 |
Model 1 | Ref. | 1.06 (0.92–1.23) | 0.98 (0.84–1.15) | 0.630 | Ref. | 0.98 (0.84–1.15) | 0.95 (0.81–1.11) | 0.464 |
Model 2 | Ref. | 1.07 (0.93–1.24) | 1.01 (0.86–1.18) | 0.864 | Ref. | 1.01 (0.86–1.19) | 1.01 (0.86–1.19) | 0.935 |
Model 3 | Ref. | 1.07 (0.93–1.24) | 0.99 (0.84–1.15) | 0.651 | Ref. | 1.03 (0.88–1.21) | 1.03 (0.88–1.21) | 0.736 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, M.; Shin, Y.; Cho, J.-H.; Lee, D.; Kim, Y. Association between Dietary Diversity Score and Metabolic Syndrome in Korean Adults: A Community-Based Prospective Cohort Study. Nutrients 2022, 14, 5298. https://doi.org/10.3390/nu14245298
Kim J, Kim M, Shin Y, Cho J-H, Lee D, Kim Y. Association between Dietary Diversity Score and Metabolic Syndrome in Korean Adults: A Community-Based Prospective Cohort Study. Nutrients. 2022; 14(24):5298. https://doi.org/10.3390/nu14245298
Chicago/Turabian StyleKim, Jiyeon, Minji Kim, Yoonjin Shin, Jung-Hee Cho, Donglim Lee, and Yangha Kim. 2022. "Association between Dietary Diversity Score and Metabolic Syndrome in Korean Adults: A Community-Based Prospective Cohort Study" Nutrients 14, no. 24: 5298. https://doi.org/10.3390/nu14245298
APA StyleKim, J., Kim, M., Shin, Y., Cho, J. -H., Lee, D., & Kim, Y. (2022). Association between Dietary Diversity Score and Metabolic Syndrome in Korean Adults: A Community-Based Prospective Cohort Study. Nutrients, 14(24), 5298. https://doi.org/10.3390/nu14245298